Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Популярная анатомия. Строение и функции человеческого тела - Айзек Азимов на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Когда потери не слишком велики, вода достаточно быстро восполняется, но для восстановления некоторых веществ, растворенных в плазме, особенно сложных белковых молекул, требуется гораздо более продолжительное время. Эритроциты заменяются медленнее всего, поэтому есть так называемый период постгеморрагической анемии. Он может длиться от 6 до 8 недель после потери примерно полулитра крови, но это не очень серьезно. Организм имеет резервы, и временная анемия слабой степени не станет особой помехой нормальной жизни. Таким образом, человек может сдать пол литра крови без всякого последующего дискомфорта, о котором стоило бы говорить, конечно, если он вполне здоров.

Чем больше потеря крови, тем, соответственно, положение серьезнее. Если потеря крови составляет более 40 процентов, то организм не может восстановить необходимое количество крови достаточно быстро. В этом случае следует перелить кровь непосредственно в кровоток больного. Кровь можно взять из запасов банка крови или от донора, а процесс называется гемотрансфузия, или переливание крови.

К несчастью, переливать кровь от любого случайно взятого человека любому другому нельзя. Человеческая кровь бывает четырех основных групп, которые обозначаются 0, А, В и АВ. Эритроциты человека с кровью группы А содержат субстанцию, которую мы можем назвать «А», в то время как кровь человека с группой В содержит субстанцию, которую мы можем назвать «В». Человек с группой крови АВ имеет эритроциты, содержащие как «А», так и «В» субстанции, в то время как человек с нулевой группой крови имеет эритроциты, не содержащие ни «А», ни «В» субстанции.

Эти группы численно не равны. В Соединенных Штатах, например, из каждых 18 человек 8 имеют кровь нулевой группы, а 7 – кровь группы А. Только 2 имеют группу В, и всего 1 – группу АВ.

Так случилось, что плазма крови может содержать вещества, способные вступать в реакцию с веществами «А» или «В», отчего эритроциты, содержащие соответствующие субстанции, будут агрегировать, или агглютинировать (от латинского «склеиваться вместе»). Мы можем назвать субстанции, вызывающие агглютинацию эритроцитов группы А, «анти-А», а субстанцию, вызывающую агглютинацию эритроцитов группы В, – «анти-В». Человек с группой крови А, с «А» в своих эритроцитах неизбежно будет иметь субстанцию «анти-В» в плазме своей крови. Естественно, он не может иметь «анти-А», поскольку это вызвало бы агглютинацию его собственных эритроцитов, что привело бы к смерти.

Точно так же человек с группой крови В имеет в своей плазме «анти-А». Человек с кровью группы В, в эритроцитах плазмы которого содержатся как «А», так и «В», не может иметь ни «анти-А», ни «анти-В»; человек с кровью нулевой группы, в эритроцитах плазмы которого нет ни «А», ни «В», будет иметь и «анти-А» и «анти-В».

Эту ситуацию, вне всяких сомнений, может прояснить эта краткая таблица.


В идеале при переливании крови следует иметь как донора, так и реципиента с одной и той же группой крови. Предположим, случилось так, что у донора и реципиента группы крови разные. Допустим, кровь взяли у В-донора и перелили А-реципиенту. Есть два варианта агглютинации. Первый: у В-донора в плазме крови содержатся «анти-А». Эти «анти-А» вызывают агглютинацию эритроцитов А-реципиента. Это, однако, обычно не очень важно. Количество «анти-А» в плазме переливаемой крови не слишком велико, а то, что присутствует, быстро разжижается несколько большим количеством крови в собственном организме реципиента. Однако второй вариант гораздо серьезнее. У А-реципиента в плазме имеются «анти-В». Эритроциты в крови В-донора сами уже агглютинированы из-за большого количества «анти-В» в крови, переливаемой больному. Тогда то, что получает этот больной, в действительности совсем не кровь, а порция слипшихся эритроцитов, которые блокируют его кровеносные сосуды, часто с фатальным исходом.

Важной мерой предосторожности является предотвращение попадания эритроцитов, которые будут агглютинировать под действием плазмы реципиента. Для примера возьмем больного с группой крови А, у которого в плазме имеются «анти-В». Следовательно, он не должен получить эритроциты, содержащие субстанцию «В». Это исключает доноров с кровью группы В или АВ. Но это не исключает доноров с кровью группы А или с нулевой группой. Вы сами можете проследить, придерживаясь таких же рассуждений, что больной с группой крови В может получить кровь от донора с группой крови либо В, либо с пулевой, но никак не от доноров с группами крови А или АВ. Фактически нетрудно составить следующую табличку.


Как вы можете видеть, донор с нулевой группой крови подходит любому больному, поэтому его называют универсальным донором. (В действительности же какой-нибудь донор с группой А может вполне иметь достаточно «анти-А» или «анти-В» в своей плазме, чтобы вызвать осложнения у больных с группами А, В или АВ. Безопасней всего использовать донора с кровью той же группы, что и у больного.)

Когда происходит большая кровопотеря, потеря жидкости более опасна, чем потеря эритроцитов. Потеря жидкости может быть достаточно большой, чтобы, несмотря на все компенсаторные механизмы организма, образовалась нехватка жидкости для поддержания нормального кровяного давления, а это грозит гораздо большей сиюминутной опасностью, чем постгеморрагическая анемия.

В этом случае следует безотлагательно произвести переливание крови, а если ее негде взять, то плазмы. Кровяное давление окажется в норме, а с анемией можно будет справиться позже.

В использовании одной только плазмы есть свои преимущества. Плазма хранится лучше, чем цельная кровь. Ее можно даже заморозить или высушить в вакууме до порошка и хранить неограниченное время, а при необходимости достаточно лишь добавить стерильную дистиллированную воду. В плазме нет никаких красных кровяных телец, поэтому нет причин волноваться относительно группы крови.

Даже если нет потери самой крови, организм может в недостаточном количестве вырабатывать какой-нибудь основной компонент системы оксигенации. В этом случае он переживает ту же утомляемость и нетрудоспособность (если не падение кровяного давления), которые могут возникать из-за кровотечения. Наиболее очевидным вызывающим анемию сбоем химических механизмов организма является состояние, когда организм не вырабатывает гемоглобин, и при этом слабое место его составляющая – железо. За исключением атомов железа, все компоненты молекулы гемоглобина могут вырабатываться из многочисленных составляющих практически любой пищи. Ничто, кроме продолжительного непрерывного недоедания, не может воспрепятствовать процессу выработки гемоглобинового белка, но в этом случае возникнет выработка белков вообще, а не проблема одного только гемоглобина.

Из-за атомов железа (четыре в одной молекуле) гемоглобин выбивается из общего ряда. Пища обычно не слишком богата доступным железом. Железо, которое образует часть органической молекулы, такой, как сам гем, не так легко поглощается организмом. Мясо и яйца, богатые железом, тем не менее поставляют только несущественный его запас. Взрослых мужчин эта проблема не касается, поскольку их организм эффективно сохраняет железо, а его потери происходят исключительно при кровотечениях. У детей, которые растут и запасы гемоглобина которых должны увеличиваться с возрастом, содержание доступного железа в пище более насущный вопрос. Богатые железом каши, которыми в наши дни постоянно кормят детей, в этом отношении очень полезны.

Молодые женщины при менструациях ежемесячно теряют 25 миллиграммов железа. Это не много, но его нужно чем-то компенсировать, а молоденькие женщины зачастую проявляют твердую решимость оставаться стройными любой ценой, и вполне может так случиться, что они не имеют достаточно железа в своем рационе питания. По этой причине железодефицитная анемия гораздо чаще встречается у молодых женщин, чем у других представителей населения.

К счастью, железодефицитная анемия легко вылечивается с помощью добавок железа в пищу. Железо наиболее легко впитывается, когда находится в виде неорганических солей. «Железные» пилюли часто применяют во время беременности. Хотя в это время менструации прекращаются, организм матери лишается железа, чтобы ребенок мог начать жизнь с его избыточным запасом. Запас железа в организме малыша в конечном счете должен быть несколько большим, чем просто достаточным для его потребностей в момент рождения и для обновления крови в первые шесть месяцев жизни, когда молоко, не слишком богатое железом, почти единственный продукт рациона младенца.

Анемия может возникать, даже когда железа в избытке, но при условии, что механизм транспортировки кислорода каким-то образом выведен из строя. Подчас, к примеру, возникают изъяны в химических процессах организма, которые вызывают выработку гемоглобина, несколько отличающегося от обычного. Такой гемоглобин неизбежно менее эффективен в качестве переносчика кислорода.

Наиболее часто встречающаяся форма такого не совсем «правильного» гемоглобина вызывает серповидноклеточную анемию. Этот особенный гемоглобин менее растворим, чем обычный, и выпадает в осадок в растворе внутри эритроцита, когда содержание кислорода в крови низкое, как в венах. Эритроциты с таким гемоглобином, который кристаллизуется внутри их, обретают причудливые формы, иногда полумесяцы, напоминающие серп (откуда и название болезни). Эритроциты неправильной формы, слабые и хрупкие, легко разрушаются и вызывают анемию. Такое состояние передается по наследству, и лечения от него нет. Оно обнаруживается почти исключительно у аборигенов определенных западноафриканских регионов и у их потомков, включая некоторое количество афроамериканцев.

Неспособность организма надлежащим образом образовывать материал самого эритроцита встречается более произвольно. Этим материалом является строма (что по-гречески значит «матрас», то есть нечто, на чем может покоиться содержимое клетки). Эритроциты, которые были образованы с дефектной стромой, слабы и имеют среднюю продолжительность жизни 40 дней, а не 125 дней, как в норме. Стабильное снижение числа эритроцитов может быть ниже 2,5 миллиона на кубический миллиметр. Отдельные клетки обычно больше нормальных, но это не компенсирует потери в количестве. Эта болезнь – пернициозная анемия («пернициозный» означает «злокачественный») – была названа так потому, что до 20-х годов XIX века случаев ее успешного лечения отмечено не было и она неизбежно заканчивалась смертью. В 20-х годах XIX века было обнаружено, что большое количество печени в рационе может облегчить состояние таких больных, и к концу 40-х годов небольшое количество вещества, названного витамином В12, было получено из печени и оказалось принципиально важным для лечения. Этот витамин теперь можно легко получить посредством управляемого бактериального брожения в лабораторных условиях, и, принимая таблетки по определенной схеме, больные пернициозной анемией могут вести нормальную жизнь. Эта анемия теперь не такая уж злокачественная.

Химические вещества, случайно попавшие в организм, или токсины вторгнувшихся микроорганизмов могут так или иначе нарушить способность крови транспортировать кислород. Малярийный паразит, например, заполняет эритроцит и разрушает его. Это – гемолиз (что по-гречески означает «разрушение крови»), и именно в период гемолиза у больного случаются жестокие приступы озноба, которыми сопровождается малярия. Змеиный яд и яды других существ также способны гемолизировать кровь (разрушать эритроциты) или вызывать агглютинацию эритроцитов. И в том и в другом случае исход зачастую фатальный.

Угарный газ, порождение неживого мира, тоже представляет опасность. Подобно кислороду, угарный газ вступает в реакцию с гемоглобином крови. В отличие от кислорода угарный газ легко не высвобождается. Он остается в связанном состоянии. Даже когда в воздухе содержится незначительное количество угарного газа, гемоглобин, молекула за молекулой, связывается с ним и становится непригодным для транспортировки кислорода.

Другие газы могут вести себя точно так же, но угарный газ наиболее опасен, потому что наиболее часто встречается. Он может образовываться в любой печи с плохой вентиляцией, его можно обнаружить в автомобильном выхлопе и в бытовом газе, используемом на кухне для приготовления пищи. Все три источника угарного газа обычно причастны к смерти от удушья как в результате несчастного случая, так и при самоубийстве.

Избыток хорошего тоже может повлечь за собой плохие последствия. Выработку эритроцитов стимулирует, как я говорил раньше, пониженное содержание кислорода в крови. Обычно по мере повышения числа эритроцитов в крови содержание кислорода также повышается, и быстрота образования новых эритроцитов нивелируется. Однако иногда стенки кровеносных сосудов, питающихкостный мозг (где образуются эритроциты), утолщаются, например из-за атеросклероза, до такой степени, что подача крови к этим тканям резко сокращается. Костный мозг страдает от недостатка кислорода в результате сужения просвета кровеносных сосудов, а не от реального недостатка кислорода в крови. Выработка эритроцитов ускоряется, но это не исправляет ситуацию, поэтому процесс продолжается бесконечно. В результате в крови образуется много эритроцитов, что опасно. Такое состояние называется полицетимия (что по-гречески означает «много клеток в крови»), или эритроцитоз. Кровь становится густой и вязкой выше нормы, кровообращение нарушается, и результат может быть губительным.

Лейкоциты и тромбоциты

Кроме эритроцитов, в крови содержатся полноценные клетки с ядрами. Это лейкоциты (по-гречески «белые клетки», поскольку, в отличие от эритроцитов, у них отсутствует пигмент). Их часто называют просто белыми кровяными тельцами по аналогии с красными, хотя лейкоциты вовсе никакие не тельца, а настоящие клетки.


Большинство лейкоцитов, хотя и не все, вырабатываются костным мозгом вместе с эритроцитами. На начальных стадиях эти клетки представляют собой миелобласты (по-гречески «почки костного мозга»), а затем миелоциты (что по-гречески означает «клетки костного мозга»). Они образуются в больших количествах, но их жизнь тяжела и опасна, поэтому долго они обычно не живут.

В результате их число в крови в любое время всего 7000 на кубический миллиметр, поэтому эритроциты численно превосходят лейкоциты в пропорции 650:1. Тем не менее, в масштабах всего объема крови среднестатистический человек обладает в любой момент приблизительно 75 миллиардами лейкоцитов.

Лейкоциты существуют в многочисленных вариантах, отличающихся друг от друга по размеру и внешнему виду. В общем и целом их можно разделить на два класса: лейкоциты в виде гранул (гранулоциты, или зернистые лейкоциты) и лейкоциты, внешним видом не напоминающие гранулы (агранулоциты, или незернистые лейкоциты). Гранулоциты обычно имеют ядро сложной формы, образованное двумя или более долями. Из-за этого их иногда называют полиморфонуклеарными (что по-гречески значит «многообразное ядро») лейкоцитами. Они обычно составляют около двух третьих всех лейкоцитов в кровотоке. Их, в вою очередь, можно подразделить на три типа в зависимости от того, окрашиваются ли они кислотным красителем, таким, как эозин, основным красителем или нейтральным красителем. Представителей этих типов называют соответственно эозинофилы (что по-гречески значит «любящий эозин»), базофилы (по-гречески «любящий основу») и нейтрофилы («любящий нейтральность» по-гречески). Из них наиболее часто встречаются нейтрофилы.


Что же касается агранулоцитов, которые составляют оставшуюся треть белых кровяных телец, то они характеризуются большими ядрами, по форме более простыми, чем у гранулоцитов, без отдельных долей и иногда заполняющими большую часть клетки. Их также подразделяют на три вида, которые перечислены в порядке убывания размеров: моноциты (от греческого «целая клетка», что подразумевает тот факт, что у ядра имеется всего одна доля), большие лимфоциты и малые лимфоциты. Малые лимфоциты (я объясню их название позже) по размеру не превышают эритроцит и составляют почти четверть всех лейкоцитов. Вслед за нейтрофилами наиболее встречающимися из лейкоцитов являются малые лимфоциты. Агранулоциты не вырабатываются костным мозгом – к этому вопросу я вернусь позже. Чтобы внести ясность, будет полезно составить таблицу.


Нейтрофилы имеют удивительную способность передвигаться подобно амебам. Они и в меньшей степени другие лейкоциты могут сжиматься в достаточной мере, чтобы протиснуться между клетками, образующими тонкую стенку капилляра. Таким образом, они покидают систему кровообращения и попадают в другие ткани. Этот процесс называется диапедез (что по-гречески значит «протиснуться»).

Такая способность чрезвычайно важна, поскольку лейкоциты являются ударными войсками организма, способными заглатывать и переваривать бактерии и другие инородные частицы. Вторжение бактерий в любом месте стимулирует поблизости диапедез. Лейкоциты, приносимые к этому месту кровотоком, в большом количестве попадают в ткань и пожирают бактерий приблизительно так же, как амеба заглатывает какую-нибудь частичку пищи. Таков процесс фагоцитоза (по-гречески «поедание клеток»), и он один из главных средств защиты организма от инфекции.

Еще одно, но более тонкое средство защиты организма состоит в действии определенных белков плазмы крови, называемых антителами. Они вырабатываются под действием инородных веществ, скажем, таких, как бактериальный токсин или углевод на поверхности бактериальной клетки. Антитела, которые образуются, вступают в специфическую реакцию с определенным токсином или с поверхностью определенной бактериальной клетки, которые стимулировали их образование. Они будут так или иначе лишать токсин или бактерию возможности действовать. На протяжении жизни человек обзаводится многими видами антител. Эти антитела непрерывно готовы вступать в реакцию с вторгнувшимися субстанциями, делая человека резистентным (нечувствительным) к многочисленным недугам.

Лейкоциты не считают бактерий безвредными. Бактерии содержат токсины, которые, в свою очередь, могут убивать лейкоциты. В зависимости от природы бактерий лейкоцит может поглощать сразу до пятидесяти или ограничиваться только двумя до того, как погибнет сам. В месте заражения мертвые и разрушенные лейкоциты собираются в виде гноя. Обычно мы осознаем это, когда в результате инфекции волосяного фолликула (мешочка) возникает фурункул (нарыв), собирающаяся в этом месте (приносящая лейкоциты к месту действия) кровь дает покраснение и отек, в то время как давление жидкости делает его болезненным. Ткани между местом воспаления, вызванного инфекцией, и кожей постепенно распадаются до тех пор, пока скопление гноя и бактерий не будет покрывать всего лишь топкая мембрана. У фурункула образуется «головка», и он наконец прорывается, выпуская гной.

Количество лейкоцитов может то увеличиваться, то уменьшаться в ответ на определенные отличающиеся от нормы условия. Повышение называется лейкоцитоз (суффикс «оз» используется в медицинской терминологии для обозначения патологического возрастания чего-либо), а снижение – лейкопения (что по-гречески означает «нехватка белых кровяных телец»). Такие изменения не обязательно присущи всем типам клеток, и иногда полезно производить дифференциальный подсчет. Для этого мазок крови окрашивают и изучают под микроскопом. Изменение соотношения различных типов клеток при этом может быть использовано в качестве вспомогательного показателя при постановке диагноза. К примеру, при острых инфекциях повышается количество нейтрофилов (нейтрофилия).

Особенно серьезным является случай, когда рост количества лейкоцитов возникает в результате рака тканей, которые их вырабатывают.

Рак – это болезнь, характеризующаяся несдерживаемым ростом, и в этом случае несдерживаемый рост проявляется в безграничном образовании лейкоцитов. Число лейкоцитов может доходить до 250 000 на кубический миллиметр, а рост превышать норму в 35 раз и более. Белые кровяные тельца, превалируя количественно, вовлекают в этот процесс другие органы, вторгаясь в них и нанося ущерб их функциям. Образование эритроцитов ограничивается избыточной работой механизма производства лейкоцитов, поэтому появляется анемия. Эта болезнь, неизбежно приводящая к смерти, называется лейкемия (что по-гречески «белокровие»).

Существует третий тип форменных элементов крови. Они гораздо меньше и еще менее похожи на клетку, чем эритроцит. Это кровяные пластинки, названные так из-за плоской формы. Диаметр их вдвое меньше диаметра эритроцитов. Поскольку они участвуют в процессе свертывания крови, их еще называют тромбоциты (что по-гречески означает «свертывающие кровь клетки»). Тромбоциты, как и эритроциты, образуются в костном мозге. Вначале они представляют собой необычайно большие клетки со множеством ядер, называемые мегакариоциты (что по-гречески означает «гигантские клетки с ядрами») – предшественники тромбоцитов. Они в 5 раз превышают диаметр обычной клетки и в 25 раз – диаметр конечной пластинки. Через неделю после образования цитоплазма мегакариоцита начнет дробиться, а затем он распадется на маленькие кусочки – тромбоциты. Средняя продолжительность жизни тромбоцитов в крови всего 8–10 дней. Их гораздо больше, чем лейкоцитов, но меньше, чем эритроцитов, – до 250 000 на кубический миллиметр.

Тромбоциты вступают в игру, как только из-за какой-нибудь раны кровь просочится через барьер, создаваемый кожей. Контакт с воздухом разрушает тромбоцит, обнажая его содержимое. Это вызывает серию химических изменений, которые заканчиваются преобразованием фибриногена (по-гречески «производящий волокна»), растворимого белка плазмы крови, в нерастворимые волокна фибрина. Волокна фибрина осаждаются из крови подобно тончайшей сети, в которую попались форменные элементы. Сеть плюс пойманные в нее клетки образуют сгусток, который запечатывает рану и прекращает кровотечение. С остановкой кровотечения рана начинает заживать, и в конечном итоге затвердевший сгусток, или болячка, отпадает.

В сложный процесс образования сгустка вовлечен ряд факторов свертывающей системы крови, каждый из которых должен надлежащим образом реагировать до достижения удовлетворительного результата. Иногда тот или иной фактор свертывания отсутствует, и сгусток не образуется. Такое состояние может быть вызвано намеренно. Образец крови можно дефибринировать быстрым помешиванием во время забора крови. Фибрин, который образуется, оседает на палочку, с помощью которой происходит помешивание, и его можно удалить. Если форменные элементы отцентрифугировать, то останется плазма минус фибриноген. Это сыворотка крови. В этом случае проблемы образования сгустка нет, и именно поэтому именно она обычно используется для лабораторных анализов, ведь слово «сыворотка» гораздо более нам знакомо, когда речь идет о крови, чем слово «плазма».

Иногда при заборе в кровь добавляется химическое вещество, такое, как оксалат, или цитрат (соль лимонной кислоты). Это вещество связывает в крови ионы кальция (один из факторов свертывания), и образования сгустка не происходит. Иногда вещество, называемое гепарин (от греческого слова «печень», потому что впервые был выделен именно из печени), добавляется в кровь, чтобы предотвратить ее свертывание. Это удобно во время операций, когда нежелательно, чтобы происходило преждевременное свертывание крови. К несчастью, иногда случается, что у человека от рождения отсутствует способность вырабатывать один из факторов связывания крови. В таком случае говорят, что этот человек гемофилик, то есть у него остановить кровотечение чрезвычайно трудно. Такое состояние называется гемофилия (от греческих слов «кровь» и «любовь», то есть «склонность к кровоточивости»).

Лимфа

Я уже указывал, что система кровообращения состоит не только из совершенно изолированных капилляров, поскольку различные лимфоциты без труда могут проникать наружу. Неудивительно, что если большие клетки способны на это, то и крошечные молекулы воды и некоторых других веществ, содержащихся в ней в растворенном виде, могут это делать. И действительно, под давлением крови, перекачиваемой артериями, жидкость выдавливается из капилляров. Это происходит в артериолах, которыми заканчиваются разветвления артерий, и давление в этих крошечных сосудиках наивысшее.

Эта проступающая сквозь стенки сосудов жидкость, которая омывает клетки организма и играет роль некого посредника между ними и кровью, называется интерстициальной жидкостью, поскольку обнаруживается в промежутках между клетками. Интерстициальной жидкости гораздо больше, чем плазмы крови, – у среднестатистического человека ее 8 литров, тогда как плазмы только 3.

По составу интерстициальная жидкость не совсем похожа на плазму, поскольку не все растворенные в плазме вещества могут проникать через стенки капилляров. Около половины белков не проникает, поэтому интерстициальная жидкость содержит только 3–4 процента белков, в то время как в плазме содержится около 7 процентов белков.

Естественно, капилляры не могут непрестанно терять жидкость в течение неограниченного времени, поэтому тут тоже есть нечто вроде системы циркуляции. Некоторое количество интерстициальной жидкости снова попадает в капилляры через венулы, где давление крови значительно меньше, чем в артериях. Кроме того, в межтканевых пространствах содержатся тонкостенные капилляры, которые заканчиваются слепым концом, и через эти капилляры просачивается некоторое количество интерстициальной жидкости. Находящаяся в сосудах интерстициальная жидкость называется лимфа (что по-латыни значит «чистая вода»); она действительно похожа на чистую воду, если сравнивать ее С вязкой красной кровью. Сами эти сосуды называются лимфатическими сосудами.

Лимфатические капилляры сливаются во все большие и большие лимфатические сосуды, которые в конечном счете объединяются, образуя правый и левый лимфатические протоки. Они вливаются в подключичные вены за ключицей, и таким образом лимфа возвращается в кровеносные сосуды. Левый лимфатический проток больший из протоков и самый крупный лимфатический сосуд в организме. Обычно его называют грудной проток, поскольку он проходит через грудь или грудную клетку до места соединения с подключичной веной.

По лимфатическим сосудам лимфа течет очень медленно из-за отсутствия какого-либо перекачивающего действия, как в случае с венами, и основной движущей силой является сокращение мышц во время обычной деятельности организма. Лимфатические сосуды, как и многие вены, имеют односторонние клапаны, которые следят за тем, чтобы жидкость текла только в нужном направлении. Из-за медленного течения по лимфатическим сосудам очень небольшое количество интерстициальной жидкости возвращается в систему кровообращения именно таким образом по сравнению с непосредственным возвратом через венулы капилляров. Тем не менее, лимфатические сосуды – полезный фактор регуляции, поскольку поток то возрастает, то уменьшается с изменением давления внутри тканей и поддерживает давление на нормальном уровне. Эффект такой регуляции лучше всего заметен при его отсутствии. Если по какой-то причине происходит блокирование лимфатического сосуда, жидкость скапливается в тканях, вызывая отеки или водянку. Личинки тропических червей иногда поселяются в организме и блокируют лимфатическую систему, вызывая такой сильный отек, к примеру ног, что болезнь стали называть элефантиаз (слоновая болезнь).

Более локализованный и временный отек появляется в месте укуса комара или пчелы. Отеком также сопровождаются определенные аллергические реакции, такие, например, как крапивница.

В различных местах тела, особенно в области локтя, колена, подмышек и паха, вдоль лимфатических сосудов разбросаны напоминающие бобы массы, в которые входят лимфососуды и из которых выходят лимфососуды, несколько большие размеру. Изначально они были названы лимфатические железы (от латинского слова «желудь»), потому что действительно похожи на желудь. Слово «железа» имеет необычную историю. Поскольку лимфатические железы представляют собой небольшие кусочки ткани, и другие небольшие участки тканей стали называть железами, даже когда сходства с желудем не наблюдалось. Затем оказалось, что некоторые из этих желез секретируют жидкости различного вида, одни через капал, ведущий к поверхности кожи или во внутренние органы, другие непосредственно в коровоток. Вот почему анатомы стали называть любой орган, который образует секрет, железой, даже если он довольно большой и не похож на желудь. Печень, к примеру, – огромный орган, весящий несколько фунтов, – называется железой, потому что секретирует жидкость в желудочно-кишечный тракт.

С этой новой точки зрения лимфатические железы – вовсе не железы, поскольку не секретируют никакой жидкости. По этой причине они получили другое название – лимфатические узлы (потому что лимфатические сосуды, сходящиеся в этих местах, образуют узлообразнуго выпуклость), которое стало популярным. Именно в лимфоузлах образуются незернистые лейкоциты (агранулоциты), и именно поэтому две их разновидности и были названы лимфоцитами. Хотя в лимфе не содержатся эритроциты или тромбоциты в количестве, о котором стоило бы говорить, она богата лимфоцитами, а сами узлы битком набиты ими.

Лимфоузлы, таким образом, образуют вторую линию защиты от инфекции следом за первой линией нейтрофилов, которые устремляются в ткани, непосредственно подвергающиеся инфекции. Любая бактерия или другое чужеродное вещество, которые ускользнули от нейтрофилов или силой проделали себе путь через них и попали в систему кровообращения, будут профильтрованы черезлимфоузлы. Здесь бактерии погибнут, а токсины нейтрализуются, поскольку еще одной функцией лимфоузлов является выработка плазменных белков, которые образуют антитела.


В процессе этого лимфоузлы набухают и могут стать болезненными; особенно те, что расположены ближе всего к очагу инфекции. Наличие «распухших железок» (как их называют мамы и доктора, вопреки более повой терминологии) по бокам нижней челюсти, в подмышках или в паху – это показатель какой-то инфекции в организме.

Битву с инфекцией ведут также большие участки ткани, похожей по строению на лимфатические узлы и поэтому называемой лимфоидной тканью. Селезенка, о которой я упоминал ранее в этой главе, – самый большой орган человеческого тела, состоящий из лимфоидной ткани. Она тоже фильтр, удаляющий погибшие красные кровяные тельца и другие отходы. Макрофаги, поглощающие эти отходы, являются формой моноцитов. (Это указывает на другую функцию лейкоцитов, а именно уборку «мусора». Большие лейкоциты приносят пользу, поскольку могут захватывать несколько большие «куски».)

Островки лимфоидной ткани, находящиеся в горле и в носу, так сказать, стоят на страже в местах наибольшей опасности. Они носят общее название миндалины, но этот термин в общедоступном понятии ограничивается двумя довольно большими (размером 1 дюйм на 0,5 дюйма) участками лимфоидной ткани, расположенными в месте, где глотка сходится с мягким небом. Кроме этого, имеется от 35 до 100 крошечных лоскутков лимфоидной ткани позади языка. Это – язычные миндалины. Там, где глотка соединяется с носовыми проходами, находится пара глоточных миндалин. Все эти миндалины действуют точно так же, как и лимфатические узлы, отфильтровывая бактерии и борясь с ними с помощью лимфоцитов. Как в случае с лимфатическими узлами, они могут, когда борьба с бактериями идет тяжелая, воспаляться, опухать и становиться болезненными (тонзиллит, или воспаление миндалин). В чрезвычайных случаях их защитная функция может снижаться, и тогда уже они сами могут стать источником инфекции. В этом случае, возможно, их следует удалить с помощью всем знакомой операции под названием тонзилэктомия. (Суффикс «эктомия» происходит от греческого слова, означающего «вырезать», и обычно используется в медицинской терминологии для обозначения хирургического удаления какой-либо части организма. К примеру, вам сразу станет ясно, что значит термин «аппендэктомия».) Набухание глоточных миндалин, более известных как аденоиды, может создавать сильную помеху дыханию, и в этом случае их тоже можно удалить.

Определенные примитивные клетки, присутствующие в лимфоидной ткани и в таких местах, как легкие, печень, костный мозг, кровеносные сосуды и соединительные ткани, также, по-видимому, выполняют функцию «мусорщиков», подобно макрофагам в селезенке. Иногда они объединяются вместе, образуя ретикуло-эидотелиальную систему. Эндотелий – это слой плоских клеток, выстилающих внутреннюю поверхность лимфатических сосудов, а ретикулум означает «сеть». Ретикуло-эндотелиальная система – это, другими словами, сеть клеток, включающая в себя клетки, которые выстилают лимфатические сосуды.

Глава 8

Внутренние органы

Пища

Кислород сам по себе не является источником энергии. Для того чтобы обеспечить организм необходимой энергией, кислород должен сочетаться с атомами углерода и водорода, составляющими молекулы, которые присутствуют в пище. Элементарным источником пищи является растительность. Зеленые растения за счет солнечной энергии преобразуют углекислый газ и воду в сложные органические молекулы, состоящие в основном из атомов углерода и водорода. Эти молекулы подразделяются на три класса: углеводы, липиды (жиры) и белки. Любой из них может взаимодействовать с кислородом в процессе множества сложных химических реакций, и при этом высвобождается энергия, необходимая для поддержания жизни.

Животные не строят, как растения, сложных молекул углеводов, липидов и белков из простых молекул двуокиси углерода и воды, чтобы затем жить за счет их. Вместо этого они грабят запасы, с таким трудом созданные растениями, или поедают животных, которые, в свою очередь, питаются этими растениями.

Одноклеточные демонстрируют самый простой способ, с помощью которого животное может прокормиться. Амеба, к примеру, просто обтекает организм, меньший, чем она сама, или частичку органического вещества, поглощая его в заполненной водой пищеварительной вакуоли (от латинского слова «пустой», поскольку вакуоль выглядит как полое отверстие внутри клетки, если не считать частичек пищи, которые в ней содержатся). Внутри вакуолей выделяются специальные белки, называемые ферментами (что по-гречески означает «в дрожжах», поскольку ферменты вначале были обнаружены в клетках дрожжей, исследованных лучше остальных). Действие ферментов направлено на ускорение распада сложных молекул пойманной в ловушку пищи с образованием более простых и гораздо меньших молекул, которые клетка затем в состоянии включить в собственную субстанцию и встроить в сложные молекулы, несколько отличающиеся от молекул пищи, а скорее характерные для самого организма.

Такая форма питания предусматривает, чтобы частички пищи были меньше, чем клетки, участвующие в этом процессе; и по мере того, как организм становится больше, ему будет все труднее и труднее выживать за счет частиц пищи, которые всегда меньше его клеток. Гораздо эффективнее будет для одного организма значимого размера сделать своей добычей другой достаточного размера организм. Например, хищник мог бы обеспечить себя пропитанием в виде большого куска. Конечно, ни одна из его клеток не сможет поглотить этот большой кусок, организму придется сначала расщепить его при помощи ферментов, а уж потом всосать продукты распада.

Все это хорошо, по невыполнимо в открытом океане. По мере того как пища будет размываться, водные течения унесут продукты прочь, а если этот процесс будет осуществляться в открытом пространстве, то все соперничающие за еду получат свою долю. Решением этой проблемы было бы изолировать маленькую частицу океана и в этом ограниченном пространстве размельчать пищу без спешки и в полном одиночестве.

Простейшими организмами, которые осуществили эту задачу, были предки современных медуз. Такие организмы представляют собой двойной слой клеток в форме полого сосуда. Отверстие такой «вазы» и есть примитивный рот. В случае с этими животными рот обычно обрамляют щупальца, способные обжигать и обездвиживать добычу, которая затем может быть засунута вовнутрь «вазы», то есть в пищеварительный канал. Ферменты выливаются в пищеварительный канал из окружающих клеток, и сложные организмы разлагаются на более простые вещества и по возможности переводятся в растворимое состояние. Этот процесс, называется усвоение пищи, или пищеварение. Растворенные вещества, образующиеся при переваривании, затем поглощаются различными клетками, выстилающими пищеварительный канал, а те частицы пищи, которые не поддаются разложению (неперевариваемые остатки), выбрасываются через ротовое отверстие. Именно из-за развития пищеварительного канала тип, к которому принадлежит медуза, назван кишечнополостными. Я упоминал этот тип как вполне вероятного предка всех других многоклеточных.

Естественно, чем больше животное, тем больше его пищеварительный канал и с тем большим отдельным куском пищи он может справляться. Единственным очевидным поводом для усовершенствования является тот факт, что типичное кишечнополостное имеет только одно отверстие, ведущее в пищеварительную полость. Через это отверстие должна поступать пища, а непереваренные остатки выходить наружу. Когда выполняется одна функция, другая осуществляться не может. Поэтому следующим шагом, впервые предпринятым некоторыми червями, было добавление второго отверстия в тыльной части животного, что-то вроде черного хода. Теперь первоначальное отверстие используется для подачи пищи, а второе – для выбрасывания непереваренных остатков. Пища будет проходить внутрь через капал только в одном направлении, и процесс ее поглощения теоретически может быть бесконечным.

Все животные, более сложные, чем черви (включая и нас с вами), сохраняют основное строение тела в виде полости с двумя отверстиями, проходящей через весь организм. Полость называется алиментарный тракт (от латинского слова «пища»), пищеварительный тракт или желудочно-кишечный тракт. Вещества внутри пищеварительного тракта на самом деле находятся не внутри организма, а лишь внутри трубки, которая открыта для внешнего мира с обоих концов, подобно дырке в бублике. На самом деле этот факт не столь очевиден, как может показаться, поскольку непрактично иметь отверстия во внешний мир действительно открытыми; тогда в пищеварительный тракт мог бы слишком свободно попадать ветер или водный поток. Вместо этого оба конца обычно закрыты так, чтобы полость между ними могла более основательно контролироваться телом. Тогда внешне основная схожесть в строении между нами и бубликом становится менее заметной.

Ротовая полость

У нас вход в пищеварительный тракт закрыт круговой лентой мышц, проходящей вокруг губ, той самой, которой мы пользуемся, когда поджимаем губы. Это orbicularis oris, что в переводе с латинского значит «маленький кружок вокруг рта».


Такая круговая мышца называется сфинктер (от греческого «туго обжимать»); обычно она находится в сжатом состоянии, «стягивая» отверстие, подобно завязкам кошелька. В этом отношении orbicularis oris не совсем сфинктер, поскольку по большей части расслаблена, ведь мы не ходим с крепко сжатыми губами. Тем не менее ее иногда называют sphincter oris.

Когда нижняя челюсть отвисает и orbicularis oris расслабляется, вход в пищеварительный тракт широко раскрывается, и та часть, что мы видим, – это рот. Самый очевидный из его характерных признаков тот, что он красный. Он выстлан не кожей, а гораздо более тонкой слизистой оболочкой. Она тоньше кожи и поэтому более прозрачна, и цвет ее – цвет крови в маленьких кровяных сосудах, которыми она щедро наделена.

Слизистая оболочка заворачивается наружу на лице, образуя губы, существующие только у млекопитающих. Наличие мягких и мускулистых губ у млекопитающих имеет смысл, поскольку дает возможность детенышам млекопитающих образовывать мягкое круговое уплотнение вокруг соска матери. Тогда он может сосать молоко, не повреждая соска и не всасывая нежелательного воздуха.

Поскольку губы тоже покрыты тонкой оболочкой (хотя и не столь тонкой, какова она на внутренней поверхности рта), они красного цвета. Губы не снабжены железами, вырабатывающими слизь, поэтому, когда нежная оболочка высыхает, мы чувствуем неудобство и периодически, даже не осознавая этого, увлажняем губы языком. В холодную сухую погоду, когда нам все меньше и меньше хочется открывать рот, оболочка губ высыхает и может шелушиться или трескаться.

Хотя рот у человека первостепенно важен для выполнения функции речи, он, как и у всех других живых существ, кроме самых простейших, прежде всего служит для приема пищи. Если пища не находится в жидком или желеобразном состоянии, ее нужно превратить в таковое, и для этой цели рот обрамляет двойная линия зубов. Они приспособлены для того, чтобы кусать, разрывать и пережевывать пищу, и их важность особенно хорошо понятна тем, кто по возрасту или из-за болезни лишился зубов. Хотя современная стоматология разработала отличные вставные зубы, они не могут служить так же хорошо, как настоящие.

Если частичкам пищи позволить накапливаться между зубами, они станут служить питательной средой для бактерий, которые не только будут разрушать зубы, но также приведут к воспалению фиброзных (волокнистых) тканей, которые покрывают корни зубов. Эти ткани, покрытые слизистой оболочкой, называют десны. При воспалительном процессе десны становятся болезненно чувствительными и кровоточивыми, это состояние называют гингивит (что по-латыни означает «воспаление десен»). В экстремальных случаях карманы гниющих остатков пищи между зубом и краем десны служат источником хронической инфекции, повреждая корень и близлежащую челюстную кость, что в конце концов приводит к потере зуба. Это состояние называется пиорея (по-гречески «ноток гноя»), и именно она по большей части служит причиной потери зубов у людей после тридцатипятилетнего возраста.

По мере того как пища пережевывается зубами, она передвигается подвижным и мускулистым языком, который регулирует процесс так, чтобы пища не проскальзывала между зубов слишком быстро. Губы и щеки стоят на страже вдоль внешней кромки зубов. При этом особенно полезны щечные мышцы. Их называют щечные мускулы или мускулы трубачей, поскольку трубачу, чтобы дуть в трубу, необходимы тугие щеки.

Скоординированные движения всех составляющих ротовой полости достаточно точны, чтобы довести процесс жевания до завершения так, чтобы ни одно из них не попало междурядами жующих зубов. Если в редком случае эта координация нас подводит, то, к нашему величайшему удивлению, острая боль оттого, что мы прикусили себе язык, всегда сопровождается почти непроизвольным чувством недоверия.

Животные используют язык самым разным образом – чтобы хватать пищу (как жираф), лакать жидкость (как кошки), чувствовать внешнее окружение (как змеи), осуществлять терморегуляцию (как собаки), нападать на жертву (как хамелеоны и жабы) или захватывать (как муравьед). У человека, однако, язык обладает уникальной функцией, дающей возможность разборчиво говорить. Целью средневекового наказания, когда отрезали язык, было не исключить возможность приема пищи, по положить конец разборчивой речи. Важность языка в этом отношении подкрепляется тем фактом, что мы часто говорим «иностранный язык», когда имеем в виду иностранную речь.

Язык покрыт множеством маленьких конических бугорков, называемых сосочками, которые делают поверхность языка ощутимо бархатистой. (У представителей семейства кошачьих они довольно большие и довольно твердые, что придает языку этих животных шершавость, и любой, кого когда-либо лизнула домашняя кошка, знает, что в целом это не слишком приятное ощущение.) Среди сосочков находятся небольшие скопления клеток, которые реагируют на химический состав пищи присоприкосновении с ними и дают нам вкусовые ощущения. Эти скопления клеток, следовательно, являются вкусовыми сосочками.

При пережевывании пищи мы не только измельчаем ее, но и смешиваем с жидкостью, превращая в мягкую, рыхлую смесь. Жидкость, используемая с этой целью, слюна, на 97–99 процентов состоит из воды, но также содержит мукополисахарид, называемый муцин (слизистый секрет), который даже в небольших количествах придает слюне липкость и вязкость.



Поделиться книгой:

На главную
Назад