Даниил Данин
Неизбежность странного мира
•
ЧАСТЬ ПЕРВАЯ
Глава первая
Мы поднимались на Арагац для того, чтобы посмотреть, как незримое и неслышное становится явным. Не было головокружительных подъемов и перехватывающих дыхание виражей, но не было и дороги. Вернее, она была, да только кончилась слишком рано — там, где нужда в ней стала всего острее: на границе весны и зимы.
Мы поднимались к небу, и смена времен года шла в об ратном порядке. На зеленом просторе Араратской долины весна уже переходила в лето. А в райском саду Бюраканской обсерватории сквозь дождь, пронизанный солнцем, еще угадывалось ее начало. Потом мы въехали в ранний апрель с рыжеющим снегом и черными пятнами прошлогодних трав. Потом часы отстали еще на месяц: тяжелые мартовские снега окружали последнее поселение Каши-Булах. Там лобастые камни уже сумрачно поглядывали на людей из-под белых надбровий. Потом ушли все краски и осталось только арктическое безмолвие неоглядных снегов. Осталась белизна, которую, однако, нельзя было бы передать белилами, потому что изменчивое облачное небо с прорывающимся солнцем все время примешивало к белому другие цвета.
И тут кончилась дорога.
Вездеход стал беспомощен. Выгрузив нас, продукты и почту, он повернул обратно. Все надели темные очки, припасенные впрок. Могучий трактор спустился сверху нам навстречу. И невозможно было понять, откуда взялся здесь, в этой белой тишине, такой неправдоподобный сгусток черноты и скрежета. «Челябинец» принял на борт новичков, а бывалые обитатели горы стали на лыжи и подхватили брошенные им веревочные концы. По белой траншее, протараненной бульдозером в двухметровой снежной целине, «Челябинец» пошел выплясывать чудовищно-тяжеловесный танец. Трактор медленно поднимался все вверх и вверх по неуступчивым каменным волнам, выворачивая наши души. Оставалось одно утешение: по всем признакам до неба было уже недалеко.
Начало мая — прекраснейшая пора в зеленых земных долинах южных широт: солнце еще милостиво, ветры еще прохладны, реки еще полноводны и зелень в самом деле еще зелена. А в горах?
Несколькими днями раньше мы поднимались на машине весело-зеленым Дилижанским ущельем к Севанскому перевалу — к синему горному морю, что лежит на два километра выше обычных морей. Быстроногие мальчишки на Севане… Со связками серебряно-черно форели в руках они бежали от белесого озерного прибоя к серой реке асфальта, оглашая весенний воздух пронзительным криком: «Ишхан, ишхан!» Для человека, впервые въезжавшего в незнакомую страну вечерним малолюдьем высокогорной дороги, этот зазывный крик продавцов севанской форели сделал сразу обитаемым каменистый безмолвный пейзаж, который так часто и так справедливо называют библейским.
А на Арагаце, на той же высоте и в ту же пору, на пути к широко известной Станции космических лучей ничто не скрашивало холодного безлюдья камней и снегов. Между тем до самой станции была еще добрая тысяча метров по вертикали, или, точнее, дюжина недобрых километров по белым склонам горы.
Отметка — 3 250. Неожиданное заледенелое озерцо. В таком уединении обосновалась станция, что едва ли не до самого конца пути — до последнего поворота снежной траншеи — ничто не предвещало внезапного появления меж крутых вершин Арагаца каменных зданий высокогорной лаборатории. А всю дорогу, по крайней мере в это время года, новичка томило редко посещающее человека беспокойное и вместе легкое чувство — чувство отрешенности от земли.
Это чувство — потому я и заговорил о нем — немножко сродни предмету, о котором пойдет здесь речь. А речь пойдет об элементарных частицах материи. Вернее, о радостях и горестях ищущей мысли ученых, исследующих нейтрино и электроны, протоны и нейтроны, мезоны и гипероны, античастицы и многое другое. Все это не просто заманчиво звучащие термины из хитроумного научного словаря. Все это — несомненно существующие реальности. Столь же несомненно существующие, как атомы или молекулы, как видимое световое излучение или невидимые радиоволны.
Так откуда же берется ощущение отрешенности?
В помеченных мелом и сложенных штабелями бревнах обезличиваются деревья — за их однообразием уже не виден живой шумящий лес. За одинаковостью песчинок на речной косе уже не угадать первоначальных очертаний берега — дробление обезличивает камень. Вот так и в мире элементарных частиц — там уже ничто не напоминает о разнообразии земной природы.
Сведенная к элементарным частицам материя предстает перед нами лишенной цвета и запахов, незримой и неслышной, свободной от каких бы то ни было свойств, позволяющих нам в обыденной жизни отличать одни предметы от других; там нет ни твердости, ни хрупкости, ни прозрачности, ни угловатости… Впрочем, стоит ли продолжать это перечисление; таких обиходных свойств нет уже и в мире атомов. А погружаясь еще глубже в недра материи — в меньше чем атомный — субатомный — мир элементарных частиц, мы еще больше отрешаемся от нашего повседневного опыта.
Там все необычно.
Там скорости, близкие к световой, — явление заурядное. Там есть частицы, которые и не могут существовать иначе, как в полете со скоростью света: нельзя затормозить их движение — они исчезают. Там Продолжительность жизни, измеряемая миллионными долями секунды, нередко оказывается относительным долголетием. Там почти мгновенное превращение одних частиц в другие — дело вполне обыкновенное, и рождение там сопровождается смертью, а смерть — рождением. Там пришлось назвать одно свойство таким ненаучным словом, как «странность», там ученые прибегают к таким неожиданным понятиям, как «призрачное взаимодействие». Там воображению не из чего строить привычные механические модели вещей и процессов, и в словарь науки проникают новые, поэтически окрашенные термины, в которых как бы застывает навсегда удивление физиков перед необычайностью открывшихся им явлений.
И чтобы уж до конца объяснить то ощущение отрешенности, о котором зашел разговор, нужно добавить два слова: открытия в мире элементарных частиц пока не имеют прямого касательства к практическим нуждам человеческой жизни.
Микроураганы, бушующие в атомных реакторах, оборачиваются полезной энергией — она крутит валы машин и освещает людские дома. Микрособытия в мире элементарных частиц, изучаемые на лабораторных установках, еще никого не согрели, равно как и никого не обездолили. Они не создали никаких угроз человеческому существованию, но и не помогли еще людям ни на йоту увеличить благосостояние общества.
Так, может быть, пока не стоит рассказывать об этих отвлеченных исканиях? Конечно, манит к себе их новизна. Но разве в физике мало других интереснейших новшеств, да притом таких, что они уже составляют душу многих замечательных завоеваний нынешней техники? Так не повременить ли до тех пор, пока и наука об элементарных частицах не придет к своему деловому часу?
Однако, может быть, она никогда и не придет к нему в том прямом смысле, что на основе ее успехов будут конструироваться новые машины или выращиваться сверхурожаи? И все-гаки тысячи ученых в десятках лабораторий исследуют поведение, свойства, взаимодействия элементарных частиц. Искусные экспериментаторы и проницательные теоретики делают неожиданные открытия, ставят тонкие опыты, выдвигают самые невероятные предположения, спорят друг с другом в поисках законов, по которым устроена материя в ее первоосновах.
В ее первоосновах! В этом все дело.
Прекрасно сказал наш известный математик, один из создателей Сибирского отделения Академии наук СССР, академик М. Лаврентьев: «Бесполезных открытий не бывает! Нельзя говорить ученому: прекрати свои поиски, потому что сегодня они не нужны для промышленности. Они будут нужны.
Отбрасывая с пренебрежением исследования, которые сегодня кажутся отвлеченными, но направленными на разгадывание тайн природы, на воспроизведение ее явлений, мы рискуем слишком много потерять, ибо вслед за познанием неведомых сил природы всегда идет овладение этими силами».
Если так взглянуть на науку об элементарных частицах, пожалуй, сразу же не останется и следа от ее отвлеченности. Наоборот, тотчас станет ясно, что в ее успехах заинтересовано все естествознание. А заодно с ним — и вся техника, вся практическая деятельность человечества.
Этого не нужно доказывать, как не нужно доказывать, что все происходящее в природе зависит в конце концов от «внутреннего устройства» материи. И потому в мире техники — в мире второй природы, создаваемой человеком, — все определяется в конце концов глубиной проникновения в это тайное тайных природы первой. И без малейшего преувеличения можно сказать, что наука об элементарных частицах держит в своих руках все будущее природоведения и все будущее человеческой техники.
Но вообще нужны ли тут эти «оправдания пользой»? Должно ли нуждаться в них стремление ученых пробиться к первоосновам материи?
Когда материалисты древности впервые произнесли слово «атом», они проявили глубочайшую проницательность и вместе с тем впали в глубочайшее заблуждение. Понадобилось более двух тысячелетий, чтобы со всей научной строгостью доказать правоту древних натурфилософов и в то же время сразу их опровергнуть.
«Атом» — «неделимый»! В этом слове заключалась не одна, а две идеи: идея дробимости материи — ее сложного строения, и еще — идея неделимости ее первооснов.
Смешно подумать, но и в наш век были ученые, которые упорствовали в нежелании признать делимость материи до атомного состояния. Конечно, сегодня таких неверующих уже не встретить. Но, окончательно победив, первая идея тотчас нанесла поражение второй. Едва начав изучение реальных атомов разных химических элементов, физики увидели, что неделимость их — миф. Оказалось, что атомы вовсе не «атомы».
Кирпичиками мироздания называли их еще в начале XX века. Однако удержаться в этом высоком звании атомам не удалось. Открылось, что они сами — целые миры, построенные из деталей более простых: протонов, нейтронов, электронов.
Теперь уже эти три стандартные детали были возведены в ранг, или, если хотите, были низведены до ранга первооснов материи. Их назвали элементарными — «простыми» — частицами.
Три — соблазнительное число. Когда-то последователи Пифагора полагали, что в основе миропорядка лежит гармония чисел. Узнав про тройку элементарных частиц, они, наверное, глубокомысленно закивали бы головами: «Три первоосновы? Это похоже на истину».
Но исследования продолжались. О древних пифагорейцах физики не вспоминали. К трем элементарным частицам сразу начали прибавляться все новые и новые, столь же простые частицы. Двадцать пять лет они сыпались как из рога изобилия. Или как падающие звезды в августе: яркими линиями прочерчивали они темноту нашего неведения и привлекали всеобщее внимание. Но иные из них и вправду сгорали, как метеоры: факт их существования не находил подтверждения или до сих пор вызывает сомнения и споры.
Вы, конечно, понимаете, что эти ходячие образы — «рог изобилия» и «звезды в августе» — здесь совсем неуместны: открытие каждой новой, прежде неизвестной элементарной частицы — дело величайшей трудности. Всякий раз это настоящий научный подвиг: такой проницательности, такой веры в разумности смелых предположений, такой экспериментальной изощренности и такой безошибочности в работе требуют подобные открытия от ученых. Можно только удивляться, что с начала 30-х годов нашего века — за ничтожно короткий исторический срок — число бесспорно открытых элементарных частиц постепенно перевалило далеко за двадцать! И где конец «списка первооснов», даже есть ли он вообще, этот конец, сегодня никто еще не скажет.
Но вот вопрос: действительно ли ученые имеют тут дело с первоосновами материи? Действительно ли элементарно просты элементарные частицы? Уж не служат ли они в природе теми окончательно неделимыми атомами, о которых думали некогда натурфилософы древности? Неужели и впрямь с этих частиц «все начинается»? Если нет — то что же дальше? Откуда берутся они сами? Из чего построены и по каким законам рождаются? Вообще — что они такое?
Однако не слишком ли много вопросов тут нагромождено?
Снова: все сказанное сказано только для оправдания этого разговора об элементарных частицах. Да, двигателя на них пока не построишь. Но когда речь идет об общей физической картине природы — о первоосновах материи, науке не нужно оправдываться в том, что она пока еще отвлеченная!
И все же современникам первых атомных электростанций, первых спутников Земли, первых полетов к Луне трудно поверить, чтобы физики сегодня занимались делами, далекими от непосредственного практического приложения в жизни. Занятную историю нечаянно узнал я на Арагаце.
…В Араратской долине, где дымят заводы и фабрики, где работают геологи и дорожники, однажды произошла авария — у кого-то что-то взорвалось. Запутанные технические причины аварии были установлены не сразу. И вот, пока их доискивались, одному из обследователей случившегося пришла в голову неожиданная мысль, вполне пригодная для фантастического рассказа. Эта мысль повела его на Арагац — к черному озеру меж вершин необжитой горы.
Трудная дорога, холод, тревога неизвестности… «Может, и со мной что-нибудь произойдет в пути, — думал обследователь, — раз эти ученые сумели оттуда, сверху, вызвать по неаккуратности взрыв в долине?..»
В уединении Арагацкой станции каждый человек снизу — желанный гость. Обследователя накормили до отвала, предложили ему горячий душ, постель со свежим бельем, какв заправской гостинице. Нет, как в настоящей клинике, потому что врач высокогорной лаборатории, движимый своими собственными научными интересами, еще измерил кровяное давление человека из долины и снял его кардиограмму. Гость с удивлением смотрел на батареи центрального отопления, на щедрое электрическое освещение, на многоцветные схемы автоматических радиоустройств, на громады физических установок. Он проникся симпатией и доверием к обитателям горы, но вместе с тем и укрепился в мысли об их могуществе.
Физики все показали ему и все объяснили. Как могли. Они улыбались, и он улыбался. Казалось, он понял: тут занимаются просто «чистой наукой» — космическими лучами, приходящими из глубин вселенной; никакими секретными силами, способными действовать на расстоянии, физики тут не владеют. Пришел час расставания. Гость уже открыл дверь, как вдруг обернулся с порога, понимающе подмигнул и сказал:
— Ладно, товарищи. Все ясно! Только давайте в следующий раз поаккуратней, а то вон что получается…
Физики еще долго смеялись. Нет, им не удалось уверить человека из долины в своей практической беспомощности. Не тот нынче век на дворе!
Но в одном этот человек был прав, сам того не подозревая: физики сегодня уже так могущественны, как никогда прежде, — они подбираются к глубинным «первоосновам материи». А это посерьезней воображаемых или возможных взрывов на любом расстоянии.
Итак, мы поднимались на Арагац, дабы посмотреть, как незримое и неслышное становится явным.
На языке деловом наша цель определялась скучными словами: «объект», «ознакомление». У тракториста и его напарника, у инженера-радиотехника и начальника станции были, разумеется, свои печали — у каждого по обязанностям. Но мною, пятым участником подъема, владело совсем не деловое намерение: честно говоря, просто очень хотелось пройти 3 250 метров вверх — по направлению к незнаемому.
Настроение было крылатым и чуть-чуть торжественным, как обычно у горожан в горах. А тут еще весна в Армении — южная весна! Предшествовавшая холодным вершинам Арагаца, она настраивала на нужный лад.
Внизу, в Ереване, в зеленом дворике Физического института Академии наук, цвели каштаны и вавилонская ива; не то начиналась, не то уже кончалась сирень. Еще никто не искал тени, и удивительно, как хорошо было расхаживать по этому дворику, слушая рассказы физиков об истории Арагац-кой лаборатории, о ее работах — удачных и неудачных, старых и новых. Но только в их рассказах не было никакой особой приподнятости. Ничего весеннего.
Обычная история! Слушая их, я вспоминал, как на первой атомной станции под Москвой в дни, когда весь мир был полон разговоров о ней, молодой инженер в белом халате усталым голосом сообщал экскурсантам: «А этот контур выполнен у нас из нержавейки», «А турбинка у нас пустяковая, смотреть не на что, старую подлатали — и поставили».
У высот науки то же свойство, что у горных высот: там захватывает дух. Но сами ученые, как и горцы, испытывают это редко, гораздо реже, чем любопытствующие люди со стороны. Для ученых высоты знания — просто постоянное рабочее место, как для горцев альпийские луга — просто пастбища. Для тех и других соседство необозримых далей — вещь примелькавшаяся. Но дело не только в этом.
Там, где нашей дилетантской восторженности все представляется красивым, стройным, законченным, там перед глазами исследователей стоит совсем иная картина: одно еще вовсе не решено, другое вызывает сомнения, третье недостаточно обосновано, четвертое противоречит известным данным, пятое годами не дается в руки… В жизни каждого — воскресений в семь раз меньше, чем прочих дней недели. В работе ученого праздники — в сотни раз более редкая штука, чем тяготы упрямой работы.
Сравнивайте исследователей природы с разведчиками, строителями дорог, проходчиками шахт — сравнение окажется тем точнее, чем менее безоблачным будет его содержание.
Это верно вообще, а в науке об элементарных частицах — вдвойне верно: эта субатомная физика только еще создается. В похожем положении находилась сто лет назад древняя химия, когда она ждала появления Менделеева. Об этом сегодня охотно говорят сами ученые.
— Хочешь побывать на Алагезе? — сказал мне в Москве один литератор, издавна знавший Армению (потому и Ара-гад он назвал его старым именем — Алагез). — Прекрасно! Это гора очарований…
— …и разочарований! — добавил другой приятель, физик, давний мой университетский однокашник. — Но побывать тебе там надо. Это интересно. И важно. А для твоей цели, пожалуй, даже обязательно.
Однако при чем тут элементарные частицы, если физическая лаборатория на Арагаце занимается космическими лучами? Дело в том, что именно космические лучи оказались как бы заповедником элементарных частиц — прекрасной природной лабораторией, в которой многие из них были впервые открыты. И возможно, эти лучи еще не обнаружили перед учеными всех богатств своего состава.
Космические лучи прибывают на Землю после долгого и однообразного путешествия через пустынное безмолвие мирового пространства. Разумеется, Земля не цель их странствий (у природы целей нет!). Земля — только одно из небесных тел, лежащих на их пути. Они бороздят вселенную во всех направлениях, и нелепо было бы думать, что где-то существует единственный источник их рождения.
Слово «лучи» тут не совсем законно: с этим словом связывается представление о чем-то непрерывном и определенно направленном, а космические лучи — это потоки частиц материи, пронизывающих земную атмосферу со всех сторон. От солнечного света можно укрыться в тени; такая тень — ночь, всегда объемлющая половину земного шара. От космических лучей в этом смысле спрятаться негде, как в океане не уйти от воды. Они — тот космический Мировой океан разреженного вещества, сквозь бури и штили которого плывет наша маленькая Земля.
Там действительно бывают бури, а не только штили, хотя это вещество мировых глубин так разрежено, что в одном кубическом сантиметре межзвездного пространства нашей Галактики можно встретить в среднем не более одной частицы.
(В межгалактических просторах вещества еще меньше.) А какая это малость, легко понять из простого сравнения: в таком же кубике воздуха возле земной поверхности количество молекул измеряется числом с девятнадцатью нулями!
Казалось бы, залетные гости из космоса должны были бы всякий раз безнадежно затериваться в земной атмосфере. Они должны были бы навсегда оставаться неузнанными среди этого чудовищного скопления частиц газообразных земных веществ. И в самом деле, об их существовании ученые даже не подозревали до начала нашего века. Между тем для открытия космических лучей не понадобилось никаких особых приборов и никакой сверхтонкой изобретательности. Все было сделано с помощью старого доброго школьного электроскопа. И все-таки это открытие не могло быть совершено раньше. До него надо было дорасти. И не столько технике эксперимента, сколько самому исследовательскому духу ученых.
Надо было, чтобы мысль физиков была настроена на подходящую волну. «Духом приключений» назвал эту настройку Пьер Оже, чье имя можно встретить на страницах любого курса атомной физики (эффект Оже, электроны Оже, ливни Оже). Он имел в виду приключения в прямом смысле слова: полеты на воздушных шарах, путешествия в горы, блуждания по глубоким подземельям, погружения на дно озер… И вправду — без таких приключений исследования космических лучей были бы, наверное, безуспешны. Но готовность к риску и любым лишениям отличала исследователей природы и раньше. Дух приключений был свойствен им всегда. Однако всякий раз овладевал он ими всерьез лишь тогда, когда они уже ясно осознавали веления возникшей задачи и понимали: без приключений не обойтись!
Так было и с космическими лучами. Отправиться в горы и лезть под землю заставила ученых уверенность, что в атмосфере Земли есть какая-то всепроникающая радиация. Надо было в этом убедиться. Но сначала должна была зародиться самая мысль о возможности такой радиации! Вряд ли она пришла бы физикам на ум, если бы незадолго до того не были уже открыты рентгеновские лучи и радиоактивность. Первое произошло в 1895, второе — в 1896 году.
Вот что создало настройку на нужную волну. Вот что на сей раз пробудило вечный «дух приключений».
Открытие Вильгельмом Рентгеном невидимых лучей, для которых обычные непрозрачные тела оказались прозрачными, произвело на современников ни с чем не сравнимое впечатление. Еще никто не знал, что эти лучи совершенно подобны световым, но только обладают гораздо меньшей длиной волны. Еще никто не догадывался, что они возникают при торможении быстролетящих электронов вблизи атомных ядер. И происхождения радиоактивных излучений, открытых вскоре Анри Беккерелем, тоже никто еще не понимал. Еще ничего не было известно о строении атомов, об их наружных электронных оболочках и внутренних ядрах. Но всем было ясно одно — это микромир подает вести о себе! Началась новая эпоха в развитии физики.
Возникла «лучевая лихорадка». Одна за другой следовали — попытки открыть еще какие-нибудь лучи: Ученые жили надеждой уловить еще какие-нибудь зашифрованные сообщения из глубин вещества. Лучи Гретца, лучи Блондло, Эф-лучи… «После большего или меньшего периода оказывалось, однако, что лучи эти были плодом недоразумения или ошибок наблюдения», — так писал ученик Рентгена наш академик Абрам Федорович Иоффе.
В эту-то пору, на рубеже XIX и XX веков, физики обратили внимание на одно странное явление, замечательное только тем, что его невозможно было разумно объяснить: заряженный электроскоп с течением времени неизбежно сам разряжался! Нужно ли напоминать, что электроскоп — это два тонких металлических листочка на конце изолированной палочки; стоит подвести к листочкам электрический заряд — и их концы разойдутся, отталкиваясь друг от друга. А вереде, которая не проводит тока, разошедшиеся листочки не опадут: никто не будет снимать с них заряды, и сила отталкивания не станет убывать.
Заряженный электроскоп оставляли в герметически закупоренном сосуде, с нейтральными газами. Изоляция в электроскопе и герметичность сосуда были очень надежными. И тем не менее всякий раз обнаруживалось, что листочки понемногу опадают. Годилось единственное объяснение: в непроницаемом сосуде откуда-то появляются носители электричества — заряженные частички. Но откуда им взяться в нейтральном газе, да еще в сравнительно большом количестве?
Как обычно, все началось с простых вопросов.
Есть физические понятия, без расшифровки которых так же невозможно обойтись в рассказу об элементарных частицах, как, скажем, в разговоре об актерах без слова «сцена». Ионизация — одно из таких понятий. Это и впрямь та лабораторная сцена, на которой показываются из-за кулис и демонстрируют свои способности элементарные частицы. Не будь этого процесса — ионизации, ученые вряд ли хоть что-нибудь узнали бы об элементарных частицах.
Щелкающие счетчики в атомных институтах… Фотографии туманных следов в знаменитой камере Вильсона… Радиосигналы физических приборов на спутниках… Все это работает ионизация.
Наше минутное предположение, что процесса ионизации вдруг могло бы не быть, на редкость бессмысленно. Это все равно, что предположить на минуту, будто не существует самой окружающей нас природы, да и нас самих тоже. Мир без ионизации — это мир навсегда запечатанных атомов, между которыми почти невозможны взаимодействия, мир без подавляющего большинства химических превращений, без необходимого для живой жизни великого разнообразия сложных веществ. Бесплодный, невообразимый мир.
Очень давно уже было замечено, что нейтральные атомы легко превращаются в электрически заряженные ионы. Только физики не понимали, как это происходит. Фарадей, который в 30-х годах прошлого века ввел в науку это греческое слово «ион» — «странник», или «идущий», — не располагал никакими сведениями о строении атомов. А в их строении и было все дело. Они нейтральны, хотя и построены из заряженных частиц, потому что число минус-зарядов — электронов, вращающихся в атоме вокруг ядра, в точности равно числу плюс-зарядов — протонов в самом ядре.
Нужно только нарушить это равенство, чтобы атом тотчас превратился в заряженный ион. И на первый взгляд есть целых четыре способа сделать это: первые два — увеличить или уменьшить число протонов в ядре, другие два — уменьшить или увеличить число наружных электронов.
Но первые два способа не годятся. Совершенно не годятся! И не потому, что это очень трудная задача — выбить из ядра протоны или вогнать туда новые, а потому, что такая операция равносильна утрате самого атома, который нам хотелось бы превратить в ион.
Атомы разных химических элементов прежде всего тем и отличаются друг от друга, что в их ядрах заключены разные количества протонов. Есть три водорода: обыкновенный — протий, тяжелый — дейтерий, сверхтяжелый — тритий. Но все это — разновидности (изотопы) одного и того же химического элемента, потому что их ядра, содержащие только по одному протону, все имеют один и тот же заряд: + 1.
Изменить число протонов в ядре — это все равно, что превратить один элемент в другой!
А ионизация — процесс гораздо более скромный и гораздо более легкий: ионизированный водород остается водородом со всеми своими основными свойствами, гелий — гелием, а уран — ураном. Но если с атомными ядрами при ионизации не происходит решительно ничего, то, значит, что-то происходит с наружными электронами атомов?
Так остаются только два последних способа сделать атом заряженным: либо отодрать от его внешней оболочки один или несколько электронов, либо, напротив, присоединить еще новые. Другими словами: или хотя бы немного рассеять электронное облако, или сгустить.
Заметьте, какие глаголы приходится употреблять в разговоре об ионизации: «отодрать», «удалить», «присоединить», «сгустить»… Это все активные действия. При их совершении «происходит либо затрата энергии, либо ее выделение.
Если бы ионизация давалась даром, это было бы также безрадостно, как если бы она была невозможна.
В самом деле, это ведь означало бы, что все связи атомных электронов с ядрами ничего не стоят, что они попросту не существуют. Тогда мир предстал бы перед нами как скопление голых ядер или, напротив, ядер, окруженных густыми тучами электронов. Все зависело бы от чистого случая — от капризов механических столкновений частиц. Нечаянно возникали бы нелепейшие соединения элементов — возникали и тут же распадались бы. В конце концов мир превратился бы в однообразную мешанину ядер и электронов — в бесформенный электронно-ядерный газ. Тоскливое зрелище мира, в котором некому было бы тосковать…
А невозможность ионизации означала бы, что связи электронов с ядрами раз и навсегда нерушимы. Такая перспектива нисколько не отрадней. Атомы и вправду были бы тогда навечно запечатанными, крепко-накрепко засургученными, неизменяемыми. Они стали бы, наконец, оправдывать свое первородное прозвище — «неделимые». Но природе нечего было бы с ними делать. Мир превратился бы в почтовый ящик, набитый письмами, которые нельзя открыть и прочитать. Нелепый, недоступный даже воображению, гадательный мир…
Энергия ионизации не может быть нулевой — связи не существуют. И не может быть бесконечной — связи нерасторжимы. Все процессы в жизни природы конечны, кроме процесса самой этой жизни, не имеющей во времени и пространстве ни начала, ни конца.
Неизбежность затраты энергии на ионизацию атомов (кто, где и как расходует ее или получает, нам сейчас совершенно неважно) делает это событие в одних случаях возможным, а в других — нет. И так как всякий раз баланс энергии вполне определенен, ибо всякий раз вполне определенны связи, которые разрываются или воссоздаются, то в руках ученых оказывается надежный способ вести одну из бухгалтерских книг природы. Они записывают в ней, как сводятся концы с концами во множестве явлений микромира.
Так невидимые и неслышные события, к которым, казалось бы, и не подступиться с точными измерениями, вдруг становятся предметом строгого учета. А тогда неудивительно, что появляется возможность их «увидеть и услышать».
Здесь лежит исток нескончаемой серии открытий в мире элементарных частиц. Здесь исток и открытия настоящего природного заповедника этих частиц — космических лучей.