Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Популярная анатомия. Строение и функции человеческого тела - Айзек Азимов на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Кости и прикрепленные к ним мышцы составляют систему рычагов. Простейшая форма рычага – это детские качели в виде доски с точкой опоры в центре рычага, имеющие с двух концов два приблизительно равных веса (обычно в виде маленьких мальчиков или девочек). Единственная цель состоит в том, чтобы изменить направленность силы так, что, когда один ребенок опускается, другой взлетает вверх, и суть такой забавы достигается именно таким образом.

Обычно же точка опоры располагается ближе к одному концу рычага, который таким образом разделяется на короткий отрезок и длинный. Относительно небольшое давление на конце длинного отрезка поднимет вверх относительно большой вес на конце короткого отрезка. Действительно, равновесие достигается тогда, когда результат силового воздействия и длина отрезка рычага равны на том и другом конце. Если, например, длинный отрезок в десять раз превышает короткий, тогда, приложив силу в один фунт на длинном отрезке, можно поднять вес в 10 фунтов на коротком отрезке рычага.

Кажется, что поднять 10 фунтов очень легко, но конечно же все имеет цену. И эта цена проявляется в расстоянии, к которому должна прилагаться сила. Если сила в 1 фунт приложена к отрезку рычага длиной 10 дюймов, 10-фунтовый вес поднимется только на 1 дюйм. Сколько мы выигрываем в силе, столько проигрываем в расстоянии и общей работе, которая представляет собой силу, умноженную на расстояние.

Рычаг тогда не увеличивает работу, а просто обменивает расстояние на силу. Когда необходимо поднять тяжелый вес усилием, неадекватным этой задаче, если прилагать его непосредственно к поднимаемому предмету, рычаг, описанный ранее, как раз то, что надо.

Существует также возможность, что точка опоры располагается на одном конце рычага, а сила и поднимаемый вес скорее на той же стороне, а не на противоположной. Если вес ближе к точке опоры, чем сила, ситуация не меняется. Сила меньше веса, но должна пройти большее расстояние.

Предположим, вы захотели встать на цыпочки. Икроножная мышца сокращается и приподнимает пятки вверх. Подъем свода стопы выступает в качестве точки опоры, а вес тела концентрируется где-то посредине между подъемом и пяткой. Если вес тела составляет 150 фунтов, икроножной мышце требуется надавить с силой всего лишь 75 фунтов. Наверняка ей придется приподнять пятку на 3 дюйма, чтобы приподнять тело на 1,5 дюйма, но это, по-видимому, стоит того, чтобы сэкономить 75 фунтов усилия.

И все-таки не всегда желательно увеличивать расстояние, чтобы выиграть в силе. Легко представить обратный рычаг, который намеренно увеличивает силу. У такого рычага вес будет располагаться на конце длинного отрезка, а сила прилагаться на конце короткого отрезка. Если длинный отрезок будет в десять раз превышать короткий, нам придется надавить вниз с силой 10 фунтов, чтобы поднять вес 1 фунт.

Устройство может показаться нелепым, но мы кое-что выигрываем. Однофунтовый вес на длинном отрезке рычага поднимает вверх 10 дюймов на каждый дюйм силы, с которой мы давим на короткий отрезок рычага. Допустим, мы привязали к концу короткого отрезка рычага какой-то тяжелый предмет, который весит достаточно много, чтобы уравновесить небольшой вес на конце короткого отрезка. Теперь мы добавляем собственный вес к короткому отрезку рычага, так что предмет на конце длинного отрезка поднимается, описывая широкую дугу с большей скоростью, чем если бы мы могли двигать его с помощью непосредственного воздействия силы. Мы расходуем силу, чтобы выиграть в расстоянии, и получаем катапульту. То же самое верно и для такого положения, когда вес и сила находятся по одну сторону точки опоры, причем вес находится дальше от точки опоры, чем сила.

Давайте снова вернемся к бицепсу. Сокращаясь, он тянет предплечье вверх. Кости предплечья образуют рычаг с точкой опоры в локте. Бицепс прикрепляется к лучевой кости на расстоянии, которое составляет приблизительно одну четверть от всего расстояния от локтя до ладони, поэтому сила, поднимающая руку, прилагается, видимо, в 3 дюймах от локтя (точки опоры). Вес, который должен быть поднят, однако, сосредоточен в ладони на расстоянии около 12 дюймов от точки опоры. На каждый фунт сосредоточенного в вашей ладони веса, который вы должны поднять, бицепс должен израсходовать силу 4 фунта. Однако ему необходимо всего лишь сократиться на 1 дюйм, чтобы поднять вес на 4 дюйма, и, умножая силу, он придает руке катапультирующее действие, которое дает возможность развить значительную скорость движения.

Именно с помощью таких катапультирующих действий подающий в бейсболе может совершать быструю подачу мяча, а лошади способны переставлять ноги достаточно быстро, чтобы пуститься вскачь.

Величина силы, которую может приложить мышца, совершенно удивительная. Когда вы поднимаетесь с корточек, мышцы, распрямляющие коленный сустав, должны приложить силу около 10 фунтов на каждый фунт поднимаемого веса. Любой человек, который в состоянии поднять 200-фунтовый вес на спину (а это не слишком трудно крупному мужчине в хорошей физической форме), прилагает силу 2000 фунтов, когда распрямляет ноги, по полтонны на каждую ногу.

Некоторые отдельные мышцы

Мышцы составляют около 40 процентов веса мужчины и около 30 процентов веса женщины. Другими словами, среднестатистический мужчина будет иметь почти 60 фунтов мышц, а среднестатистическая женщина – около 35 фунтов. (Эта разница в весе мышц и объясняет тот факт, что мужчины сильнее женщин, по крайней мере физически.) Такая большая мускульная масса необходима любому животному, которому нужно быстро передвигаться, но в процессе эволюции позвоночных произошли основательные изменения в распределении, если не в количестве мышц.

Рыбы передвигаются в воде с помощью латеральных движений тела, когда хвост бьет по воде из стороны в сторону. Конечности у них небольшие и используются лишь для равновесия и разворота, а не для движения вперед. В результате именно мускулатура туловища приобретает значение, и, когда мы едим рыбу, потребляем именно мышцы туловища. (Это дает нам шанс заметить, что эти самые мышцы туловища имеют явно сегментированную структуру.)

Главным способом передвижения является отталкивание конечностей от земли или, в случае с птицами, от воздуха. Следовательно, мускулатура конечностей постепенно приобретала большее значение, а мышцы туловища постепенно уменьшились. Когда мы едим мясо птиц и животных, то потребляем в основном мышцы конечностей, и они не сегментированы.

Было бы довольно утомительно пытаться перечислить все мышцы человеческого тела; их около 650 (почти все парные), со сложными взаимодействиями между ними. Тем не менее будет полезно упомянуть еще несколько достойных внимания мышц.

Начнем с головы. Тут имеется жевательная мышца, которая с одной стороны прикрепляется к скуловой кости, а с другой – под углом к нижней челюсти. Как следует из ее названия, эта мышца работает при пережевывании пищи. Вы можете почувствовать, как она напрягается сразу за зубами с наружной стороны, когда сжимаете челюсть.

Среди многих мышц, которые управляют движениями головы, имеются трапециевидная и груди но-ключично-сосцевидная мышцы. Первая проходит сзади шеи и тянет голову назад, в то время как последняя спускается вниз по боковой стороне шеи и тянет голову набок. Под грудино-ключично-сосцевидной мышцей находится splenitis (от греческого слова «повязка», потому что эта мышца по виду напоминает повязку), которая дает нам возможность качать головой.

Сразу под самым дальним краем плеча находится дельтовидная мышца (то есть треугольная, потому что большая греческая буква «дельта» имеет форму треугольника). Она с одной стороны крепится к ключице и лопатке, а с другой – к плечевой кости и используется для поднятия руки в направлении от тела. Вы можете почувствовать, как она напрягается, когда вы это делаете.

Действие, противоположное тому, что выполняет дельтовидная мышца, уравновешивается действием грудной мышцы, которая лежит под кожей каждой из грудей. С одной стороны она крепится к ключице и грудине, а с другой – тоже к плечевой кости. Она тянет руку в направлении к телу, и если вы совершите такое действие, то почувствуете (если вы мужчина), что мышца под кожей груди напрягается.

Вдоль грудной клетки проходит целый ряд мышц, которые называются межреберными и тянутся, как следует из названия, от одного ребра к соседнему. Их функция состоит в том, что они обеспечивают расширение и сокращение грудной клетки в процессе дыхания, и изо всех мышц эти наиболее наглядно демонстрируют сегментацию, присущую всем позвоночным.

Под ребрами расположен живот, самая большая область тела, не защищенная костями. Для среднестатистического четвероногого это не слишком опасно, поскольку живот находится внизу и является наименее открытой частью тела, но, обретя вертикальное положение, человек поставил мягкое подбрюшье четвероногого в уязвимое положение. Оно уязвимо не только для вражеских действий, но также и в том смысле, что расположение внутренних органов человека ухудшилось.

В обычном положении четвероногого животного мышцы живота служили «дном» для кишечника и других внутренних органов, и для этой цели оно было хорошо приспособлено за несколько сотен тысяч лет эволюционного развития. Когда человек принял вертикальное положение, дно стало стенкой (ее часто называют брюшной стенкой), а для этого оно не слишком хорошо приспособлено. Если мышцы не тренировать постоянными физическими упражнениями, они станут вялыми и будут выпячиваться наружу, образовывая неприглядный (но очень часто встречающийся) выступающий живот.

Среди мышц брюшной стенки имеется мышца (по-латыни «rectus abdominis» значит прямая мышца живота), которая проходит от лобка вверх до середины ребер по обе стороны средней линии тела. Между двумя этими вертикальными мышцами проходит волокнистая полоса по всей длине живота, пересекая пупок и отмечая середину тела. Это белая линия живота (linea alba). У худых и мускулистых мужчин белая линия живота видна как мелкая вертикальная колея, по обе стороны которой слегка выступает прямая мышца живота.

Косая мышца живота (transversus abdominis) проходит под прямой мышцей живота и под прямым углом к ней, выступая от белой линии живота по обе стороны тела. Наружная косая мышца живота (obliquus externus abdominis) также тянется с обеих сторон по бокам.

Эти мышцы, как и другие, никоим образом не образуют непроницаемую стенку. Есть постоянная опасность, усугубленная вертикальным положением человека и, следовательно, плохим расположением его внутренних органов, что часть этих органов высунется наружу через какой-либо ослабленный участок стенки. Стенка может быть слабой от рождения или ослабнуть с возрастом. Какое-нибудь непривычное напряжение (подъем большого веса или даже судорожный кашель) может в конечном счете создать ситуацию, которая называется разрыв целостности брюшной стенки, или «грыжа». Грыжи обычно связаны с выпячиванием отрезка кишечника, и, хотя существует несколько возможных мест, около 85 процентов возникают в области паха. Это – inguinal hernias, или паховые грыжи.

На бедре расположено несколько больших мышц. Среди них – средняя ягодичная мышца (gluteus medius) и большая ягодичная мышца (gluteus maximus). Обе мышцы с одной стороны прикрепляются к подвздошной кости, а с другой – к бедренной. Среднюю ягодичную мышцу можно почувствовать по бокам, сразу под верхним изгибом тазовой кости, а большая ягодичная мышца составляет мускульную массу самих ягодиц. Вы можете ощутить, как она напрягается, когда сжимаете свои ягодицы.

Средняя ягодичная кость позволяет отодвигать бедро от средней линии тела. Большая ягодичная мышца расположена параллельно туловищу. Если вы сидите и большая ягодичная мышца (на которой вы сидите) сокращается, то вы встаете.

Я уже упоминал об икроножной мышце. Еще одна из больших мышц ноги – прямая мышца бедра (rectus femoris). Это вертикальная мышца, проходящая от подвздошной кости к коленной чашечке и большеберцовой кости спереди по всей длине бедра. Она дает выпрямить ногу в колене, когдасокращается.

Конечности в основном твердые, и слои мышц строятся вокруг центральных осей – костей. Туловище устроено совсем по-другому. Костная структура в данном случае расположена не в центре, а по краям. Позвоночный столб проходит дорсалыю, ребра загибаются по бокам, а грудина располагается вентрально. Плечевой пояс связывает верх, а тазовый пояс– низ. Мышцы, прикрепляющиеся к этим костям, также ограничиваются боками туловища, заполняя пространство между костями и образуя брюшную стенку в качестве продолжения границы, расположенной вентрально.

Внутри этого пространства, замкнутого костями и мышцами, имеется полость, в которой должны находиться внутренние органы тела. У млекопитающих, и только у млекопитающих, внутреннее пространство разделено на две части тонкой перегородкой, состоящей из мышц и сухожилий, называемой диафрагма. Спереди она присоединена к грудине, по бокам – к нижним ребрам, а сзади к позвоночному столбу. В середине она выпячивается вперед так, что разделяет внутреннее пространство организма на меньшую верхнюю полость и большую нижнюю. Верхняя полость – это грудная клетка, нижняя – брюшная полость. Как увидим, основное содержимое грудной клетки – это легкие и сердце; основное содержимое брюшной полости – кишечник, почки и детородные органы.

Диафрагма не является герметичной перегородкой. Ряд кровеносных сосудов, нервов и даже часть пищеварительного тракта пересекают ее. Она также подвержена разрыву, когда органы брюшной полости могут высовываться наружу через ослабленный участок и образовывать диафрагмальную грыжу.

Не все полосатые мышцы, хотя и названы скелетными мышцами, присоединяются к скелету. Некоторые прикрепляются к фасции под кожей. У лошади на теле таких мышц много, как мы можем видеть, когда она подергивает кожей то в одном месте, то в другом, чтобы согнать насекомых. Мы утратили такую способность, но до сих пор сохранили функции множества мышц под кожей лица до такой степени, что они у нас гораздо заметнее, чем у других животных. Именно эти лицевые мышцы позволяют нам смеяться, хмуриться, поджимать губы, морщить нос и придают нашим чертам лица подвижность и выразительность.

У нас есть даже небольшие мышцы, изначально предназначенные для движения ушей. У животных, таких, как собаки и лошади, эти мышцы наиболее функциональны при повороте внешней, похожей на раструб, части уха в направлении какого-либо звука. Наши уши больше не имеют сходства с раструбом, и большинство людей не может пользоваться ушными мышцами. Однако у некоторых личностей сохранилась такая функция, и они умеют шевелить ушами – достоинство, которое вызывает неизменное восхищение тех из нас, кто лишен такой исключительной способности.

Мышцы уха или, если уж на то пошло, косточки копчика представляют собой органы, которые были полезны нашим давно вымершим предкам (со стоячими ушами и длинными хвостами), но совершенно бесполезны для нас. Это рудиментарные органы (от латинского слова «след, отпечаток»). Подобно следам, они показывают, что некто когда-то прошел этой дорогой.

Глава 5

Легкие

Подача кислорода

Сокращение мышц, а также почти все другие жизненно важные процессы требуют расхода энергии. Источником этой энергии служат химические реакции, которые происходят внутри клеток, и самые важные из них с точки зрения энергии – это реакции, в которых участвует кислород.

Начнем с того, что современные теории происхождения жизни наверняка выдвигают предположение о том, что на нашей планете было мало или не было совсем свободного кислорода, доступного живым организмам. Однако с появлением растительности возник процесс фотосинтеза, при котором используется энергия солнечного излучения для разложения воды на водород и кислород. Водород способствует превращению двуокиси углерода сначала в углеводы, а затем во все остальные органические составляющие живой ткани. Кислород высвобождается в атмосферу, а после того, как зеленые растения размножились и покрыли поверхность Земли, атмосфера медленно наполнилась кислородом.

Тогда по крайней мере миллиард лет атмосфера Земли содержала значительную часть свободного кислорода (сейчас в ней 21 процент кислорода). Клетки свободно существовали на нем все это время, сочетая его с пищей для выработки энергии, в то время как зеленая растительность продолжала использовать солнечную энергию для восстановления кислорода в воздухе. В результате возник точный баланс, который, как мы надеемся, сохранится на неопределенно долгое время.

Конечно, мы считаем кислород в основном компонентом атмосферы, но это частично из-за того, что мы сами – существа наземные, живущие на дне воздушного океана и непосредственно зависимые от содержания кислорода в нем. С точки зрения дыхания мы полагаем, что вода – лишь то, в чем можно утонуть. Однако наибольший отрезок времени существования жизни на нашей планете поверхность земли была неплодородной, и даже сегодня не более 15 процентов всех живых организмов обитает на Земле. Все живые организмы, не только много сотен миллионов лет назад, но и большая часть живых существ сегодня, обитают в море и не используют кислород непосредственно из атмосферы.

Но морские животные столь же зависимы от кислорода, как и мы. То, что они живут погруженные в воду, означает, что они получают кислород из природных вод Земли способами, к которым они приспособлены, а мы – нет.

Кислород будет растворяться в воде. Литр чистой холодной воды будет содержать приблизительно 5 миллилитров кислорода. В океанической воде, которая не является чистой, но содержит 3,5 процента растворенных твердых веществ, находится больше кислорода, то есть 9 миллилитров кислорода на литр (0,8 процента объема), что во всех океанских просторах достигает цифры 1018 литров кислорода. От этого растворенного кислорода и зависит жизнь в океане. В воде, лишенной растворенного кислорода, рыба утонет так же легко и быстро, как и человек.

Первая проблема, которая стоит перед любым организмом, в отношении кислорода – это получение его из окружающей среды и доставка в клетки. Клеточная оболочка полупроницаемая, то есть пропускает одни вещества и не пропускает другие; она также позволяет одним веществам проходить только в одном направлении, но никак не в другом. Однако она проницаемая в любом направлении для очень небольших молекул, которые можно назвать свободно проникающими через микроскопические поры оболочки.

Одной из этих маленьких молекул, обладающих такой привилегией, является молекула кислорода; она свободно диффундирует через оболочку в обоих направлениях, поэтому может показаться, что мы ничего не добились. Несомненно, что, когда молекула кислорода попадает в клетку, другая молекула кислорода, которая находилась внутри, выходит из нее. Это может быть неплохо в случае, если кислород остается кислородом внутри клетки.

Однако любая молекула кислорода, которая диффундирует в клетку, сразу же соединяется с веществами, находящимися внутри ее. Кислород становится частью молекул, неспособных пройти через оболочку, и таким образом попадает в ловушку. Ничто не будет диффундировать наружу, в результате чего кислород совершает путь только в одном направлении: из окружающей среды в клетку.

В общем, как только какое-нибудь вещество передвигается из положения А в положение В и наоборот, общее движение происходит от высокой концентрации к низкой. Разница концентраций – это градиент концентрации, и чем он выше, тем быстрее происходит общее движение. Именно в этом случае кислород переходит из окружающей среды, где, если она морская, он составляет до 0,8 процента всего объема, во внутреннюю часть клетки, где его концентрация как свободного молекулярного кислорода фактически равна нулю.

Это все, конечно, хорошо для организмов, которые состоят из одной клетки или относительно небольшого числа клеток, поскольку тогда оболочка каждой клетки имеет окружающую среду с одной стороны, а протоплазму – с другой, и диффузия может зависеть от поддержания адекватного притока кислорода. Когда мы рассматриваем довольно большие организмы, возникают новые проблемы. Чем больше организм, тем большая часть клеток располагается глубоко внутри его структуры и непосредственно не контактирует с окружающей средой слоями других клеток. Опасность кислородного голодания становится более реальной.

Для того чтобы объяснить это по-другому, я процитирую то, что называется «законом обратных квадратов»: если организм увеличивается в размерах, но сохраняет свою форму, его поверхность увеличивается до квадрата его длины, в то время как его объем составит его длину в кубе. Продемонстрируем, что это означает, на самом простом примере: предположим, организм имеет длину 1 сантиметр, площадь поверхности – 1 квадратный сантиметр и объем – 1 кубический сантиметр. Подобный организм длиной 2 сантиметра будет иметь поверхность 2 раза по 2, или 4, квадратных сантиметра, но его объем будет составлять: 2 умножить на 2 и умножить на 2, или 8 кубических сантиметров. Мы можем составить небольшую табличку, чтобы облегчить понимание:


Скорость, с которой кислород будет диффундировать в клетку, зависит от размера поверхности, через которую он должен пройти. Но число клеток, которые должны быть напитаны кислородом, зависит от объема организма. Если квадратный сантиметр поверхности едва может напитать кубический сантиметр объема необходимым кислородом, тогда 49 квадратных сантиметров поверхности едва смогут обеспечить 49 кубических сантиметров объема. Если потребовать, чтобы 49 квадратных сантиметров поверхности обеспечили необходимым кислородом 343 кубических сантиметра объема, то животное, зависимое от выполнения подобных требований, умрет.

Выходом для такого организма будет изменить форму, стать более длинным и более плоским, чтобы на единицу объема приходилось как можно больше поверхности. Но в определенный момент, однако, это вызывает новые проблемы, поскольку длинные и тонкие существа становятся неуклюжими.

Лучшим и более эффективным решением будет приспособить по крайней мере часть тела к задаче обеспечения организма кислородом. Кислород тогда станет поглощаться с большей скоростью, а это, в свою очередь, даст возможность при данной площади поверхности поддерживать гораздо больший объем. Оставшаяся часть внешней поверхности животного тогда может совсем избавиться от задачи собирать кислород и сделаться непроницаемой, она может быть покрыта роговой чешуей, костяным панцирем или твердой раковиной.

Для того чтобы поддерживать высокую скорость поглощения кислорода, проходящего через определенную площадь, также необходимо пропускать через нее поток воды. Там, где вода стоячая, концентрация кислорода в водных слоях рядом с площадью абсорбции снижается по мере того, как кислород выходит из этих слоев в клетке. Это снижает градиент концентрации, и приток кислорода замедляется. Но если водные слои рядом с площадью абсорбции постоянно изменяются, градиент концентрации все время остается высоким.

Так, хордовые воспользовались схемой, при которой вода втекает через рот, а вытекает через щели, расположенные за головой. По пути поток воды, богатой кислородом, проходит через мембраны, представляющие собой множество тонких поверхностей, которые абсорбируют кислород особенно легко. Эти мембраны называются жабрами, а щели, через которые выходит вода, – жаберные щели. Между жаберными щелями находятся скелетные опоры, или жаберные перегородки. У акул жаберные щели отдельные и видны в виде вертикальных трещин слева и справа за головой. У костных рыб имеются жаберные пластинки (покрытия), закрывающие жаберные щели, с отверстием позади.

Довольно рано появились дополнительные средства для поглощения кислорода. Способность держаться на поверхности полезна любым живым существам, живущим в морских глубинах. Если рыба тяжелее воды, ее тянет ко дну, и приходится непрерывно и отчаянно прилагать усилия, чтобы не утонуть. Будь рыба легче воды, она поднималась бы к поверхности, и ей пришлось бы прилагать усилия столь же отчаянные и непрерывные, чтобы не взлететь. Наиболее целесообразно было бы, если бы нашлась возможность для рыбы регулировать собственный удельный вес. В этом случае она могла бы опускаться в глубину, подниматься на поверхность или оставаться в одном положении с минимальным мышечным усилием.

Решением этой проблемы стал внутренний воздушный, или плавательный, пузырь. С увеличением объема газа внутри пузыря общий удельный вес рыбы уменьшается, в то время как при снижении объема газа ее общий удельный вес возрастает. Плавательный пузырь соединяется с горлом, поэтому простейший путь регулирования подачи газа состоит в том, что рыба высовывается из воды, открывает рот и глотает немного воздуха или, наоборот, его выдыхает.

Но это выдвигает еще одну интересную возможность. Плавательный пузырь покрыт влажной оболочкой, и некоторое количество кислорода из проглатываемого воздуха будет растворяться под действием влаги. Такой растворенный кислород неминуемо диффундирует в клетки, с которыми контактирует, и вы получаете то, что можно назвать легкими. Это может быть чрезвычайно полезно. Если рыба живет в толще воды, которая по тем или иным причинам соленая и содержит мало растворенного кислорода, то любой дополнительный кислород, который она может получить, заглатывая воздух и пропуская его через плавательный пузырь, покажется ей манной небесной. Действительно, есть основание полагать, что костные рыбы впервые появились в пресной воде, которая зачастую оказывалась солоноватой, и что плавательный пузырь в первую очередь использовался как легкие и только во вторую стал служить в качестве регулятора плавучести.

Потом рыбы, которые мигрировали в богатые кислородом океаны, превратили примитивные легкие в чисто плавательный пузырь и не использовали его ни с какой-либо другой целью. По крайней мере, большинство из них. Тем не менее некоторые рыбы, которые продолжали жить в подсоленной воде, сохранили и даже усовершенствовали легкие. Существуют разные виды рыб, дышащих легкими, живущие сегодня в Африке, Австралии и Южной Америке, которые могут обитать в грязной, мутной воде и даже значительное время оставаться живыми в высохшей грязи, перейдя с жабр на легкие.

Около 300 миллионов лет назад определенные виды рыб, дышащих легкими, превратились в амфибии и, по крайней мере во взрослой жизни, совсем отказались от жабр. Легкие амфибий были довольно примитивными по сравнению с теми, что развились позднее у их более продвинутых потомков. Это легко можно увидеть на примере современных амфибий: взрослая лягушка, хотя и дышит легкими, все же впитывает много кислорода непосредственно кожей, что можно считать шагом назад.

Нос и горло

Надо ртом у рыбы имеется пара ямок, выстланных клетками, способных определять химический состав воды, в которой рыба плавает. (У нас также есть такой же тип клеток, и мы называем ощущения, которые они вызывают, обонянием.) У некоторых высших рыб ноздри проходят в направлении рта и соединяются с задней его частью. Таким образом, пища, попавшая в рот, может быть попробована и на вкус и на запах, комбинированное ощущение более эффективно, чем только вкус или только запах. Такое положение дел сохранилось у всех четвероногих, включая и нас, и то, что мы считаем вкусом, на самом деле почти полностью запах. Доказательством этого служит состояние, когда от насморка нам закладывает нос так, что мы не чувствуем запаха. Вкус сводится почти на нет, и прием пищи становится делом не слишком приятным.

Как только установилась связь между обонятельными ямками и ртом, появилась возможность дышать с закрытым ртом. В то время как рыба должна непрестанно открывать и закрывать рот, чтобы вода проходила через жабры, лягушка дышит, закрыв широкий рот.

Лягушка использует нижнюю часть рта в качестве насоса. Это место выпячивается вниз и всасывает воздух в легкие через то, что когда-то было обонятельными ямками; и он снова сжимается, чтобы с силой вытолкнуть воздух наружу. Рептилии и млекопитающие пользуются более эффективным насосным механизмом, потому что у них есть ребра, которые у современных амфибий отсутствуют. Когда межреберные мышцы приподнимают и расширяют грудную клетку, в груди создается разрежение, и воздух устремляется туда извне. Это – вдох. Затем другой набор межреберных мышц сжимает грудную клетку, с силой выдавливая воздух в выдохе. Оба процесса, повторяемые попеременно, составляют процесс дыхания.

У млекопитающих есть еще одно усовершенствование в виде диафрагмы. Когда грудная клетка у них приподнимается, куполообразная диафрагма выравнивается, еще больше увеличивая объем груди и ускоряя приток воздуха. Когда грудная клетка сжимается и опускается, диафрагма выпячивается вверх, помогая выталкивать воздух.

Как и лягушка, мы можем дышать с закрытым ртом, воздух поступает в легкие через выступающий посредине лица нос, точнее, через два отверстия в носу, каждое из этих отверстий – ноздря. Ноздря в действительности является отверстием, как бы «просверленным» в носу, так сказать, «носовой просверленной дырой» – и таково старое значение этого слова. Ноздри по-латыни называются nares.

Будь нос не чем иным, как простым отверстием для подачи воздуха, не было бы нужды усовершенствовать его структуру. Так, у китов, где он ни больше ни меньше чем отверстие для воздуха, нос имеет единственное отверстие (у некоторых видов – двойное), расположенное на одном уровне с верхней частью головы, где может использоваться для быстрого опустошения и перезаполнения легких. Что касается процесса дыхания, у кита нет времени на ужимки.

Весь смысл состоит в скорости, и носовое отверстие или отверстия китообразных называются театрально – дыхало.

В то же время образ жизни достаточно изменчив, чтобы заставить любой орган выполнять вспомогательную и иногда вызывающую удивление функцию. Нос может утолщаться и раздуваться, как это случилось у свиней, и стать орудием для подрыва корней. Или же он может обзавестись мясистыми наростами, как у некоторых кротов, чтобы превратиться в чуткий орган осязания взамен бесполезных в темпом подземелье глаз. Нос может даже в значительной степени удлиниться и стать манипулятором, как у слона, и превратиться в орган, по гибкости и чувствительности уступающий только руке примата.

Человек в этом смысле достиг компромисса. Нос у него прежде всего отверстие для воздуха и не выполняет никаких экзотических функций. Тем не менее, он имеет гораздо более сложную структуру, чем простое дыхало кита; для нас дыхание не является делом неотложной важности, как у кита. Наши легкие могут наполняться более медленно, поэтому наши носовые проходы удлинились, сузились и стали более сложными, чтобы воздух мог не только войти через них, но и стать по пути кондиционированным – увлажненным и теплым.

В результате удлинения проходов нос стал заметно выдаваться посередине лица, оказавшись в уязвимом положении – легко может быть разбит и даже сломан. Перегородка, разделяющая ноздри (которая в идеале проходит точно посередине), может быть деформирована, в частности, искривлена. По этой причине одна из двух полостей носа сужается, что может привести к затруднению дыхания.

Наша собственная система кондиционирования воздуха начинается у самого входа в ноздри. Внутренняя поверхность кожи ноздрей у входа покрыта волосками, которые способны отфильтровывать любые грубые частицы, мелких насекомых или другие примеси, увлеченные воздушным потоком. У взрослых мужчин волосы над верхней губой могут служить дополнительной мерой предосторожности, но это не слишком важно, поскольку женщины и дети (не говоря уже о чисто выбритых мужчинах), не имеющие усов, по всей видимости, не страдают от этого.

Глубже в носу располагаются более тонкие устройства. Там воздушный ход принимает горизонтальное направление и проходит в направлении гортани. Вдоль этой горизонтальной части хода пролегают три костяных выступа, почти горизонтальные и параллельные друг другу. Они довольно замысловатой формы и в значительной степени изогнуты, напоминая морские раковины. Это носовые раковины, или просто раковины. Раковины разделяют воздушный ход по обеим сторонам носа на три канала, каждый из которых называется ход (по-латыни meatus). Между верхними носовыми раковинами и основанием черепа имеется углубление, которое содержит специальные клетки, благодаря которым мы ощущаем запахи. Ту же функцию несут обонятельные ямки рыб, глубоко утопленные внутри рыбьего носа.

Воздух, проходя по носовым ходам, постоянно контактирует с их теплыми влажными стенками, нагревается и увлажняется сам. Более того, из-за изогнутой формы раковин воздух вынужден постоянно менять направление. Мелкие частицы, которые смогли миновать волосатую ловушку ноздрей, не способны изменить направление столь же легко, как гораздо более легкие молекулы воздуха, и у каждого выступа частица вынуждена вступать в контакт с оболочкой полости носа.

Эта оболочка всегда липко-влажная, потому что содержит бокаловидные клетки, которые секретируют вязкую жидкость, называемую слизью. По этой причине оболочка носовой полости служит примером слизистой оболочки. Частицы, вступающие в контакт с носовой оболочкой, прилипают к ней, попадая в ловушку. Носовые ходы далее смачиваются жидкостью, просачивающейся из четырех пар полостей в лицевых костях. Они расположены в лобной (лобные пазухи), решетчатой (решетчатый лабиринт), клиновидной и верхнечелюстной (гайморова пазуха) костях и называются пазухами или синусами (по-латыни так называется полость с единственным отверстием). Пазухи выстланы крошечными ресничками, которые образуют завихрения жидкости, проходящей через узкие отверстия, соединяющие их с носовыми ходами.

У большинства четвероногих млекопитающих пазухи расположены так, что сток происходит вниз. Однако, когда человек обрел вертикальное положение, пазухи несколько запрокинулись вверх и приняли почти горизонтальное положение. Сток оказался неэффективен, особенно когда носовая камера забита во время насморка, поэтому жидкость может скапливаться в пазухах, и тогда давление вызывает мучительную головную боль. Тот, кто испытал приступ гайморита, может быть уверен, что неприятным последствием нашего прямохождения стала не только сила гравитации, которую нам приходится преодолевать.

Слизистая оболочка носовых ходов также содержит ресничные клетки. Реснички постоянно движутся в направлении, противоположном воздушному потоку, и любая частица, которая избежала все ловушки, расставленные для нее, относится назад и вынуждена проходить их заново. Носовые ходы можно освободить от скопившейся слизи с пойманными ею инородными частицами посредством в зрывоподобного выдоха воздуха: чиханья.

Это рефлекторное действие вызывается любым раздражением оболочки носа, и его невозможно контролировать сознательно, как вам прекрасно известно, если вы когда-либо пытались избежать чиханья, когда оно было нежелательным. В результате воздух (если, конечно, он загрязнен в разумных пределах) входит в легкие в на удивление чистом состоянии. К несчастью, современный человек использует воздух в качестве свалки отходов, а с этим не справиться даже нашему хорошо приспособленному носу. Несчетные тонны пыли и дыма нависают над каждым большим городом, и легкие городских жителей со временем постепенно чернеют.

Кондиционировать поступающий воздух легче в странах с теплым и влажным климатом. Это может быть одной из причин, по которой у африканских негров широкие ноздри и короткие носы. Жители Европы имеют узкие ноздри и длинные носы, а длинные и узкие носовые ходы повышают эффективность согревания и увлажнения.


Поскольку носовые ходы открыты внешнему миру, они принимают на себя главный удар всех его опасностей, а потому особенно подвержены инфекции. В результате пребывания в сырости или на холоде, поступив от уже зараженного человека, вирус простуды или гриппа может начать размножаться в носовых ходах. Слизистая оболочка реагирует усилением своей защитной функции до такой степени, что не только не помогает, а скорее начинает причинять неприятности. Обильный поток слизи вызывает знакомый всем насморк. Этот поток, сопровождаемый отеком многочисленных небольших кровеносных сосудиков в слизистой оболочке, закладывает ходы, затрудняет дыхание через нос либо делает его невозможным. Прибавьте к этому непрестанное рефлекторное чиханье – и картина бедствия исчерпывающая.

Тот же набор неприятных реакций может возникнуть в ответ не на вирус, а на чужеродный белок, который сам по себе безобиден, но на который у организма повышенная чувствительность. В конце лета и осени, к примеру, пыльца многих растений «висит» в воздухе. Большинство из нас никак не реагирует на это. Частицы пыльцы отфильтровываются, как любые другие частицы, только и всего. Однако для тех, кто страдает сенной лихорадкой, контакт с частицами пыльцы вызывает у дыхательной системы спазм чрезмерной защиты. Это пример аллергической реакции. Точно так же, как в случае простуды, появляется насморк, частое чиханье и закупорка носовых ходов.

Носовые ходы соединяются с пищеварительным каналом сразу за ротовой полостью области, называемой горлом или глоткой. Объединение двух каналов (дыхательного и пищеварительного) в этом месте дает возможность с умеренным комфортом дышать через рот. Действительно, когда носовые ходы заложены от простуды или от аллергии, остается либо дышать через рот, либо умирать. Тем не менее два эти вида дыхания неравнозначны. Во рту нет приспособлений, необходимых для надлежащей очистки воздуха, и, за исключением тех случаев, когда это диктует необходимость, желательно дышать через нос.

Хотя два этих канала и соединяются в горле, они не остаются в таком положении, а впоследствии разделяются. К несчастью, в процессе этого они пересекаются. То есть дыхательный проход входит в гортань сзади, но ниже горла он располагается впереди пищевода. Такое пересечение предоставляет пище или воздуху возможность пойти по неправильному пути. В случае с воздухом это не представляет серьезной опасности. Во-первых, мало вероятности, что воздух пойдет не туда, – он движется в направлении более низкого давления, то есть в направлении к расширяющимся легким. Но даже если какая-то его часть и попадет в пищевод, в худшем случае он вызовет легкое временное чувство дискомфорта. В случае с пищей дело гораздо серьезнее. Несмотря на существующие меры предосторожности, еда или питье могут попасть в дыхательный ход под действием области низкого давления, точно так же, как и воздух. И если хоть небольшое количество твердого или жидкого вещества попадет в дыхательные проходы, дыхание может быть заблокировано, вызывая удушье.

Против этого, конечно, предприняты специальные меры предосторожности. Отверстие дыхательного прохода располагается позади и ниже языка и называется голосовой щелью. Сразу над голосовой щелью находится хрящевая створка, прилегающая к корню языка и называемая надгортанником. В процессе глотания, когда пища или вода продвигается по горлу, голосовая щель автоматически движется под надгортанником, образуя тугое уплотнение. Только один проход остается открытым, и он занят проглатываемой пищей, которая движется вниз, в направлении желудка, а не легких. Вы сами можете провести такой эксперимент: сделайте глотательное движение, и вы обнаружите, что при этом дышать невозможно.

Надгортанник и створка объединенными усилиями производят звук, знакомый всем нам. Сжимающаяся створка иногда подвержена периодическим спазмам, которые расширяют легочные полости и приводят к сильному напору воздуха. Надгортанник захлопывается над голосовой щелью, чтобы прекратить приток воздуха, и воздух, которому внезапно придали движение и так же внезапно остановленный, производит резкий звук, который мы называем икотой.


Организм не полностью зависит от безукоризненного функционирования надгортанника – дело ведь жизненно важное. Дыхательный проход ниже надгортанника выстлан ресничками, которые загибаются вверх, чтобы воспрепятствовать даже крошечным частичкам, которые могут туда попасть. Кроме того, любой контакт ощутимой частицы твердого вещества или капли жидкости с голосовой щелью вызывает ряд взрывных извержений воздуха, которые непременно «выдуют» ее наружу. Это конечно же кашель. Когда по какой-то причине надгортанник вовремя не переходит через голосовую щель, мы давимся, и нас сотрясает удушающий приступ кашля, который наверняка оставил у большинства из нас неприятные воспоминания.

Однако чаще всего мы связываем кашель с какой-то инфекцией. Воспаление в горле, которое часто сопровождает простуду, вынуждает слизистую оболочку этой области выделять слизь в избытке. Ситуация осложняется слизью, поступающей из воспаленных носовых ходов сверху. Спастический кашель, который сопутствует простуде, – это попытка организма избавиться от слизи.

Также не исключена возможность того, что после проглатывания пища и вода могут попадать в носовые ходы наверху. Это будет движение, происходящее вопреки силе тяготения, поэтому эта неприятность менее вероятна. Тем не менее организм предотвращает такую возможность, прижимая тканевую створку к верхнему дыхательному проходу при глотании как раз в тот момент, когда надгортанник закрывает нижний дыхательный проход. Тканевая створка, защищающая верхний дыхательный проход, является продолжением свода ротовой полости, или нёба. Поскольку свод ротовой полости образован костью, это твердое нёбо. Позади твердой части находится мягкий, обращенный назад, выступ – мягкое небо, и именно оно заканчивается охранительной тканевой створкой. Вы можете увидеть эту тканевую створку, если широко откроете рот и посмотрите в зеркало. Она свисает вниз из центра задней части ротовой полости, по виду напоминает виноградину и называется небный язычок. Небный язычок – причина храпа. Поток воздуха, проходящий мимо него, может вызывать его дребезжащую вибрацию. Бодрствуя, мы автоматически держим проход широко открытым, чтобы подобного не произошло, ночью некоторые из нас этого не делают, что окружающие обнаруживают к своему огромному сожалению.

Голос

Все, что движется, склонно производить вибрации воздуха, которые мы ощущаем как звук. По этой причине звук может быть атрибутом неживого мира, например когда волны накатывают на берег. Или может быть навязан живым организмам извне, и тогда листья дерева, например, шуршат на ветру. В мире животных тоже огромное разнообразие звуков – от резкого скрипа сверчка до трубного гласа слона.

Звуки имеют и отрицательную сторону. Если звук предвещает чье-то приближение, он может оказаться предупреждением для жертвы, за которой охотятся, поэтому кошка ходит на мягких подушечках лап, чтобы заглушить звук своих шагов. Чаще звук используется в качестве психологического оружия, как сигнальный код или как призыв к спариванию. Принимая во внимание, что живое существо должно отыскать представителя противоположного пола своего вида среди бесчисленного множества существ других видов, все, что увеличит шансы и быстроту нахождения и опознавания себе подобных, полезно.

У млекопитающих часть дыхательного прохода приспособлена для того, чтобы издавать звук. У человека эта специализированная область находится непосредственно под голосовой щелью. Она защищена щитовидным хрящом, который почти окружает ее. Щитовидный хрящ называется так, потому что обладает направленной вниз выемкой вверху его вентральной поверхности, что делает его похожим на греческий щит времен Гомера. Вы легко можете нащупать эту выемку пальцами, если потрогаете переднюю сторону шеи сразу под подбородком. Сразу за щитовидным хрящом находится еще одно жесткое кольцо, перстневидный хрящ.



Поделиться книгой:

На главную
Назад