Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Популярная анатомия. Строение и функции человеческого тела - Айзек Азимов на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Двуокись углерода – это газ (углекислый), и у всех животных он перерабатывается, как и кислород, с тем лишь исключением, что этот газ движется в обратном направлении. У животных достаточно простых, чтобы существовать за счет прямой диффузии кислорода из богатой кислородом окружающей среды в бедные им клетки, происходит обратная диффузия двуокиси углерода изнутри клетки, богатой этим газом, во внешнюю среду, бедную углекислым газом.

Более сложные организмы со специальными органами для поглощения кислорода и с системой кровообращения для транспорта кислорода используют те же самые приемы для экскреции двуокиси углерода. Таким образом, по мере того как клетки усваивают пищу и кислород, двуокись углерода, которая выделяется, диффундирует из клетки во внутритканевую жидкость и в конечном итоге в кровь. В определенном смысле кровь может перерабатывать двуокись углерода гораздо легче, чем кислород, поскольку углекислый газ растворим гораздо лучше. В то время как 100 кубических сантиметров воды при температуре тела растворят только 2,5 кубического сантиметра кислорода, углекислого газа в том же объеме растворится 53 кубических сантиметра. Кроме того, некоторая часть двуокиси углерода может свободно прикрепляться к участкам молекулы гемоглобина, которые не задействованы в транспорте кислорода.

Частично растворенный в воде, частично вступивший с ней в реакцию, образовав угольную кислоту, частично в соединении с гемоглобином, углекислый газ перемещается в конечном счете в капилляры, выстилающие альвеолы легких. Здесь, в то время как кислород попадает из альвеол в кровоток, углекислый газ попадает из кровотока в альвеолы. Вдыхаемый воздух содержит только 0,03 процента двуокиси углерода, выдыхаемый воздух – около 5 процентов углекислого газа.

Выделение воды – проблема гораздо более простая. На самом деле это вовсе не проблема, поскольку вода, выделяемая при окислении пищи, присоединяется к воде, которая и так составляет 60 процентов человеческого тела. Действительно, воду нельзя считать отходами жизнедеятельности, поскольку она абсолютно необходимый компонент живой ткани, и для любого существа, живущего на сухой земле, проблема состоит не в том, как избавиться от воды, а в том, как ее сохранить. Организм, к сожалению, не может не терять воду по множеству причин. Во-первых, альвеолы водопроницаемы и всегда влажные. Они должны быть влажными, потому что диффузия кислорода и двуокиси углерода может происходить только после того, как газы растворятся в водяной пленке, покрывающей альвеолы. Сухая альвеола не будет функционировать. Выдыхаемый воздух поэтому всегда насыщен водными парами, за исключением редких случаев, когда местная атмосфера сама по себе случайно бывает насыщена водяными парами, но в этом случае наш организм теряет воду с каждым вдохом. Кроме того, мы поддерживаем температуру нашего тела постоянной, несмотря на изменения температуры окружающей среды, во многом при помощи потоотделения. Это эффективная система кондиционирования воздуха, она может с большим размахом использовать воду, которая в этом случае потеряна для нас. В последнюю очередь вода нужна нам как растворитель, поскольку отходы возникают из белков, поэтому некоторое количество воды неизбежно теряется в процессе избавления от этих отходов.

Существуют некоторые животные, нашедшие способы сократить эти потери воды до такой степени, что воды, образующейся при окислении пищи, хватает для возмещения потерь. Такие животные (обычно адаптированные к жизни в пустыне) никогда не пьют, но прекрасно существуют на одной только пище, поскольку, прежде всего, пища в действительности никогда не бывает сухой. Растительность на 80–90 процентов состоит из воды, а в свежем мясе 70 процентов воды. Если уж на то пошло, хлеб по меньшей мере на 30 процентов состоит из воды, если он свежий, и даже столь сухой продукт, как сухие бобы, содержит более чем 10 процентов воды. Добавьте к этому воду, появляющуюся в результате окисления пищи, и вас не удивит, что некоторым пустынным животным никогда не приходится пить.

Человеческий организм, напротив, не может сохранить достаточно воды, чтобы одна только пища адекватно восполняла жидкость. Среднестатистический взрослый теряет до 2 литров жидкости в день через легкие, кожу и в виде мочи. (При рвоте, поносе, повышенном потоотделении в жаркие дни и во время непривычно тяжелой работы он может потерять и значительно больше.) По этой причине необходимо, чтобы взрослый человек выпивал около 2 литров воды ежедневно. Обычно это не составляет труда, при условии, что вода доступна. Когда потеря воды достигает 1 процента веса тела, человек испытывает чувство жажды и не нуждается в дополнительных стимулах, чтобы пить.

Жажда, на первый взгляд, возникает, когда пересыхает глотка, а слюноотделение частично приостанавливается из-за нехватки воды. Однако более глубокая причина состоит в повышении концентрации растворенных веществ в крови. Таким образом, простое смачивание рта и горла не устраняет симптомов жажды более чем на минуту. Но введение воды непосредственно в желудок устраняет жажду, хотя рот непосредственно не смачивается.

Жажда – состояние более неприятное, нежели голод, и переносится тяжелее. Это можно понять, поскольку среднестатистический хорошо питающийся человек имеет значительный пищевой запас на случай крайней необходимости, а запас воды значительно меньше. Если вода недоступна, человек приближается к состоянию коллапса, когда потеря воды переходит 5-процентную границу веса тела, и находится при смерти, когда потеря воды превышает 10 процентов веса тела. Эти показатели могут показаться более благоприятными по сравнению с показателями веса жира, который теряется во время голодания, но потеря воды происходит гораздо быстрее. Предел человеческой выносливости при жажде исчисляется днями, в то время как голодать человек может неделями. Вода при проглатывании попадает во внутренние органы довольно быстро и не менее быстро там всасывается, разжижая загустевшую кровь. Следовательно, жажда вскоре исчезнет, если попить.

А как обстоят дела с выделениями других отходов, помимо двуокиси углерода и воды, которые образуются при сочетании белков с кислородом? Как организм избавляется от использованных атомов азота, который вслед за углеродом, водородом и кислородом наиболее распространен в белковых молекулах? Может показаться, что логичным будет дать ему возможность образовать газ и, подобно двуокиси углерода, выделять через легкие. Увы, логика тут бессильна! Образование газообразного азота – процесс, требующий таких больших энергозатрат, на которые не способен ни один организм выше уровня некоторых бактерий. А если даже такой азот и образуется, он гораздо хуже растворим в воде, чем кислород, и его транспортировка в большом количестве кровотоком создаст большую проблему.

Альтернатива этому – образование аммиака в качестве продукта, сочетающего белок с кислородом. Аммиак, подобно азоту, газ (с молекулярной формулой, содержащей атомы азота и кислорода) и может образовываться с помощью процессов, которые не требуют энергетических затрат. Более того, он чрезвычайно легко растворяется в воде, и его перемещение кровотоком не вызывает никаких проблем. И на самом деле многие морские организмы выделяют азот в форме аммиака.

Однако для нас с вами есть одна проблема, и довольно серьезная. Аммиак чрезвычайно токсичен для всех форм жизни. Тысячной доли миллиграмма аммиака на литр крови достаточно, чтобы убить человека. Морские создания, которые выделяют аммиак, способны избавляться от него, поскольку в их распоряжении безбрежный океан, в котором можно топить газ по мере его образования. В океане аммиак образует раствор гораздо менее концентрированный, чем даже то крошечное количество, что губительно для жизни. И со временем концентрация аммиака в океане не повысится, поскольку в нем существуют микроорганизмы, которые используют аммиак, сочетая его с другими соединениями и строя из него белок.

Сухопутные существа с ограниченным запасом воды в организме не могут извлекать пользу из аммиака в качестве отхода. Многие организмы используют вместо него легкорастворимое твердое вещество, называемое мочевина. Молекула мочевины состоит из фрагментов двух молекул аммиака и молекулы двуокиси углерода. Использование ее в качестве отхода азота на пару процентов эффективнее, чем использование аммиака, потому что, с одной стороны, процесс образования мочевины требует энергетических затрат, с другой – мочевина гораздо менее токсична, чем аммиак, и это компенсирует небольшую потерю эффективности.

Мочевину можно довести до подходящей концентрации. 100 миллилитров крови будет содержать до 33 миллиграммов мочевины, что в сто тысяч раз превышает количество аммиака, которое будет смертельным. Следовательно, для того чтобы выделить дневной запас мочевины, потребуется сто тысячных количества воды, которое потребуется для выделения дневного запаса аммиака. Вполне водосберегающая технология.

Бросается в глаза перемена у амфибий, которые начало жизни проводят в водной среде, а затем ведут сухопутный образ жизни. Головастик имеет жабры и хвост, потом теряет и то и другое и обзаводится легкими и лапками. Эта перемена заметна и удивительна. От нашего взгляда скрыта, и другая перемена, столь же важная, перемена, без которой все другие изменения были бы бессмысленны в том, что касается выживания. Поскольку, в то время как головастик выделяет аммиак, взрослая лягушка выделяет мочевину.

Рептилии и птицы испытывают гораздо более острую нехватку воды, чем амфибии. Амфибии откладывают свою икру в воду, а рептилии и птицы откладывают яйца на сухой земле. Запас воды внутри яйца, который находится в распоряжении развивающегося зародыша, ограничен, и даже мочевина не будет служить средством избавления от азота. Мочевина относительно нетоксична, но далеко не безвредна – она смертельно опасна, если ее концентрация достаточно высока. Рептилии и птицы, следовательно, выделяют азот в форме мочевой кислоты. Это составляющая относительно сложной молекулы, состоящей из фрагментов четырех молекул аммиака и трех молекул двуокиси углерода (плюс несколько дополнительных атомов). Мочевая кислота совсем нерастворима, поэтому в крайних случаях, как в яйце, ее можно запрятать в излишки отходов организма без привязки к какому-либо значительному количеству воды.

У млекопитающих нехватка воды не столь острая. Развивающийся зародыш, для которого у птиц и рептилий нехватка воды – чрезвычайно насущная проблема, остается у млекопитающих среди богатых водой тканей матери. По этой причине мочевина подходит в качестве формы выделения азота, и человек, подобно другим млекопитающим, выделяет мочевину.

Выделительная система

Мочевина конечно же не может оставаться в крови. Она должна каким-то образом попадать во внешний мир. У многих нехордовых, а также у некоторых примитивных хордовых это делается посредством отдельных микроскопических трубочек, где вода фильтруется из плазмы. Отходы, сопровождающие воду, направляются через трубочки к поверхности тела и выбрасываются в водную окружающую среду. У позвоночных количество этих трубочек возросло до неимоверного количества, и они срослись в пару специальных органов, называемых почками.


У человека почки расположены у задней стенки брюшной полости, но выше, чем полагает большинство людей. Если попросить среднестатистического человека показать, где у него располагаются почки, он, по всей видимости, укажет на поясницу. В действительности почки находятся чуть ниже диафрагмы, напротив нижних ребер и позади печени и желудка. Правая почка, которая теснится над печенью, обычно расположена чуть ниже, чем левая. Характерно, что человеческая почка – орган темно-красного цвета, длиной 4–5 дюймов, шириной 2–3 дюйма и толщиной 1–2 дюйма. Она весит около 0,5 фунта и имеет бобовидную форму. Почки расположены вне брюшины, но поддерживаются в неподвижном состоянии на месте соединительной тканью и подушкой из жира. Они состоят из внешнего кортекса (коры) (от латинского слова «кора», используемого по аналогии с корой дерева как внешней оболочки) и внутреннего мозгового слоя почки, или медуллы (от латинского слова «мозг», которое используется по аналогии с костным мозгом для обозначения внутренней части объектов).

Почка состоит из множества фильтровальных трубочек, или нефронов (от греческого слова «нефрос» – почка). Они также называются выводящими мочу канальцами. В каждой почке приблизительно миллион нефронов, и это количество значительно превышает то число, которое нам необходимо. Человек в состоянии перенести потерю множества нефронов при болезни или даже удаление одной почки целиком и при этом вести нормальную жизнь.

Кровь поступает в почки непосредственно из аорты через короткие и толстые почечные артерии. О важности почек говорит тот факт, что в любой момент почти четверть всего количества крови может проходить через них; через 1 фунт обеих почек проходит столько же крови, сколько проходит почти через 100 фунтов мускульной массы тела. Почечная артерия разделяется на многочисленные артериолы (кровеносные сосуды, которыми заканчивается ветвление артерий), каждая из которых по всей своей длине разветвляется далее на множество извитых и переплетающихся капилляров, образующих крошечный клубочек. Затем они снова образуют артериолу, которая далее разделяется на капилляры как обычно. Эти последние капилляры питают почечную ткань.

Отрезок артериолы перед этим клубочком капилляров называется афферентная (приносящая) артериола (от латинского «несущий вперед»), а отрезок за ним – эфферентная (выносящая) артериола (от латинского слова «уносящий»). Сам клубочек капилляров называется glomerulus (что по-латыни означает «клубочек шерсти», на который он и походит). Кровь выходит из почек через почечную вену к нижней полой вене.

Кровь, проходящая из артериолы к клубочку, неожиданно сталкивается с тем, что общая площадь поперечного сечения сосудов сильно увеличилась и, следовательно, скорость потока замедлилась. Для воды, ионов и маленьких растворимых молекул, таких, как моча, достаточно времени, чтобы диффундировать из клубочка в участок нефрона, который окружает клубочек капилляров подобно сжимающейся ладони. Этот замкнутый участок называется капсула Боумена в честь сэра Уильяма Боумена, английского хирурга, который первым ее описал.

Совершенно необходимо, чтобы кровь непрестанно фильтровалась таким образом; действительно, это настолько необходимо, что почки имеют собственное устройство для поддержания потока крови, проходящего через них с надлежащей скоростью. Если по какой-то причине кровяное давление падает до такой степени, что поток крови, проходящий через почку, убывает и становится ниже нормального предела, почка стимулируется и продуцирует вещество, называемое ренин, которое выбрасывается в кровь. Он, в свою очередь, стимулирует сокращение артериол, снижая объем кровеносной системы и повышая кровяное давление до безопасного уровня. Там, где поток крови через почки перекрывается по причинам иным, чем низкое кровяное давление, – таким, например, как аномальное утолщение стенок почечной артерии, – почкибудут вызывать более или менее постоянное повышение кровяного давления, чтобы справиться с этим.

В трудолюбивой почке иногда возникает воспалительный процесс из-за бактериальной инфекции или других причин. Он называется нефрит (от греческого «воспаление почки»). Когда ткань почки подвергается перерождению или разрушению без воспаления, заболевание называют нефроз. Ввиду важности почек обе болезни могут быть чрезвычайно опасными. Иногда оба заболевания называют болезнь Брайта в честь английского патолога Ричарда Брайта, который впервые систематизировал их симптомы.

Жидкость, которая диффундирует из клубочка в капсулу Боумена, в этот момент покидает организм и проходит через группу трубочек, выделяющих ее во внешнюю среду. Однако работа почек этим не ограничивается; действительно важный этап еще и не начинался. То, что попадает в капсулу Боумена, – это почти сплошь нитраты плазмы. Здесь содержится не только моча, которую желательно вывести из организма, но также большое количество воды, плюс полезные ионы, плюс глюкоза, плюс множество других веществ, избавляться от которых нежелательно.

От капсулы Боумена отходит извитой каналец – несколько изогнутая трубочка, где вещества, присутствие которых желательно, вновь абсорбируются. К тому времени, как жидкость проходит через этот каналец, она становится относительно сконцентрированным раствором, несущим только отходы.


У животных, живущих в пресной воде и, следовательно, не испытывающих нехватки жидкости, как в случае с лягушкой, извитой каналец сравнительно короткий, а повторная абсорбция воды умеренная. Удаляемая жидкость сильно разведена водой. У наземных животных, таких, как человек, повторная абсорбция воды должна быть более интенсивной, поскольку воду нельзя расходовать зря. Поэтому у человека извитой каналец разделен на две части: ведущую из капсулы Боумена – это проксимальный извитой каналец – и более отдаленную часть – дистальный извитой каналец. Между этими двумя частями находится соединяющий их длинный, прямой и особенно узкий отрезок, который изгибается, подобно шпильке для волос. Это – петля Генле, названная в честь немецкого анатома Фридриха Генле, который первым описал ее.

За счет этой дополнительной длины канальца увеличивается эффективность повторной абсорбции воды и делается регулируемой. У человека около 80 процентов воды и ионов, которые выходят из капсулы Боумена, повторно абсорбируются в проксимальном извитом канальце. Такова минимальная повторная абсорбция воды, и, если человек потребляет много жидкости, дополнительное ее количество абсорбируется в петле Генле. Жидкость, выделяемая в конце концов, довольно сильно разведена водой. Однако при обычных обстоятельствах значительно больше абсорбируется в петле Генле. Чем сильнее обезвоживание человека, тем сильнее (до определенного предела) повторная абсорбция.

Из клубочка каждую минуту фильтруется 120 кубических сантиметров жидкости. Это составляет до 50 галлонов в день, но 99 процентов жидкости повторно абсорбируется через извитой каналец и петлю Генле. Эту способность повторно абсорбировать воду регулирует гормон, вырабатываемый питуитарной железой, небольшим органом у основания мозга. У некоторых индивидуумов выработка этого гормона сокращена, точно так же сокращается и способность к повторной абсорбции воды. Жидкость, выделяемая почкой (моча), следовательно, и обильна, и разведена водой.

Болезнь, характеризующаяся ненормальным количеством мочи, или полиурией (от греческого «много мочи»), называется диабет (что по-гречески означает «сифон»), потому что создается такое впечатление, что вода вливается в организм с одного конца и вскоре выходит из другого, как через сифон. Именно эта разновидность заболевания и есть несахарный диабет (diabetes insipidus) (от латинского слова «безвкусный»), поскольку сильно разбавленная и водянистая моча действительно безвкусна по сравнению с мочой больных другой формой диабета, которая имеет сладковатый вкус. Человек, больной несахарным диабетом, непременно должен компенсировать потерянную воду, и, следовательно, его мучает непрекращающаяся жажда.

Почки утрачивают способность повторно абсорбировать воду при болезни Брайта. Эту способность можно компенсировать частым питьем, как при несахарном диабете. Однако сбой в функционировании почек может прогрессировать до состояния, когда мочевина не сможет эффективно фильтроваться в первую очередь из кровотока. Концентрация мочевины в крови повышается, наступает состояние, называемое уремия (по-гречески «моча в крови»), и в результате наступает смерть.

Но вернемся к канальцам. В конце концов, миновав два отрезка извитого канальца и петлю Генле между ними, жидкость входит в собирательную трубочку, которая в действительности всего лишь канал для отходов, куда впадают многочисленные извитые канальцы. Жидкость теперь уместно считать мочой, или уриной (от греческого слова неизвестного происхождения). Составляющие мочи мочевина и мочевая кислота названы так потому, что впервые были обнаружены в моче. Отдельные трубочки почки – микроскопические, но не короткие, поскольку, если их распрямить, имеют длину 1 дюйм или даже больше. Длина всех трубочек в обеих почках достигнет около 40 миль. И хотя каждая собирательная трубочка получает сущий пустяк общего количества мочи – отдельному нефрону потребуется два года, чтобы переправить 1 кубический сантиметр мочи, – но все они, работая сообща, переправляют около 1 кубического сантиметра мочи каждую минуту.

Трубочки собираются в несколько большие протоки до тех пор, пока в итоге не сольются в почечную лоханку – внутреннее пространство почки. Почечная лоханка сужается в трубку длиной 10–12 дюймов, называемую мочеточник, который ведет вниз вдоль задней стенки брюшной полости. Сразу перед нижним отделом кишечника два мочеточника, по одному из каждой почки, входят в мешок с мускульными стенками – мочевой пузырь. Мочевой пузырь служит хранилищем мочи. Хотя почки образуют жидкость непрерывно, нам не нужно постоянно удалять ее, мы можем делать это с перерывами, когда нам удобно. Мышцы мочевого пузыря медленно расслабляются по мере попадания в него мочи до тех пор, пока он не увеличится в объеме, напоминая шар, выпячивающийся в брюшную полость. При максимальном расширении он может вместить более 0,5 литра мочи.

Мочеточники входят в мочевой пузырь рядом с его дном. На самом дне мочевого пузыря находится более толстая трубка, уретра, или мочеиспускательный канал. Через уретру моча выводится во внешний мир. Уретра значительно различается по длине у женщин и мужчин. У женщин ее длина не превышает 1,5 дюйма. У мужчин она имеет длину почти 8 дюймов и проходит вдоль всего пениса. У мужчин рядом с уретрой находится предстательная железа, или простата, о которой я расскажу позже.

Выход из мочевого пузыря в уретру закрыт парой сфинктеров; по этой причине при обычных обстоятельствах моча не покидает мочевого пузыря. Однако по мере наполнения мочевого пузыря наступает момент, когда мускульная стенка начинает ритмически сокращаться, увеличивая давление жидкости на основание уретры, что дает человеку ощущение позыва к мочеиспусканию. Это происходит с возрастающей безотлагательностью до тех пор, пока не происходит мочеиспускания.

У младенцев это ритмическое сокращение вызывает рефлекс, который расслабляет сфинктер уретры и ведет непосредственно к мочеиспусканию. По мере взросления ребенок обычно учится (при более или менее принудительном ободрении родителей) контролировать этот рефлекс. Труднее всего делать это конечно же во сне, и ребенок может мочиться в постели до тех пор, пока не приучится проситься на горшок. В некоторых случаях непроизвольное мочеиспускание в постели может продолжаться вплоть до подросткового возраста и бывает даже у взрослых.

Мочевой пузырь может воспаляться от бактериальной инфекции, такое состояние называется цистит (от греческого «воспаление мочевого пузыря»). Оно иногда связано с воспалением почки, но именно на воспаление мочевого пузыря пострадавший скорее обратит внимание, поскольку его самым заметным симптомом является болезненное мочеиспускание.

Моча

В день образуется и выводится приблизительно 1,5 литра мочи. Это – жидкость янтарного цвета, со специфическим запахом, не слишком раздражающим, когда моча свежая. Начнем с того, что она не содержит бактерий (конечно, при отсутствии инфекции в мочевом пузыре или почках), но, если ее оставить на открытом воздухе, бактерии наводнят ее, и последующее гниение вызовет неприятный зловонный запах.

Благодаря повторному абсорбированию воды в канальцах, моча находится в относительно концентрированном состоянии, но в лучшем случае все-таки почти на 95 процентов состоит из воды. Выделительной системе человека не по силам снизить содержание воды еще больше; и поскольку отходы должны быть удалены, пока жизнь продолжается, моча продолжает истощать водные запасы организма, даже если человек испытывает сильнейшую жажду. Именно по этой причине человек, оказавшийся в лодке в океане, не может удержаться от того, чтобы не напиться морской воды. Соль, содержащаяся в морской воде, должна выводиться, а это требует гораздо больше воды, чем ее было в составе выпитой морской воды. В результате – обезвоживание организма и быстрая смерть. (Морская вода содержит около 3,5 процента соли и других неорганических составляющих. Моча содержит их около 1 процента, поэтому за каждый миллилитр морской воды человек должен поплатиться 3 миллилитрами мочи – проигрышный вариант.)

Основные твердые вещества, растворенные в моче, конечно, неорганические, но мочевина – вещество органическое; и именно концентрация мочевины в моче доходит до 5-процентной отметки. Фактическое количество мочевины, выделяемой за день, зависит от количества белков в рационе, поскольку именно из белка получается мочевина. При хорошем, богатом белками рационе ежедневно может выделяться более 40 граммов мочевины.

Выделяются также и небольшие количества других азотосодержаших составляющих. К примеру, мочевая кислота. Мы, в отличие от птиц и рептилий, не образуем ее из белков, но тем не менее образуем из других строительных блоков нуклеиновых кислот (основных составляющих, обнаруживаемых во всех клетках). Также креатин (от греческого слова «мышца») и креатинин в небольшом количестве образуются при распаде белков; в частности, как следует из названия, из мышечного белка. Немного аммиака образуется в процессе образования мочи. Кроме того, есть различные неорганические ионы, продукты распада гормонов, продукты, образуемые печенью из чужеродных молекул, и так далее.

Моча служит не только хранилищем отходов, но также регулятором концентрации многих составляющих организма. Любое вещество, обычно полезное, которое присутствует в избытке, вполне вероятно, находит себе путь из организма через мочу. Однако, когда выработка того же самого вещества недостаточна, потери его с мочой снижаются, в некоторых случаях, почти до нуля. Самым наглядным примером этого может служить сдвиг в нормальной выработке гормона, называемого инсулин. Этот гормон, вырабатываемый поджелудочной железой, необходим для правильного распада глюкозы в организме. При недостатке инсулина накапливаются не соответствующие норме продукты распада, называемые кетоновыми телами.

Кетоновые тела довольно опасны, поскольку при превышении определенной минимальной концентрации они повышают кислотность крови до такой степени, что больной впадает в кому и умирает. Если болезнь не лечить, это в конце концов неизбежно, но почки откладывают роковой день, удаляя все кетоновые тела, какие только в состоянии удалить. Для этой цели объем мочи возрастает сверх нормы, поэтому такая болезнь является разновидностью диабета (но полиурия в этом случае не столь сильная, как при несахарном диабете). Человек с запущенным и нелеченым случаем этой болезни, естественно, испытывает чрезмерную жажду и также чрезмерный голод, поскольку, хотя и принимает пищу, его организм неэффективно ее использует. Несмотря на то что хорошо питается, он непременно теряет вес.

Неэффективный способ, которым такой человек извлекает пользу из пищи, критически проиллюстрирован участью глюкозы, содержащейся в его организме. Жидкость, выходящая из клубочка, конечно, всегда содержит глюкозу, но в процессе ее прохождения через каналец вся глюкоза повторно абсорбируется так, что нормальная моча не содержит глюкозы. Однако при этой форме диабета концентрация глюкозы в крови возрастает до высокого уровня, и канальцам становится все труднее и труднее повторно абсорбировать ее. Наконец наступает момент, когда повторная абсорбция осуществляется не полностью. Тогда говорят, что концентрация глюкозы поднялась выше почечного порога, и она появляется в моче. Присутствие формы сахара в крови, как оказалось, было открыто в древние времена, когда было замечено, что такая моча привлекает мух. Тщательные анализы должны показать присутствие сахара в моче, и такая болезнь, следовательно, называется сахарный диабет – по-латыни diabetes mellitus (что значит «мед»). Сахарный диабет – болезнь гораздо опаснее и встречается гораздо чаще, чем несахарный диабет. Когда говорят «диабет», обычно подразумевают сахарный диабет.

То, что с мочой выбрасываются полезные пищевые продукты, – а это малоэффективно, – не проходит без компенсации. Если позволить концентрации глюкозы в крови повышаться бесконтрольно, то вязкость крови возрастет так, что циркуляция ее нарушится, что приведет к фатальному результату. Удаление глюкозы из организма – вещь расточительная, но продлевает жизнь.

С точки зрения диагностики ценность глюкозы в моче в том, что ее присутствие может быть легко обнаружено с помощью анализа, и это верный признак основательно запущенного диабета. Эта болезнь сейчас лечится инъекциями инсулина, получаемого от домашних животных, убиваемых в пищу, и диагностировать диабет лучше как можно раньше, до того, как глюкоза появляется в моче. Это делается с помощью анализов крови.

Присутствие других несвойственных составляющих в моче также может служить показателем химических нарушений обмена в организме; эти нарушения, к счастью, не столь серьезны, как диабет. Иногда аминокислоты, строительные блоки белка, появляются в моче в превышающем норму количестве; иногда появляются определенные продукты распада. Есть, к примеру, вещество, называемое гомогентизиновая кислота, которая появляется в моче некоторых людей, от рождения лишенных способности надлежащим образом расщеплять аминокислоту тирозин. Моча, содержащая гомогентизиновую кислоту, будет при определенных условиях через некоторое время приобретать черный цвет, но, несмотря на этот потрясающий факт, болезнь эта ни в коей мере не считается серьезной.

Принцип действия почек основан на том, что все отходы, которые должны быть устранены, могут вымываться из организма потоком воды. Естественно предположить, что эти отходы растворимы в воде. К сожалению, это не совсем так. Некоторые вещества, выводимые из организма с помощью почек, не всегда растворимы в воде. К примеру, мочевая кислота. Хотя человек выводит ее из организма в небольших количествах, в моче она совершенно нерастворима. Другие млекопитающие разлагают мочевую кислоту на лучше растворимые составляющие, но приматы, включая человека, не обладают такой способностью. И опять же, некоторые неорганические ионы, обычно присутствующие в моче, могут соединяться и образовывать нерастворимые субстанции, такие, как фосфорнокислый кальций и оксалат кальция.

Тогда вопрос состоит в следующем: как выводятся эти нерастворимые вещества? Ответ состоит в том, что даже твердые вещества могут уноситься потоком воды, если присутствуют в виде достаточно небольших частиц. В моче часто содержатся микроскопические кристаллы твердого вещества, которые моча увлекает без особого труда. Эти кристаллы не имеет особой тенденции к агрегации (слипанию в единое целое) в обычном состоянии. Причины тому точно не установлены, но вполне приемлемо предположить, что отдельный крошечный кристалл покрыт тонким слоем какого-либо защитного вещества, такого, как белок мукополисахарид, который удерживает их от агрегации, даже когда они приходят в контакт друг с другом. У некоторых людей это защитное устройство не срабатывает, и тогда возникает тенденция к слипанию кристаллов в почечные камни или мочевые конкременты. Они легко становятся слишком большими, чтобы проходить через мочеточник. В некоторых случаях камни из фосфорнокислого кальция (которые растут быстро) могут заполнить почечную лоханку. Камни из оксалата кальция, которые растут гораздо медленнее, зазубренные и неправильной формы, вызывают интенсивную боль (подобно во много раз усиленной и непрекращающейся боли в желудке), когда застревают в мочеточнике. Боль от почечных камней иногда называется почечная колика из-за этого сходства с кишечными болями, хотя не имеет никакого отношения к кишечнику.

Органические вещества также могут, хотя гораздо реже, образовывать камни. Аминокислотный цистин – это обычный компонент белков и наименее растворимая из аминокислот. Он иногда экскретируется в небольших количествах в моче и может собираться, образовывая камень в мочевом пузыре. Действительно, цистин был впервые выделен из такого камня в мочевом пузыре, и его название происходит от греческого слова, обозначающего мочевой пузырь.

Мочевая кислота также может образовывать камни, и здесь возникает новая опасность. Иногда мочевая кислота откладывается в суставах конечностей, особенно большого пальца ноги, отчего возникает чрезвычайно болезненное заболевание – подагра. Подагра была более распространена в прошлом, нежели теперь, отчасти из-за того, что состояния, которые прежде диагностировались как подагра, теперь диагностируются как некая форма артрита.

Глава 10

Кожа

Чешуя и эпидермис

У примитивных животных, как у одноклеточных, так и у многоклеточных, внешняя поверхность контактирует с окружающей средой, и именно на внешней поверхности происходит большая часть взаимодействий с окружающей средой. Однако по мере того, как животные становились сложнее, все больше и больше таких взаимодействий осуществлялось на внутренней поверхности. Возник пищеварительный тракт и был помещен вовнутрь. Система органов дыхания и система выделения эволюционировали как внутренние органы. Лишь очень небольшая часть внешней поверхности стала иметь отношение к потреблению пищи и воздуха, а также к избавлению от отходов. Внешняя поверхность, за исключением незначительных областей, могла поэтому сохраниться для пассивной защиты.

Многие типы животных обзавелись разнообразными панцирями (оболочками), которые служили такой защитой. Эти оболочки, тем не менее, добавляли вес и снижали чувствительность животного к стимулам внешнего мира, а также ограничивали его подвижность. Хордовые, с их внутренним остовом, могли позволить себе оставаться без панциря, и риск, вытекающий отсюда, должен был компенсироваться улучшением оперативности. Даже при этом победа беспанцирных не была быстрой. Среди беспозвоночных хордовых оболочечные обзавелись «туникой», выполняющей функцию панциря. Что же касается позвоночных, первые два класса подкрепляли свой внутренний скелет также и внешним скелетом. Фактически, как я объяснял в первой главе, кости сначала развивались не как внутренний скелет (который оставался хрящевидным миллионы лет), а как внешний панцирь. Даже у человека ключица и кости черепа унаследовали признаки этого наружного панциря, втянутого теперь внутрь и покрытого кожей.

Панцирные морские позвоночные уступили место более быстрым акулам и костным рыбам, которые избавились от панциря и вместо него полагались на скорость и маневренность, достичь которую можно было за счет снижения массы. (Но даже у классов, появившихся позднее, тенденция вернуться к защищающей безопасности панциря оставалась. Среди животных, живущих по сей день, примерами могут служить черепахи у рептилий и броненосец у млекопитающих. Этот маневр оказался не слишком удачным с эстетической точки зрения, но все же черепахи и броненосцы выжили, поэтому мы не можем считать его совсем неудачным.)

Утрата костяного панциря не означала, что рыбы остались совершенно обнаженными и незащищенными. Взамен костей появились легкие, искусно перекрывающие друг друга чешуйки – твердые и эластичные. У наземных позвоночных образовалась несколько видоизмененная чешуя, более поверхностного типа, обладающая способностью легко сниматься и заменяться новым, находящимся внизу слоем. Лучше всего умеют это делать рептилии – и способность змеи периодически менять свой чешуйчатый покров хорошо известна. Чешуя рептилий в адаптированном виде сохранилась у теплокровных предков рептилий, птиц и млекопитающих. Их можно, к примеру, обнаружить на птичьих лапках (при ближайшей возможности рассмотрите лапки цыпленка) и на крысиных хвостах. Даже у человека ногти на руках и ногах – это разновидность чешуи рептилий.

Однако птицы и млекопитающие являются теплокровными, и для предотвращения избыточного выделения тепла во внешний мир им необходима изоляция. Чешуя не может служить достаточно хорошим изолятором, если только она не настолько рыхлая, чтобы можно было поймать слой неподвижного воздуха рядом с телом. У птиц такая рыхлая чешуя видоизменилась и превратилась в перья, а у млекопитающих преобразовалась в волосяной покров.

Из этих двух видов перья более эффективны в качестве изолятора. К тому же они выполняют и другие дополнительные функции. Большие (маховые) перья крыльев дают возможность полета, а большие (рулевые) перья хвоста служат балансирующим устройством. Связь между перьями и полетом, кажется, вытекает из того факта, что нет ни одной летающей птицы без полного комплекта перьев, даже в теплом климате (за небольшим исключением – к примеру, у грифов голова без перьев). Даже нелетающие птицы сохранили перья, хотя в некоторых случаях от них мало что осталось, кроме центрального стержня. Волосяной покров в основном не имеет других функций, кроме функции предотвращения теплопотери (лишь у некоторых животных он выполняет несколько иные функции), поэтому в тропиках нередки животные с небольшим волосяным покровом. У слонов и бегемотов волосяной покров, например, состоит из небольшой щетины. Киты, которые в качестве изолятора используют ворвань, полностью лишены волосяного покрова, хотя у эмбрионов появляются несколько щетинок. Под чешуей, перьями или мехом находится мягкая и чувствительная кожа позвоночных, которая до сих пор служит им защитой. Микроорганизмы и инородные тела не могут проникнуть через неповрежденную кожу, и она может выдержать удары дождя, ветра, жару и холод, в то время как внутренние органы не обладают такой способностью.

Характерным белком кожи и кожных покровов является роговое вещество кератин (от греческого слова «рог»). Кератин – это необыкновенно плотный белок, нерастворимый, неперевариваемый и относительно невосприимчивый к повреждениям, вызываемым изменениями в окружающей среде. Плотность белкового компонента отразилась и на самой коже.

Кожа подразделяется на две основные области. Внутри, под видимым слоем, находится дерма (по-гречески «кожа»), или собственно кожа. Это живая ткань, богатая нервными окончаниями, кровеносными сосудами и различными железами. Под ней располагается слой соединительной ткани, содержащей подкожный жир. Над дермой находится часть кожи, которую мы фактически видим и которая противостоит внешнему миру, – это эпидермис (что по-гречески означает «над кожей»), мертвый слой. Клетки у основания эпидермиса живые и постоянно растут и размножаются, так что клетка за клеткой выталкиваются вверх и прочь из кровоснабжения дермы. Без кровоснабжения клетка умирает, и большая часть ее, кроме инертного кератина, атрофируется. Превратности существования постоянно стирают некоторую часть этого отмершего материала с поверхности нашего тела, но она постоянно заменяется снизу, и мы сохраняем наш эпидермис новым.

Этот процесс происходит довольно быстро. Обнаружено, что эпидермис подушечек крысиных лап полностью заменяется через три недели, и те же области человеческого эпидермиса, наиболее подверженные трению, в равной степени обновляемы. Тот факт, что эпидермис постоянно растет, означает, что эту область мы можем восстановить или регенерировать, если какая-то часть ее разрушена. Сама дерма не так легко восстанавливается после разрушения. Разрыв, несомненно, заживает, но только в виде мостика соединительной ткани. Особая структура этого участка дермы утрачена, и бесформенный участок заменившей его соединительной ткани образует рубец (от греческого слова «очаг», поскольку ожоги частая причина образования шрамов и рубцов).

Чешуя рептилий, птичьи перья, волосяной покров млекопитающих эпидермального происхождения и подобно самому эпидермису постоянно сбрасываются и заменяются. Рыбья чешуя кожного происхождения, и ее потеря – более серьезный вопрос.

Поверхность дермы шершавая и имеет похожие на язычки отростки. Эпидермис по большей части заполняет пространства между отростками и образует ровную поверхность. На ладонях рук и подошвах ног, однако, эпидермис поднимается и опускается, облегая отростки так, что здесь можно обнаружить небольшие параллельные линии, проходящие мягкими кривыми. На шаровидных косточках большинства дистальных суставов пальцев линии складываются в изгибы и завитки. Цель этих крошечных рубчиков придать поверхности большее сцепление – ноге с землей при ходьбе, руке с каким-либо предметом. Они служат той же цели, что и протектор автомобильных шин. Рисунок рубчиков на ладонях и подошвах строго индивидуален; если два отпечатка пальца оказываются идентичными во всех отношениях, вполне можно допустить, что оба отпечатка оставил один человек. Железы, которые особенно многочисленны на ладонях, выделяют крошечные капельки пота и жира. Влажная пленка, появляющаяся таким образом, еще больше способствует улучшению хватательной способности рук и ног.

Мягкость и чувствительность кожи нельзя отнести на счет эпидермиса, который сам по себе мертв и нечувствителен. Эпидермис настолько тонок, что нервные окончания в дерме расположены достаточно близко к поверхности, чтобы обеспечить чувствительность. Там, где участки кожи хронически подвергаются трению, эпидермис в ответ утолщается. Образуются мозоли. Так, подошвы ног обычно мозолистые у тех, кто имеет привычку ходить босиком, а ладони рук покрыты мозолями у неквалифицированных рабочих. В дни, когда труд был в большинстве своем ручным (немеханизированным), мягкие руки служили признаком аристократии, и один из излюбленных приемов Шерлока Холмса состоял в том, чтобы определить профессиональный род занятий кого-либо по типу мозолей на руках. Синеватые вены просвечивали через мягкую, лишенную мозолей и загара кожу ладоней и рук тех, кто не работал, поэтому аристократов называли людьми «голубых кровей».

Нечувствительность эпидермиса в местах мозолей вполне очевидна, поскольку кожа там заметно жестче и менее эластична, а также относительно нечувствительна. Ощущение такое, будто живая и чувствительная дерма сменила свои изначально тонкие латексные перчатки на пару, сделанную из кожи. Иногда область избыточного раздражения или давления, к примеру вызванная ботинками не по ноге, может вызвать анормальное эпидермальное затвердение на пальце ноги. Это омозолелость, или мозоль, и она может быть довольно болезненной.

Слова «омозолелость» и «ороговелость» несколько схожи, и в действительности и то и другое похоже по химической структуре. Рога различных животных, включая оленьи, – это кератинизированная, то есть ороговевшая (кератин – роговое вещество) и затвердевшая разновидность эпидермиса. Таковыми являются и копыта разнообразных травоядных, и когти различных плотоядных животных. Мы сами имеем такие же роговые наросты в виде ногтей рук и ног, которые аналогичны когтям и копытам. Наши ногти теперь не столь полезны нам в качестве оружия нападения или защиты (хотя известно, что женщины умеют пользоваться ими с вызывающим опасение эффектом). Тем не менее они ужесточают кончики пальцев на руках, и, если дать им отрасти, получаются тонкие, твердые поверхности, которые могут быть использованы для таких деликатных задач, как собирание иголок или булавок, а также проникновение в узкие щели для извлечения оттуда мелких предметов.

Кожа защищает не только от механических толчков, ударов и царапин, но также и от воздействия различных форм энергии, например солнечного света. Большинство животных защищены от солнечного света толщей воды (если это морские животные) или препятствующим слоем мертвого вещества (если это наземные существа). Чешуя, шерсть и перья эффективно впитывают энергетические лучи солнца без всякого вреда для себя, и даже лягушка безо всякого кожного покрова, по крайней мере, покрыта толстой оболочкой слизи.

Человек необычен тем, что его сухая, обнаженная кожа подвергается воздействию солнца, имея в качестве защиты лишь относительно тонкий слой эпидермиса. Для ультрафиолетовых лучей солнца эпидермис людей со светлой кожей совершенно прозрачен, с тем же успехом его могло бы и не быть.

Ультрафиолетовое излучение достаточно энергетично, чтобы вызывать химические изменения внутри клетки. Некоторые из них благотворны. К примеру, дерма содержит определенную разновидность стирола (что по-гречески означает «твердый спирт» и является адекватным описанием его химической природы), который сам по себе представляет для организма не слишком большую ценность, но под влиянием ультрафиолетового излучения подвергается небольшим изменениям, превращающим его в форму витамина D. Вот почему рекламодатели называют витамин D «солнечным витамином». Его нет в солнечном свете, но он может вырабатываться в коже под действием солнечных лучей.

Витамин D необходим для надлежащего формирования костной ткани, и, поскольку присутствует в очень немногих продуктах питания, до XX века постоянно существовала опасность неправильного формирования костей у детей, рожденных в начале северной зимы. Солнце было почти единственным средством получения этого витамина. Принимая во внимание, что человек изначально эволюционировал как тропическое животное, его зависимость от солнца была надежной.

Однако, когда человек мигрировал на север, он достиг областей, где солнце находилось на небе всего несколько дней на протяжении большей части года (и к тому же довольно низко на небе, так что основная часть ультрафиолета поглощалась атмосферой). Витамин образовывался в недостаточном количестве, и результатом был рахит. Когда открыли витамины и поняли причину возникновения рахита, масло из печени рыб (особенно из печени трески), богатое витамином D, стало излюбленным напитком молодого поколения. Современные витаминные препараты столь же эффективны и, к счастью, гораздо меньше пахнут рыбой. Кроме того, пища, такая, как молоко и хлеб, может подвергаться специальной обработке, вследствие которой содержать соединения с активностью витамина D.

Однако пример образования витамина D как благотворный результат облучения ультрафиолетом – скорее исключение, чем правило. Другие химические реакции, вызываемые энергетическим воздействием ультрафиолетового излучения, губительны, и кожа может ответить воспалением, называемым загаром. Такое состояние во всех отношениях не что иное, как ожог, и, как известно тем, кто испытал его на себе, может быть неприятным и болезненным.

Кроме того, солнечный ультрафиолет, подобно радиационному облучению, может вызывать рак. Ультрафиолетовое излучение ни в коей мере не столь опасно, как более сильное облучение рентгеновского аппарата и радиоактивных веществ, но постоянное нахождение под лучами солнца повышает шанс получить рак кожи. В качестве защиты от раздражающего воздействия ультрафиолетового облучения человеческая кожа обладает способностью образовывать темно-коричневый пигмент, называемый меланин (по-гречески «черный»). Он может поглощать ультрафиолетовый свет без вреда для себя и таким образом действует в качестве защитного прикрытия для участков, находящихся ниже. У жителей тропических областей, где солнце наиболее активно, обладание значительным количеством меланина в коже наиболее ценно, и именно у них в процессе эволюции количество этого пигмента повышалось из поколения в поколение. Следовательно, количество меланина отвечает за темный цвет кожи тропических народов, таких, как негры Африки, дравиды Индии, аборигены Австралии, папуасы Меланезии и индейцы тропической Америки. Даже среди европейцев наблюдается тенденция увеличения смуглости кожи по мере продвижения на юг.

Бледная кожа народов Северной Европы также была вызвана гнетом эволюции. Там, где солнечный свет слабый, наличие меланина не столь важно. Вместо этого лучше поддерживать эпидермис прозрачным так, чтобы как можно больше слабого солнечного света достигало дермы и произвело необходимый витамин D. В условиях низкого содержания меланина кожа бледная или белая, но дает возможность красному цвету кровеносных сосудов дермы слегка просвечивать через нее, это свойство мы называем свежий цвет лица.

Образование меланина стимулируется солнечным облучением. Это наиболее очевидно у людей, которые по количеству меланина занимают золотую середину, – тех, что имеют достаточно мало меланина, чтобы быть явно белокожими, по достаточно много, чтобы быть брюнетом. Нахождение под лучами солнца вызывает потемнение кожи, называемое загар.

Когда люди имеют очень светлую кожу, они, возможно, не только имеют недостаток меланина, но и не могут образовывать его в большом количестве. Поскольку цветом волос и глаз мы тоже обязаны меланину, люди с особенно светлой кожей, весьма вероятно, имеют светлые волосы и голубые глаза и в большинстве случаев не загорают, а «сгорают» на солнце. У некоторых светлокожих людей, когда они подвергаются воздействию солнечных лучей, меланин образуется в определенных местах. Это наиболее свойственно людям, светлые волосы которых содержат рыжеватый пигмент, обычно заглушённый, если также присутствует много меланина. Именно у этих рыжих образуются пигментные пятнышки, которые мы называем веснушками.

Даже у самых светлокожих и светловолосых людей по сравнению со среднестатистическими может образовываться достаточно меланина, чтобы окрасить их глаза в светло-голубой цвет. Однако время от времени рождаются такие люди, которые из-за специфической ошибки в химическом составе их организма вообще не способны образовывать меланин. Кожа и волосы у них белого цвета, а глаза – красные, так как из-за отсутствия пигмента крошечные кровеносные сосуды видны в радужке глаз. Такой человек – альбинос (от латинского слова «белый»). Альбиносы встречаются у любых народов, следовательно, бывают и негры-альбиносы.

У животных также встречаются альбиносы. Знакомыми примерами тому являются белые крысы и белые кролики. Белый слои, столь почитаемый в Таиланде, тоже альбинос, мы можем даже встретиться с явным противоречием в определениях: скажем, белый черный дрозд.

Меланин – не единственный кожный пигмент. В коже встречается также и желтый пигмент, называемый каротином. Это вещество весьма распространено в растительном и животном мире (действительно, английское слово «carrot» – морковь, в которой много каротина, возможно, произошло от названия этого пигмента) и имеет отношение к витамину А (каротин – это провитамин А). Обычно он заглушён более сильно окрашенным меланином, но есть группы народов, особенно в Восточной Азии, кожа которых богата каротином, но не изобилует меланином, в результате чего приобретает явственно желтоватый оттенок.

Потоотделение

Поскольку кожа соприкасается с окружающей средой, она важна как средство теплорегуляции организма, так как предлагает поверхность для излучения тепла. Основным источником тепла в организме конечно же является не сама кожа, а внутренние органы, особенно те, что участвуют в интенсивной химической активности, такие, как печень, почки и сердце. Тепло, производимое этими органами, переносится кровью, которая по мере циркуляции по организму распределяет его равномерно. Некоторая часть тепла уносится в дерму, а оттуда частично излучается в окружающую среду. Легкость, с которой происходит это излучение, зависит от разницы температур тела и его окружения. Когда эта разница маленькая, излучается тепло медленно, а когда большая – быстро.

В теплую погоду, когда атмосфера лишь чуть прохладнее температуры тела и скорость теплопотери посредством излучения низкая, артериолы дермы расслабляются, поэтому необычно большая часть крови находится в коже. Замедленное теплоизлучение происходит, по крайней мере частично, за счет роста тепла, которое необходимо излучить. В холодную погоду артериолы дермы сокращаются и происходит ускорение излучения, по крайней мере частичное, путем снижения доступности тепла для такого излучения.

Однако контроль с помощью простого излучения не слишком эффективен, особенно в теплую погоду, когда от жары нужно избавляться быстро. Следовательно, цель достигается не простым излучением тепла, но и испарением жидкости. Превращение любой жидкости в пар – процесс энергоемкий, а в случае с водой количество энергии, потребляемой на единицу веса испаряемой жидкости, больше, чем при испарении почти любой другой жидкости. Энергия на испарение черпается из наиболее удобного места, то есть оттуда, где жидкость вступает в контакт. Намочите палец и подуйте на него или выйдите прямо из-под душа на легкий ветерок, и ощущение прохлады по мере того, как испарение забирает тепло с кожи, будет безошибочным.

Очевидным способом повышения скорости, с которой вода испаряется из организма, является частое быстрое дыхание, когда массы воздуха проходят через влажные поверхности рта, горла и легких. Мы сами не прибегаем к этому, нам некомфортно, но это главный прием охлаждения, и он доступен, к примеру, собакам, которые в теплую погоду сидят с открытым ртом, высунув дрожащий язык, и часто и тяжело дышат.

Мы не делаем этого потому, что у нас есть лучший прием, который недоступен собакам. Мы обладаем крошечными железами, распределенными по всей поверхности кожи, общим числом около 2 миллионов, цель которых – доставка воды к поверхности кожи. С поверхности эта вода испаряется, и тепло, таким образом, удаляется из организма. Такие железы называют потовыми, а жидкость, которую они выделяют, – пот, или испарина (от латинского слова «перспирация», что может дать неверное представление, будто кожа «дышит» через эти железы). Потовая железа состоит из крошечной, свернутой спиралью трубочки и главного тела, которое расположено глубоко в дерме. Трубочка разворачивается и проходит через эпидермис. Крошечные отверстия на поверхности – поры (от греческого слова «проход») едва видимы невооруженным глазом.

Пот выделяется постоянно, с интенсивностью, зависящей от температуры окружающей среды, и, следовательно, необходимость избавляться от тепла этими средствами гораздо эффективнее, нежели простое теплоизлучение. В холодную сухую погоду количество выделяемого пота относительно невелико. Кожа остается сухой на ощупь, и вы не чувствуете, что потеете. Это так называемое неощущаемое потоотделение, и, несмотря на то что вы его не чувствуете, оно вызывает потерю литра воды за день.

Когда вы усердно трудитесь физически, выработка тепла организмом возрастает, потовые железы ускоряют выделение пота. Это относится и к тем случаям, когда температура окружающей атмосферы необычно высокая. Скорость потоотделения может тогда опережать скорость испарения, особенно если влажность высока, поскольку скорость испарения снижается с повышением влажности. Пот тогда будет собираться на теле явственно видимыми каплями, и мы чувствуем, что потеем. Сама по себе жидкость не приносит нам никакой пользы в том, что касается охлаждения, мы должны дождаться испарения. Следовательно, когда мы заметно потеем, нам обычно жарко и к тому же дискомфортно, и мы не устаем повторять: «Это не из-за жары, это – от влажности», что вполне соответствует истине.

Когда влажность довольно низкая, скорость испарения высокая и даже жаркая летняя погода не вызывает особого дискомфорта. Тогда не исключена возможность, что температура воздуха будет вышетемпературы тела, и, если бы потеря тепла ограничивалась только теплоизлучением, тело набирало бы тепло, но благодаря потоотделению и испарению организм все-таки чувствует себя комфортно. Даже когда воздух на удивление сухой, та его часть, что окружает наши тела, будет впитывать водяные пары испарины и станет влажной. Именно по этой причине важно, чтобы существовала вентиляция, пусть даже легкий ветерок, призванная заменить влажный воздух, окружающий нас, на более сухой, находящийся от нас на расстоянии.

Потоотделение в той же мере, как тепло, могут вызывать эмоции или напряжение. Они служат причиной «холодного пота», потому что при более низких температурах охлаждение, вызванное обильным потоотделением, может дать довольно неприятное ощущение холода. В то время как под действием жары наиболее сильно активизируются потовые железы, расположенные на лбу и шее, под влиянием эмоций активизируются железы на ладонях, и именно поэтому ладони от волнения становятся липкими – холодными и влажными на ощупь.

Пот – это почти чистая вода с растворенными в ней веществами, которые составляют лишь около половины процента от общего содержания. Большую часть этого незначительного количества растворенных веществ составляет хлорид натрия, или поваренная соль. Такая потеря соли обычно мала, но, когда потоотделение особенно обильно, за час может быть потеряно 1–1,5 литра воды в виде пота, и тогда расход солевого запаса организма может стать ощутимым. Потеря воды через потоотделение, естественно, стимулирует чувство жажды, и при первой же возможности обильно потеющий человек старается попить. Однако питье восполняет только воду, но никак не соль. Экстремальные потери соли могут вызывать болезненные судороги, но, если дело не зашло так далеко, потеря соли даст неприятное ощущение жара. Вошло в обычай принимать таблетки поваренной соли с водой, если приходится находиться на сильной жаре или выполнять работу, требующую интенсивной физической нагрузки.

Люди, приспособленные к жаркому влажному климату (например, негры), имеют больше потовых желез по сравнению с европейцами, а пот у них выделяется с меньшей концентрацией соли.



Поделиться книгой:

На главную
Назад