Аланна Коллен
10 % Human. Как микробы управляют людьми
Alanna Collen
10 % HUMAN
How Your Body’s Microbes Hold the Key to Health and Happiness
Copyright © Nycteris Ltd 2015
© Издание на русском языке, перевод на русский язык. Издательство «Синдбад», 2018.
Пролог
Исцеление
В тот вечер я шла по лесу, на шее у меня болталось двадцать летучих мышей в хлопчатобумажных мешочках, а на свет моего налобного фонарика слетались тучи насекомых. И вдруг у меня отчаянно зачесались лодыжки. На мне были пропитанные репеллентом штаны, заправленные в носки (от пиявок), а под ними еще одни – на всякий случай. Даже не знаю, от чего я страдала больше, когда в темноте тропического леса обходила ловушки и вынимала попавшихся летучих мышей, – от того, что обливаюсь по́том во влажной духоте, от хлюпающей грязи под ногами, от страха перед тиграми или от назойливых москитов. Значит, кто-то все же пробрался к моей коже сквозь все слои ткани, преодолев и химическую защиту. И вызвал страшный зуд.
Когда мне было двадцать два, я отправилась в самое сердце заповедника Крау в Западной Малайзии и провела там три года, которые, как оказалось, полностью перевернули мою жизнь. Я изучала биологию и, работая над дипломом, увлеклась летучими мышами. Поэтому, когда представилась возможность поработать полевым ассистентом одного британского специалиста по летучим мышам, я немедленно подала заявку. Встречи с очковыми тонкотелами, гиббонами и невероятным множеством разнообразных летучих мышей, безусловно, перевешивали мелкие неприятности вроде необходимости спать в гамаке и мыться в реке, кишащей варанами. Однако мне еще только предстояло узнать, как тяготы жизни в тропическом лесу могут напоминать о себе еще очень долгое время после возвращения из тропиков.
Вернувшись в экспедиционный лагерь, разбитый на поляне возле реки, я сняла с себя верхнюю одежду, чтобы найти источник зуда. Им оказались не пиявки, а клещи. Штук пятьдесят: одни успели впиться в кожу, другие еще ползали по ногам. Я стряхнула с себя ползучую нечисть и занялась летучими мышами, стараясь как можно быстрее провести измерения и записать их результаты. Потом я выпустила мышей на волю. Лес уже погрузился в кромешную тьму, вовсю стрекотали цикады. Я забралась в гамак-кокон, застегнула его на молнию и, взяв пинцет, при свете налобного фонарика удалила всех клещей до единого.
Через несколько месяцев, уже в Лондоне, меня настигла тропическая инфекция, занесенная теми клещами. Тело потеряло подвижность, а пальцы на ногах распухли. Один за другим появлялись и исчезали странные симптомы, мне постоянно приходилось сдавать анализы и обращаться к разным врачам. Порой моя жизнь повисала на волоске на целые недели и даже месяцы: приступы боли, слабости и спутанности сознания наступали внезапно, и так же внезапно проходили – словно ничего и не было. Когда через несколько лет мне наконец поставили диагноз, зараза уже глубоко укоренилась и мне прописали убойный курс антибиотиков: таким количеством препаратов, наверное, можно было бы вылечить стадо коров. Постепенно я стала восстанавливаться.
Но история на этом не закончилась. Я победила занесенную клещами инфекцию. Но не только ее. Антибиотики сделали свое волшебное дело, но появились новые симптомы – не менее разнообразные, чем раньше. Кожа стала гиперчувствительной, пищеварительная система – крайне капризной. К тому же я начала подхватывать одну за другой практически все возможные инфекции. У меня появилось подозрение, что антибиотики истребили не только вредоносные бактерии, вторгшиеся в мой организм, но и те, что жили во мне изначально. Похоже, мое тело стало неуютным для любых микробов. Вот тогда-то я и поняла, как необходимы мне те 100 триллионов микроскопических друзей, которые еще до недавних пор считали мое тело родным домом.
Любой из нас – человек только на 10 %.
На каждую из клеток, в совокупности составляющих наше тело, приходится еще девять клеток-обманщиков, которые едут на нас «зайцами-безбилетниками». Мы состоим не только из плоти и крови, мышц и костей, мозга и кожи, – но еще и из бактерий и грибов. Причем «их» в нас гораздо больше, чем «нас». В одном только человеческом кишечнике их обитает 100 триллионов: они, словно коралловый риф на морском дне, разрастаются во внутренних лабиринтах нашего организма. Около 4000 различных видов микроорганизмов населяют складки и извивы полутораметровой толстой кишки, чья поверхность равна по площади двуспальной кровати. В течение жизни мы даем приют такому количеству микробов, что если одновременно собрать их вместе и взвесить, то на другую чашу весов пришлось бы поставить пять африканских слонов. Наша кожа кишит этими существами: на кончике одного пальца их больше, чем жителей в Великобритании.
Отвратительно, правда? Нас, таких культурных и чистоплотных, таких
По специальности я биолог-эволюционист, а потому привыкла искать в анатомии и поведении организма логику и смысл. Вредные свойства и модели поведения, как правило, подавляются или утрачиваются в ходе эволюции. Я рассуждала так: эти самые 100 триллионов микробов не смогли бы прижиться внутри нас, если бы не приносили нам никакой пользы, ведь наша иммунная система борется с бактериями и защищает нас от инфекций. Почему же она смирилась с нашествием чужаков? После многомесячных химических атак на вторгшихся в мой организм захватчиков – и добрых, и злых – мне захотелось узнать как можно больше о том ущербе, который я невольно нанесла себе этими военными действиями.
Как выяснилось, я задалась этим вопросом очень вовремя. После многих десятилетий, в течение которых ученые медленно продвигались в своих попытках узнать больше о населяющих нас микробах, выращивая их в чашках Петри, технологии наконец-то сумели догнать нашу любознательность. Дело в том, что часть обитающих внутри нас организмов (особенно живущих в кишечнике и адаптированных к анаэробной среде) погибают от контакта с кислородом. Выращивать их за пределами человеческого тела трудно, а проводить над ними эксперименты – еще сложнее.
Но в ходе расшифровки человеческого генома биологи научились быстро и дешево секвенировать любые ДНК. Это позволяет идентифицировать даже наших погибших мертвых микробов, исторгнутых из организма вместе с экскрементами, ведь их ДНК сохраняется. Последние исследования показывают: мы напрасно игнорировали наших «зайцев». На самом деле они управляют многими функциями человеческого организма и обеспечивают его здоровье.
Так что мои проблемы после курса антибиотиков оказались лишь частным случаем. Из научных публикаций я узнала, что ущерб, нанесенный живущим внутри нас микробам, приводит к желудочно-кишечным расстройствам, аллергиям, аутоиммунным заболеваниям – и даже к ожирению. Более того, нарушение микробной среды подрывает не только физическое, но и психическое здоровье, вызывая тревогу, депрессию и даже становясь причиной обсессивно-компульсивных расстройств (ОКР) и аутизма. Многие недуги, которые стали привычной частью нашей жизни, оказываются вызваны вовсе не генетическими нарушениями или какими-то сбоями в работе организма. К ним привело неумение врачей сберечь природный «довесок» к нашим собственным, человеческим, клеткам.
Взявшись за изучение вопроса, я надеялась не только выяснить, какой ущерб нанесли моей колонии микробов антибиотики, но и понять, отчего мое здоровье ухудшилось после курса лечения и что я могу сделать для того, чтобы восстановить равновесие, которое было внутри моего тела восемью годами ранее, до того вечера, когда меня покусали клещи. Чтобы узнать больше, я решилась на крайнюю меру – пройти секвенирование ДНК. Только я собиралась секвенировать не мои собственные гены, а гены моей личной «коллекции» микробов – моей так называемой микрофлоры. Узнав, какие именно виды и штаммы бактерий во мне обитают, я найду отправную точку для дальнейшей работы над собой. Обратившись к последним научным достижениям и выяснив, кто именно должен во мне жить, я, может быть, смогу оценить, насколько серьезный ущерб я себе нанесла, и попробую исправить положение. Я воспользовалась одной из программ в рамках «гражданской науки» – проектом «Американский кишечник» (ПАК), который осуществляется в лаборатории профессора Роба Найта при Университете Колорадо в Боулдере. Внеся некоторое пожертвование, обратиться в ПАК за анализом может каждый: в лаборатории секвенируют образцы микробов, взятых из человеческого организма, чтобы узнать больше о населяющих нас видах микроорганизмов и об их воздействии на наше здоровье. Отправив кал на анализ в ПАК, я получила краткую характеристику своеобразных «экосистем», сложившихся внутри моего тела.
После нескольких лет приема антибиотиков я с облегчением узнала, что внутри меня все-таки остались хоть какие-то бактерии! Приятно было увидеть, что во мне живут группы микроорганизмов, по крайней мере в общих чертах похожих на тех, которые обнаруживаются и у других участников проекта «Американский кишечник». Но, как и следовало ожидать, разнообразие моих бактерий сильно уменьшилось. Можно сказать, внутри меня осталась «двухпартийная система», в то время как здоровому организму присуща «многопартийность». Более 97 % моих бактерий представляли собой только два вида (в норме они не должны превышать 90 %). Возможно, антибиотики погубили почти всех представителей остальных, менее многочисленных видов, пощадив лишь самых выносливых и стойких жильцов. Не этой ли утратой объясняются возникшие у меня с недавних пор проблемы со здоровьем?
Но точно так же, как бессмысленно сравнивать тропические джунгли с дубовой рощей, опираясь только на соотношение деревьев и кустарников или птиц и млекопитающих (поскольку эти цифры мало что говорят о сущности двух этих экосистем), – так и слишком общее сравнение состава моего внутреннего бактериального сообщества с чужими мало что сообщит о здоровье моей микрофлоры. На другом конце таксономической иерархии находились роды и виды моих бактерий. Что можно сказать о моем здоровье, установив «личности» бактерий, которые или ухитрились выжить в моем организме во время лечения, или возвратились после его завершения? Или, пожалуй, уместнее задаться другим вопросом: что теперь означает для меня
Задавшись целью узнать как можно больше
Ради моих микробов я решила изменить рацион, чтобы он лучше отвечал их потребностям. И сдать анализ для секвенирования повторно – уже после того, как перемена образа жизни даст какие-то результаты, – в надежде на то, что мои усилия окажутся не напрасными и я смогу в конце концов вернуть себе здоровье и радость жизни.
Введение
Остальные 90%
В мае 2000 года, за считаные недели до обнародования первого чернового варианта расшифровки человеческого генома, по рукам ученых, посещавших бар при научно-исследовательской лаборатории в Колд-Спринг-Харборе, штат Нью-Йорк, начала ходить тетрадка. Нарастало всеобщее возбуждение, ведь проект «Геном человека» входил в новую фазу: цепочку ДНК вот-вот должны были секвенировать, то есть разделить на составные части – гены. Тетрадка служила своего рода тотализатором: туда вписывали свои догадки люди из числа наиболее информированных на всей планете. Они пытались ответить на вопрос: сколько генов требуется для сотворения человека?
Старший научный сотрудник Ли Роуэн, которая руководила группой, работавшей над раскодированием 14-й и 15-й хромосом, потягивала пиво и размышляла. Гены отвечают за образование белков – строительных кирпичиков жизни, и судя по сложности человеческого существа, похоже, количество генов у нас должно быть очень большим. Уж наверняка побольше, чем у мыши, а у нее их 23 тысячи. Видимо, больше, чем у пшеницы, обладающей 26 тысячами генов. И уж конечно, намного больше, чем у микроскопического червя-нематоды
Несмотря на то что среднее предполагаемое число составляло 55 тысяч, а верхний предел достигал 150 тысяч, Роуэн, исходя из свеой компетенции, предположила цифру поменьше. В том году она «поставила» на число 41 440, а спустя год высказала догадку, что человеку достаточно всего 25 947 генов. В 2003 году, когда последовательность почти расшифровали, выяснилось, что Роуэн выиграла пари. Из всех 165 ставок ее число оказалось наименьшим, а окончательный подсчет генов дал еще более низкое число, чего никак не мог предсказать ни один ученый.
Человеческий геном, содержащий без малого 21 тысячу генов, оказался едва ли больше, чем геном упомянутого круглого червя. Он вдвое меньше генома риса, он значительно уступает даже геному скромной «водяной блохи» – дафнии, в котором 31 тысяча генов. Ни один из этих видов не умеет разговаривать, творить или сложно мыслить. Наверняка вы бы тоже – вслед за учеными, затеявшими игру на «генном тотализаторе», – решили, что у человека обнаружится гораздо больше генов, чем у травянистых растений, червяков и блох: ведь гены отвечают за производство белков, а из белков строится тело. Наверняка такому сложному и хитро устроенному телу, как человеческое, требуется больше белков, а значит, и больше генов, чем какому-то червяку?
Но в эту 21 тысячу входят не все гены, которые управляют нашим телом. Мы не одни: каждый из нас является суперорганизмом – симбиотической совокупностью видов, которые живут вместе и сообща управляют нашим общим телом. Наши собственные клетки, хоть и имеют гораздо больший размер и вес, уступают в численности – в соотношении один к десяти – клеткам живущих на нас и внутри нас микробов. Эти 100 триллионов микробов (их еще называют микрофлорой) – преимущественно бактерии – микроскопические существа, каждое из которых состоит из одной-единственной клетки. Помимо бактерий, есть и другие микробы – вирусы, грибы и археи. Вирусы настолько малы и примитивны, что полностью зависят от клеток других организмов и без них не способны воспроизводиться. Живущие в нас грибы в основном относятся к дрожжевым; они сложнее бактерий, но тоже представляют собой совсем крошечные одноклеточные организмы. Археи – это группа, близкая к бактериям, однако в эволюционном отношении они так же сильно отличаются от бактерий, как сами бактерии – от растений или животных. В общей сложности микробы, живущие на человеческом теле и внутри его, содержат 4,4
Теперь мы знаем, что человеческий геном обязан своей сложностью не только тому количеству генов, которые содержит сам, но и множеству комбинаций белков, которые эти гены способны порождать. Мы, как и другие животные, в состоянии извлекать больше функциональной пользы из наших геномов, чем, казалось бы, в них закодировано. Однако благодаря генам наших микробов уровень общей сложности дополнительно повышается: эти примитивные организмы оказывают человеческому телу ценные услуги, позволяя ему развиваться быстрее и легче.
До недавних пор изучение микробов зависело исключительно от возможности культивировать их в чашках Петри, наполненных «бульоном» из крови, костного мозга или сахаров в желеобразной взвеси. Это сложная задача: большинство видов, живущих в человеческом кишечнике, погибают от контакта с кислородом: они так устроены, что не переносят его. Кроме того, выращивая микробов в этих емкостях, необходимо угадывать, какие именно питательные вещества, температурный режим и газовый состав необходимы им для выживания; если угадать не получится, ученые лишатся и шанса узнать что-либо о том или ином виде. Культивирование микробов можно сравнить с попыткой выяснить, кто пришел на урок, просто вызывая учеников по списку из классного журнала: если вы не назовете какого-нибудь ученика по имени, вы не узнаете, есть он в классе или нет. Современная технология секвенирования ДНК стала дешевле и оперативнее именно благодаря стараниям ученых, работающих над проектом «Геном человека». Она представляет собой принципиально иной метод проверки: каждого входящего в класс просят назвать себя. В этом случае можно учесть всех без исключения – даже тех, чьего появления вы не ожидали.
На проект «Геном человека» возлагались огромные надежды. Достигнутый результат сочли ключом к разгадке человеческой сущности, к этому величайшему божественному творению, к священной библиотеке, в которой хранятся тайны болезней. Ученые уложились в бюджет в 2,7 миллиарда долларов и подготовили черновой вариант расшифровки на несколько лет раньше запланированного – в июне 2000 года. Тогдашний президент США Билл Клинтон прокомментировал это так:
Сегодня мы начинаем понимать язык, на котором Господь создал жизнь. И от этого испытываем еще большее благоговение перед сложностью, красотой и чудом этого святого, священного дара, которым наградил нас Господь. Это фундаментальное новое знание даст человечеству новые возможности для лечения болезней. Достижения генетики в корне изменят всю нашу жизнь – а главное, жизнь наших детей. Это будет революция в области диагностики, профилактики и лечения большинства – если не всех – человеческих болезней.
Однако в последовавшие за этим годы научные журналисты по всему миру начали писать о разочаровании тем, что определение нашей полной последовательности ДНК недостаточно повлияло на развитие медицины. Хотя расшифровка «руководства по эксплуатации» человеческого организма стала бесспорным достижением, которое позволило существенно улучшить методы лечения нескольких серьезных болезней, она действительно не оправдала всеобщих надежд на то, что теперь удастся понять причины многих распространенных заболеваний. Поиск генетических отклонений, общих для людей, страдающих той или иной болезнью, вопреки ожиданиям, не помог установить происхождение многочисленных патологий и расстройств. Обнаруживалось множество слабых связей между различными сбоями в работе организма и десятками (а то и сотнями) вариантов генов (так называемых аллелей), но крайне редко можно было утверждать, что наличие конкретного аллеля непосредственно приводит к тому или иному заболеванию.
Но тогда, на рубеже веков и тысячелетий, мы совершенно упустили из виду, что 21 тысяча человеческих генов – это еще далеко не все. Технология секвенирования ДНК, разработанная в рамках проекта «Геном человека», сделала возможной другую важную программу, тоже связанную с секвенированием генома, – проект «Микробиом человека» (ПМЧ). Вокруг этого проекта было гораздо меньше ажиотажа. В отличие от проекта «Геном человека» ПМЧ предполагал изучение геномов тех микробов, которые живут на человеке и в человеке, то есть нашей микрофлоры. Цель проекта заключалась в том, чтобы выяснить, какие виды нас населяют.
Теперь ни зависимость от чашек Петри, ни избыток кислорода не могли помешать изучению наших микроскопических сожителей. Имея бюджет в 170 миллионов долларов и рассчитанную на пять лет программу секвенирования ДНК, ученые, участвующие в ПМЧ, задались целью «прочесть» в тысячи раз большее количество ДНК, чем в проекте «Геном человека», – ДНК микробов, живущих в восемнадцати различных средах на человеческом теле и внутри его. Это должно было стать самым полным обзором генов, образующих индивида, – если подразумевать под этим понятием совокупность человека и его «родных» микробов. По завершении первой фазы научно-исследовательского проекта «Микробиом человека» в 2012 году ни один мировой лидер не сделал никаких громких заявлений и лишь отдельные журналисты сообщили об этой новости. Но ПМЧ будет продолжать работу, и он расскажет нам гораздо больше о том, что значит быть человеком, чем когда-либо рассказывал об этом наш собственный геном.
С момента зарождения жизни одни виды начали эксплуатировать другие, и микробы продемонстрировали особое умение поселяться и жить в самых необычных местах. С учетом их микроскопических размеров тело другого существа – особенно такого крупного позвоночного, как человек, – является для них не просто экологической нишей, а целым миром, таящим в себе большое разнообразие сред обитания, экосистем и возможностей. Человеческое тело, столь же разнообразное и динамичное, как наша планета, обладает своим химическим климатом, который постоянно колеблется под действием гормонов, и сложными ландшафтами, которые претерпевают изменения с возрастом. Для микробов это настоящие райские кущи.
Мы развивались бок о бок с микробами, задолго до того, как сделались людьми. По большому счету – еще до того, как наши далекие предки стали млекопитающими. Тело любого животного – от крошечной плодовой мушки до гигантского кита – вмещает целую популяцию микробов. Несмотря на то что за многими из них закрепилась дурная репутация паразитов и переносчиков болезней, гостеприимство по отношению к этим миниатюрным живым организмам может приносить их хозяину огромную пользу.
Гавайский короткохвостый кальмар (
Разумеется, использование бактерий в качестве источника света – явление уникальное. Однако кальмары – отнюдь не единственные животные, которые обязаны жизнью микробам, населяющим их организм. Стратегии выживания многочисленны и разнообразны, и взаимодействие с микробами стало движущей силой эволюционной борьбы еще 1,2 миллиарда лет назад, когда только появились живые существа, состоящие более чем из одной клетки.
Чем больше клеток в организме, тем больше микробов может в нем жить. Особенно гостеприимны к бактериям крупные травоядные. Грубые корма, составляющие их рацион, требуют особых белков, так называемых ферментов (или энзимов), для расщепления плотных молекул, из которых состоят оболочки клеток травянистых растений. С учетом смены поколений тех же коров ждать, пока в результате случайной мутации появится ген, отвечающий за выработку подобных ферментов, пришлось бы не один миллион лет.
Более быстрый способ обрести способность добывать все полезные питательные вещества, заключенные в растительном корме, – «нанять» специалистов со стороны – микробов. В четырех камерах коровьего желудка обитают насчитывающие триллионы особей популяции микробов, размягчающих растительные волокна, и жвачка – шарик из твердых растительных волокон – перемещается туда-сюда между ртом коровы, где трава перемалывается механически, и желудком, где ферменты, вырабатываемые микробами, занимаются химическим расщеплением. Микробы, в отличие от коров, легко и быстро обзаводятся нужными генами, потому что поколения у них меняются меньше чем за сутки, открывая огромные эволюционные возможности. Если короткохвостый кальмар и корова получают выгоду от того, что их тела кишат микробами, – то возможно, что и люди тоже? Конечно, корма у нас понежнее, да и желудок не четырех-камерный, но и у нас есть свои хитрые особенности. Наш желудок – маленький и простой, он годится только для того, чтобы перемешивать съеденную пищу, добавляя в нее немного ферментов для переваривания и чуть-чуть кислоты, чтобы убить нежелательных бактерий. Зато стоит продвинуться дальше – через тонкую кишку, где пищу расщепляют уже новые ферменты, после чего она всасывается в кровь благодаря целому ковру из пальцевидных выростов, придающих поверхности стенок сходство с теннисным кортом, – и мы попадаем в мешок, напоминающий уже не корт, а теннисный мячик. За ним начинается толстая кишка. Этот мешкообразный участок, расположенный в правом нижнем углу нашего туловища, называется слепой кишкой, и именно там находится главное сообщество микробов, живущих внутри человеческого тела.
От слепой кишки отходит орган, имеющий дурную славу: многие считают, что он болтается там просто так, непонятно зачем, и только причиняет боль и служит источником заразы. Это аппендикс, иначе – червеобразный отросток. Он и правда похож на червяка, хотя с тем же успехом его можно сравнить с личинкой или со змеей. Длина аппендикса сильно варьируется – от скромных двух до внушительных двадцати пяти сантиметров; в редких случаях у человека может быть даже два аппендикса – или не быть ни одного. Согласно распространенному мнению, нам было бы лучше обходиться вовсе без этого отростка, ведь на протяжении ста лет никто не мог сказать, какую функцию он выполняет. Любопытно, что возникновением этого живучего мифа мы обязаны тому самому человеку, который на основе сравнительной анатомии животных создал элегантную теорию эволюции. Чарльз Дарвин в своей работе «Происхождение человека», ставшей продолжением его «Происхождения видов», включил аппендикс в раздел, посвященный рудиментарным органам. Когда Дарвин сравнил человеческий аппендикс с более крупными аналогами у других животных, ему показалось, что наш отросток – это рудимент, пережиток прошлого, который постепенно уменьшается в размерах и скоро совсем пропадет, так как люди заметно изменили свой рацион.
Из-за отсутствия данных, которые указывали бы на обратное, рудиментарный статус аппендикса почти не оспаривался в течение следующих ста лет и представление о его полной бесполезности только подкреплялось благодаря частым случаям, когда аппендикс приносил большие неприятности. Врачебное сообщество видело в нем настолько бесполезный орган, что к 1950-м годам удаление аппендикса стало одной из наиболее распространенных хирургических операций в развитых странах. Аппендэктомию нередко делали даже без медицинских показаний, просто в дополнение к другим операциям на брюшной полости. В какой-то момент шансы мужчин подвергнуться в течение жизни аппендэктомии выросли до одной восьмой, а у женщин этот показатель составлял одну четвертую. У 5–10 % людей рано или поздно развивается аппендицит – как правило, это происходит в первые десятилетия жизни, до появления у них детей. При отсутствии лечения умерла бы примерно половина этих людей.
В таком случае перед нами головоломка. Раз аппендицит так часто приводит к смерти в юном возрасте, то в силу естественного отбора аппендикс у людей должен был довольно быстро исчезнуть. Те, у кого имелся бы достаточно длинный отросток, чтобы в нем возникла инфекция, просто умирали бы, чаще всего не успев оставить потомства, а значит, не передав никому по наследству своих генов, ответственных за образование такого аппендикса. Со временем число людей с аппендиксом становилось бы все меньше и меньше, и в конце концов он бы вовсе пропал. Естественный отбор просто отсеял бы обладателей аппендиксов, отдавая предпочтение тем, кто его лишен.
Предположение Дарвина о том, что аппендикс – сохранившийся по недоразумению бесполезный орган, можно было бы принять, если бы не столь частые роковые последствия обладания этим органом. Следовательно, имеются два объяснения тому, почему у нас все-таки сохранился аппендикс, причем они не исключают друг друга. Первое состоит в том, что аппендицит – болезнь новая, вызванная изменениями в окружающей среде. Иными словами, в прошлом мог уцелеть даже бесполезный орган, если не приносил нам никакого вреда. Другая гипотеза гласит, что аппендикс вообще не является пагубным пережитком эволюционного прошлого, а напротив, приносит здоровью большую пользу, которая значительно перевешивает возможный риск. То есть естественный отбор «предпочитает» тех из нас, кто обладает червеобразным отростком. Остается вопрос: почему?
Ответ можно получить, изучив содержимое этого органа. Аппендикс, средняя длина которого составляет 8 см, а диаметр – около сантиметра, представляет собой трубку, защищенную от потока почти переваренной пищи, проходящего мимо входа в него. Но аппендикс отнюдь не является лишь сморщенным кусочком плоти, напротив: он целиком заполнен особыми иммунными клетками и молекулами. Они не бездействуют, но, составляя неотъемлемую часть иммунной системы, защищают и культивируют сообщество микробов и взаимодействуют с ним. Внутри аппендикса эти микробы образуют «биопленку» – слой микроорганизмов, поддерживающих друг друга и изгоняющих из своих рядов вредные бактерии. Получается, аппендикс – вовсе не бесполезный орган, а своего рода убежище, которое человеческий организм ради собственной безопасности предоставил сообществу жильцов-микробов.
Как заначка, припрятанная на черный день, этот микробный заповедник очень пригождается в тех случаях, когда организму приходится нелегко. После пищевого отравления или желудочно-кишечной инфекции внутренности человека могут заново заселиться «правильными» штаммами. Подобная «запасливость» могла бы показаться избыточной, если забыть о том, что такие опасные кишечные заболевания, как дизентерия, холера и лямблиоз, были побеждены в западном мире лишь в последние десятилетия. Общественные санитарно-профилактические меры, включая строительство канализационных систем и водоочистных станций, положили конец подобным болезням в развитых странах, однако если рассматривать нашу планету в целом, то одна из пяти детских смертей по-прежнему случается по причине инфекции, сопровождающейся диареей. У тех, кто справился с болезнью, наличие аппендикса чаще всего ускоряет выздоровление. Лишь обладая крепким здоровьем, мы могли вообразить, будто у аппендикса нет никакой функции. На самом же деле негативные последствия перенесенной аппендэктомии на Западе были попросту замаскированы повышением гигиены.
Как выяснилось, аппендицит – действительно современное явление. Во времена Дарвина он приводил к смерти крайне редко, так что, пожалуй, можно простить классику заблуждение. Аппендицит стал распространенным заболеванием лишь в конце XIX века. Судя по статистике одной из британских больниц, заболеваемость возросла очень резко: если до 1890 года в среднем за год фиксировалось 3–4 случая, то в 1918 году отмечалось уже 113 случаев. Такой же взлет заболеваемости наблюдался во всех развитых странах. С диагнозом никогда не возникало трудностей – человека скручивала острая щемящая боль, и, даже если пациент не обращался за врачебной помощью, последующее вскрытие позволяло легко установить причину смерти – еще до того, как аппендицит сделался таким привычным явлением, как сейчас.
В качестве возможных объяснений выдвигалось множество версий – от возросшего уровня потребления мяса, сливочного масла и сахара до закупорки носовых пазух и кариеса. В начале XX века дискуссии остановились на том, что главная причина – это уменьшение содержания клетчатки (волокон) в повседневном рационе, однако недостатка в новых гипотезах нет и по сей день. В частности, одна из них возлагает вину на распространившийся усовершенствованный метод очистки и обеззараживания воды и, как следствие, на повышение уровня гигиены – то есть как раз на тот фактор, который, казалось бы, сделал аппендикс практически ненужным. Какой бы ни была главная причина, к началу Второй мировой войны из коллективной памяти уже ушло воспоминание об относительно недавнем резком росте заболеваемости аппендицитом, так что теперь нам кажется, будто это было всегда.
На самом деле даже в современном развитом мире аппендикс лучше сохранять хотя бы до наступления зрелого возраста: ведь он защищает нас от периодических желудочно-кишечных инфекций, иммунной дисфункции, рака крови, некоторых аутоиммунных болезней и даже от инфаркта. Функция «заповедника» микробной флоры и фауны каким-то образом соотносится с его спасительной ролью. А если аппендикс – далеко не бесполезный орган, значит, можно сделать еще более важный вывод: микробы имеют огромное значение для нашего организма. Похоже, они не просто паразитируют на нас, пользуясь бесплатным жильем и проездом, но и оказывают нам настолько ценную услугу, что в нашем кишечнике для них предусмотрено даже специальное убежище, своего рода питомник. Остаются вопросы: кто же там живет и что именно делают для нас эти существа?
Еще несколько десятилетий назад выяснилось, что обитающие в наших телах микробы синтезируют некоторые важные витамины и разрушают плотные растительные волокна, – однако до недавних пор никто в полной мере не понимал, насколько тесно их клетки взаимодействуют с нашими. В конце 1990-х годов микробиологи, использовав средства и методы молекулярной биологии, совершили научный прорыв и сделали множество открытий, которые позволили по-новому взглянуть на наши странные взаимоотношения с микрофлорой.
Технология секвенирования ДНК дает представление о том, какие именно микробы у нас имеются. Если спускаться, ступенька за ступенькой, по иерархической лестнице, которую представляет собой это эволюционное древо, двигаясь от царства к типу, классу, отряду, семейству, и далее – к роду, виду и штамму, то становится понятно: все живые организмы более или менее тесно связаны между собой родством. Если же смотреть снизу, то видно, что мы, люди (род
Определять особь до вида и находить ее точное место в классификации живых существ помогает секвенирование ДНК. Один ее фрагмент особенно информативен. Это ген 16S rRNA – своеобразный «штрихкод», позволяющий идентифицировать бактерию, не секвенируя весь ее геном. Чем более схожи коды у генов 16S rRNA, тем теснее родственные связи между соответстующими видами и тем ближе друг к другу они располагаются на «ветках» и «сучках» своей общей генеалогической ветви.
Впрочем, секвенирование ДНК – не единственный источник информации о наших микробах и об их деятельности. Большое подспорье тут и мыши, в частности специально выведенные стерильные – «аксенические», или «безмикробные», лабораторные линии. Первые поколения этих подопытных животных появились на свет с помощью кесарева сечения и содержались в изолированных камерах, что преграждало доступ к их организму любых бактерий – и полезных, и вредных. Впоследствии большинство безмикробных мышей стало рождаться обычным путем, просто от безмикробных матерей; таким образом, появился целый род аксенических грызунов, которых никогда в жизни не населяли и не касались никакие микробы. Даже их пища и подстилки подвергаются облучению и хранятся в стерильных контейнерах, чтобы не заразить животных. Пересадить мышь из одной герметической камеры в другую – целая операция, требующая антисептики и вакуумные насосы.
Сравнивая стерильных мышей с обычными, обладающими полным набором «положенных» микробов, ученые могут установить конкретные последствия обладания той или иной микрофлорой. Можно, скажем, заселить стерильных мышей каким-то одним видом бактерий (или ограниченным набором видов), чтобы выяснить, как именно каждый штамм влияет на биологию мыши. Благодаря этим «гнотобиотическим» (то есть обладающим заранее известной внутренней «живностью») мышам мы получаем представление о том, каким образом микробы воздействуют на нашу жизнь. Разумеется, с мышами сожительствуют не те микробы, что с людьми, и «мышиные» результаты порой разительно отличаются от «человеческих», однако такой научный инструмент позволяет получать немало ценных данных. Без подопытных грызунов медицинская наука развивалась бы в миллион раз медленнее, чем сейчас.
Именно благодаря безмикробным мышам один из крупнейших современных микробиологов, профессор Джеффри Гордон из Университета Вашингтона в Сент-Луисе, штат Миссури, понял ту роль, которую играет микрофлора в управлении здоровым организмом. Он сравнил внутренности безмикробных и обыкновенных мышей и выяснил, что под управлением бактерий клетки, образующие стенки кишечника мышей, высвобождают особые молекулы, которые «кормят» микробов, как бы завлекая их и предлагая здесь поселиться. Присутствие микрофлоры изменяет не только химическую среду внутри кишечника, но и его морфологию. По «приказу» микробов пальцевидные выросты удлиняются – с тем чтобы площадь поверхности увеличилась и могла усваивать из пищи всю необходимую энергию.
От нашего совместного существования выигрывают не только живущие в нас микробы, но и мы сами. Взаимоотношения с микробами не ограничиваются простой толерантностью к пришельцам: мы их активно завлекаем сами. Понимание этого факта, наряду с секвенированием ДНК и опытами на безмикробных мышах, совершило настоящую революцию в науке. Проект «Микробиом человека», осуществляемый национальными учреждениями здравоохранения США, а также многие другие научные исследования в разных лабораториях по всему миру доказали, что наше здоровье и счастье напрямую зависят от состояния наших микробов.
Человеческое тело и снаружи, и изнутри представляет собой сложный ландшафт, включающий множество сред обитания – таких же разнообразных, как климатические зоны Земли. Подобно тому как экосистемы нашей планеты населены разными видами растений и животных, различные области человеческого тела дают приют совершенно разным микробным сообществам. Как и у всех многоклеточных животных, наше тело представляет собой сложно устроенную трубку. В один конец этой трубки входит пища, а из другого выходят ее остатки. Мы привыкли считать своим наружным покровом кожу, однако внутренняя поверхность нашей «трубки» – тоже, если вдуматься, «наружный» покров, и она сходным образом подвергается воздействию среды. Подобно тому как слои кожи защищают нас от стихий, вторжения микробов и вредных веществ, клетки внутри пищеварительного тракта также призваны нас охранять. Так что наши настоящие «внутренности» – это отнюдь не пищеварительный тракт, а ткани и органы, мышцы и кости, которые скрыты между внутренней и внешней поверхностями нашего трубкообразного тела.
Итак, поверхность человеческого тела – это не только его кожа, но и изгибы, повороты, борозды и складки проходящей внутри его полости-трубки. Если рассматривать тело под этим углом, то даже легкие, влагалище и мочеиспускательный канал можно отнести к внешним покровам – частям поверхности. Неважно, внешние это покровы или внутренние: вся эта поверхность служит потенциальным местом жительства для микробов. Разные места и участки обладают для симбионтов различной ценностью: наиболее густонаселенные, напоминающие мегаполисы сообщества возникают в лучших, самых плодородных – богатых пищевыми ресурсами – местах вроде кишечника, а сравнительно малочисленные группы других видов обосновываются в более бедной ресурсами или в более агрессивной среде обитания – вроде легких или желудка. Проект «Микробиом человека» призван составить полное описание всех этих поселений на основе микробных проб из восемнадцати различных мест на внутренних и внешних покровах человеческого тела. Пробы взяли у сотен добровольных участников эксперимента.
В течение пяти лет работы над ПМЧ молекулярные микробиологи пережили некое подобие золотого века, вроде того, что случился в классической натуралистике: тогда, в XVIII и XIX веках, ученые открывали множество видов птиц и млекопитающих и присваивали им научные названия, заполняя законсервированными в формалине тушками шкафы и целые кабинеты. Теперь оказалось, что человеческое тело – целая сокровищница новых, доселе неведомых науке штаммов и видов, причем многие из них обнаруживались лишь в организме одного-двух добровольцев из всех, кто участвовал в эксперименте. Выяснилось, что не существует какого-то постоянного, единого для всех набора микробов: напротив, лишь очень немногочисленные штаммы бактерий являются общими для всех людей. Сообщество микробов у каждого человека так же уникально, как отпечатки пальцев.
Хотя у штаммов внутри каждого из нас есть свои неповторимые особенности, по большому счету это одни и те же микробы. При этом бактерии вашего кишечника имеют куда больше сходства с бактериями в кишечнике вашего соседа, чем с вашими собственными, но живущими, скажем, на пальцах. Кроме того, несмотря на различия между нашими микробными сообществами, они выполняют одни и те же функции. То, что для вас делает бактерия А, для вашего лучшего друга может делать бактерия Б.
От прохладных засушливых равнин кожи на предплечьях до теплых и влажных лесов в паху и кислотной, бедной кислородом среды в желудке – все части нашего тела предлагают жилье тем микробам, которые способны там выжить. Даже в пределах одной среды обитания в разных ее нишах поселяются разные скопления видов. Наша кожа – общей площадью два квадратных метра – содержит столько же сообществ организмов, сколько ландшафты Северной и Южной Америки, только в миниатюре. Биоценоз богатой салом кожи лица и спины отличается от биоценоза сухой и огрубелой кожи локтей не меньше, чем тропические леса Панамы – от скал Большого каньона. Если кожу лица и спины населяют в основном виды, принадлежащие к роду пропионобактерий (
Эта вторая, «микробная кожа» служит дополнительным защитным слоем для внутренних органов, укрепляя санитарный кордон, образованный клетками собственно кожи. Бактерии-чужаки, имеющие, возможно, недобрые намерения, стремятся проникнуть в эти тщательно охраняемые приграничные области нашего тела – но стоит им лишь попытаться это сделать, как их атакуют химическим оружием отряды местных пограничников. Пожалуй, наиболее уязвимы для вражеского вторжения мягкие ткани рта: им приходится противостоять слишком многочисленным войскам захватчиков, которые коварно пробираются внутрь с пищей или воздухом.
Исследователи, работавшие над проектом «Микробиом человека», взяли из ротовых полостей добровольцев не по одной пробе микробов, а по девять – из разных мест. Эти девять участков, часть из которых находилась всего в паре сантиметров друг от друга, оказались заселены заметно различавшимися между собой сообществами микробов; всего во рту было обнаружено около 800 видов бактерий, среди которых преобладали стрептококки, а также представители нескольких других групп. Стрептококки имеют дурную славу, потому что многие их виды являются возбудителями болезней – от «стрептококкового воспаления» горла, или острого фарингита, до некротического фасциита, поражающего поверхностные и подкожные ткани. Однако другие виды стрептококков способны приносить пользу, прогоняя злонамеренных чужаков прочь от уязвимого входа в организм. Конечно, нам расстояния между разными местами обитания микробов во рту могут показаться ничтожными, но не стоит забывать, что для самих микробов это широкие равнины и высокие горные хребты, и климат их различается так же, как, например, климат севера Шотландии и юга Франции.
Представьте себе резкий климатический перепад между ртом и ноздрями. Вязкое озерцо из слюны на грубой подстилающей породе сменяется щетинистым лесом с почвой из слизи и пыли. Ноздри – как можно догадаться, вспомнив об их функции «ворот» в легкие, – служат убежищем для самых разнообразных групп бактерий, насчитывающих около 900 видов, среди которых многочисленные колонии пропионобактерий, коринебактерий, стафилококков и моракселл (
Если продвинуться от горла дальше, к желудку, то здесь огромное разнообразие видов, проживающих во рту, внезапно сходит на нет. Чрезвычайно кислая среда желудка убивает многих микробов, попадающих туда вместе с пищей, и нам точно известно только об одном-единственном виде бактерий, который постоянно живет там у некоторых людей, а именно – хеликобактер пилори (
Прямо за стеной питомника, обустроенного в аппендиксе, располагается самая густонаселенная метрополия микробов. Это заповедный уголок микробного ландшафта внутри человеческого организма – похожая на теннисный мячик слепая кишка, придатком которой и является аппендикс. Здесь находится эпицентр микробной жизни, где триллионы микроскопических особей, относящихся как минимум к 4000 разных видов, благоденствуют на частично переваренной пище, которая уже прошла одну стадию экстракции питательных веществ в тонкой кишке. Теперь твердые кусочки – растительные волокна – достаются микробам, чтобы те осуществили второй этап процесса.
В ободочной кишке (она составляет большую часть длины толстой кишки и поднимается вверх вдоль правого бока нашего туловища, затем поворачивает и проходит поперек под грудной клеткой, после чего уходит вниз вдоль левого бока), плотность микробов насчитывает уже триллион особей на миллилитр, и все они живут в складках и ямках кишечных стенок. Здесь они подбирают кусочки съеденной нами пищи и преобразуют их в энергию, а продукты жизнедеятельности микробов всасываются в клетки, образующие стенки ободочной кишки. Не будь кишечных микробов, эти клетки просто истощались бы и отмирали – и если большинство клеток нашего тела питается сахаром, разносимым кровью, то основным источником питания для клеток ободочной кишки служат именно продукты жизнедеятельности микрофлоры. Влажная, теплая, «болотистая» среда внутри ободочной кишки, местами полностью лишенная кислорода, не только снабжает живущих там микробов остатками нашей пищи, но и образует слой слизи, богатый питательными веществами, которые могут прокормить микробов в голодные времена.
Чтобы не пришлось вскрывать животы подопытным добровольцам, ради получения образцов микробов из различных зон кишечника, исследователи из ПМЧ выбрали другой, гораздо более гуманный способ сбора информации о кишечных жителях: они решили секвенировать ДНК микробов, обнаруженных в стуле. Проходя через пищеварительный тракт, большая часть съеденной нами пищи переваривается и усваивается – и нами, и нашими микробами, так что остается небольшая масса, которая затем удаляется через задний проход. Испражнения – это уже не столько остатки нашей пищи, сколько бактерии, причем как мертвые, так и живые. Около 75 % веса фекалий – это бактерии; на долю растительных волокон приходится всего 17 %.
В каждый момент времени наш кишечник содержит около 1,5 кг бактерий – это примерно столько же, сколько весит человеческая печень. При этом продолжительность жизни отдельных особей – считаные дни или недели. 4000 видов бактерий, обнаруженных в экскрементах, говорят о индивидуальном организме больше, чем виды, обнаруженные во всех других местах, вместе взятых. Эти бактерии точно отражают наше состояние здоровья и пищевые пристрастия, не только характеризуя нас как биологический вид, но и указывая на наше общественное положение и личные привычки. Самой многочисленной (с большим отрывом от остальных) группой бактерий, содержащихся в стуле, являются виды рода бактероидес (
Впрочем, кишечные микробы – не просто мусорщики, питающиеся объедками с нашего стола. Мы тоже эксплуатируем их – потому что для выполнения некоторых функций организму приходится обращаться к сторонней помощи: это выгоднее, чем эволюционировать самим. Зачем заводить собственный ген для белка, синтезирующего витамин B12, необходимый для работы мозга, если это уже умеет клебсиелла (
Проект «Микробиом человека» начал исследования с микрофлоры здоровых людей. Установив такие рамки, ученые из ПМЧ через некоторое время задались вопросом: насколько иной будет картина у людей с неважным здоровьем? Не являются ли современные болезни следствием этих различий? И если это так, то что именно наносит вред здоровью? Может быть, кожные проблемы вроде угревой сыпи, псориаза и дерматита сигнализируют о нарушении баланса в микробных сообществах, населяющих кожу? Что, если воспалительные процессы в кишечнике, различные вида рака пищеварительного тракта и даже ожирение вызываются изменениями в составе живущих в этом тракте микробных сообществ? И, что самое интересное, не могут ли расстройства, на первый взгляд не связанные симбиотическими микроорганизмами, – например, аллергии, аутоиммунные болезни и даже психические заболевания – возникать вследствие нарушений в составе микрофлоры?
Победа Ли Роуэн в «научном тотализаторе» в Колд-Спринг-Харборе стала предзнаменованием гораздо более важного открытия. Мы не одиноки – и наши микробы-«безбилетники», как выяснилось, всегда играли гораздо большую роль в развитии нашей человеческой природы, чем мы предполагали. Профессор Джеффри Гордон говорит об этом так:
Изучение микробной составляющей организма позволяет нам совершенно по-новому взглянуть на себя. Мы получили новое ощущение взаимосвязи с миром микробов, ощущение преемственности наших личных связей с семьей и со средой, окружающей нас с первых дней жизни. Это заставляет задуматься – и подводит к мысли, что в человеческой эволюции, возможно, имелось еще одно измерение.
Мы стали зависеть от своих микробов, и, не будь их, каждый из нас был бы не таким, как сейчас, а лишь малой частью себя нынешнего. Так что же значит быть человеком лишь на 10 %?
Глава 1
Болезни XXI века
В сентябре 1978 года последний на Земле человек скончался от оспы. Всего в 70 милях от того места, где Эдвард Дженнер впервые сделал маленькому мальчику прививку, использовав гной, взятый у заболевшей коровьей оспой молочницы, 180 лет спустя вирус этой болезни поразил Джанет Паркер, совершив последнюю в истории успешную атаку на человеческий организм. Казалось бы, работая медицинским фотографом в Бирмингемском университете в Великобритании, Паркер не подвергалась серьезному риску заражения, – если бы не то обстоятельство, что ее фотолаборатория располагалась над совсем другой лабораторией. В тот августовский вечер, когда Джанет заказывала по телефону фотооборудование, вирусы оспы поднялись по воздуховоду из «оспяной» лаборатории медицинского факультета, находившейся этажом ниже, и заразили ее смертоносной инфекцией.
По решению Всемирной организации здравоохранения (ВОЗ) в течение десяти лет людям во всем мире делались прививки против оспы, и как раз тем летом ВОЗ собиралась объявить об окончательной победе над этой болезнью. Прошел почти год с тех пор, как был зафиксирован последний случай ее естественного проявления. Тогда молодой поварихе, работавшей в больнице, удалось оправиться от сравнительно мягкой формы оспы, выжившей в последнем своем оплоте – Сомали. Это была поистине триумф. После глобальной вакцинации на Земле не осталось людей, уязвимых для заражения, значит оспе стало попросту некуда податься.
И все же у вируса оспы оставались прибежища: заполненные человеческими клетками чашки Петри, в которых ученые выращивали и изучали вирусы различных болезней. Одним из таких заповедников для вирусов был медицинский факультет Бирмингемского университета, где профессор Генри Бедсон и его команда искали способ быстро идентифицировать любые другие поксвирусы, способные вызывать оспу у животных теперь, когда среди людей с ней было покончено. Это была благородная задача, и ученые работали над ней с разрешения ВОЗ, несмотря на обеспокоенность инспекторов протоколами безопасности вирусной лаборатории. До планового закрытия Бирмингемской лаборатории оставалось всего несколько месяцев, и замечания инспекторов не привели ни к досрочному прекращению экспериментов, ни к дорогостоящему переоборудованию.
Болезнь Джанет Паркер, которой она поначалу не придала значения, обеспокоила врачей-инфекционистов лишь через две недели после появления первых симптомов. К тому времени тело Джанет уже покрылось гнойниками, и врачи поставили возможный диагноз: оспа. Паркер поместили в изолятор, из гнойников были взяты для анализа образцы жидкости. По иронии судьбы, экспертиза по выявлению вирусов оспы для уточнения диагноза была поручена профессору Бедсону и его группе специалистов. Диагноз подтвердился, и Паркер перевели в больничный изолятор неподалеку от университета. А через две недели, 6 сентября, когда Джанет по-прежнему в тяжелом состоянии лежала в больнице, жена Бедсона, придя домой, обнаружила мужа мертвым: профессор перерезал себе горло. 11 сентября 1978 года Джанет Паркер умерла от оспы.
Жизнь Джанет Паркер оборвалась так же, как жизни многих сотен миллионов людей, умерших раньше. Джанет заразилась штаммом оспы, получившим имя «Абид» – в память о трехлетнем пакистанском мальчике, который заболел восемью годами ранее, вскоре после активной кампании ВОЗ по искоренению оспы в Пакистане.
Начиная с XVI века оспа сделалась одной из главных болезней-убийц в мире – главным образом в результате стремления европейцев исследовать и колонизовать далекие земли. В XVIII веке, когда население заметно увеличилось, а люди стали больше путешествовать, оспа распространилась настолько, что стала одной из основных причин смертности: от нее ежегодно умирало не менее 400 тысяч европейцев. Болезнь уносила жизни каждого десятого младенца. Во второй половине XVIII века, с изобретением вариоляции – рискованной процедуры (своего рода предшественницы вакцинации), заключавшейся в намеренном заражении здоровых людей при помощи гноя, взятого у больных оспой, – уровень смертности снизился. В 1796 году английский врач Эдвард Дженнер впервые провел вакцинацию с использованием вируса коровьей оспы, и ситуация стала улучшаться. К 1950-м годам в развитых странах оспу удалось почти полностью победить, однако из 50 миллионов случаев заражения, которые ежегодно фиксировались во всем мире, 2 миллиона заканчивались смертельным исходом.
Оспа утратила свои позиции в развитых странах, но в первом десятилетии ХХ века власть захватили другие микробы. Инфекционные болезни продолжали лидировать в списке убийц: распространению заразы весьма способствовало стремление людей к общению и к исследованиям. Быстрый рост численности и плотности населения помогал микробам «перескакивать» с человека на человека – именно это необходимо им для продолжения жизненного цикла. В 1900 году в США тремя основными причинами смертности были не инфаркт, рак и инсульт, как сегодня, а инфекционные болезни, вызываемые микробами, которые передаются от человека к человеку. На долю пневмонии (воспаления легких), туберкулеза и инфекционной диареи (гастроэнтерита) – приходилась треть всех смертей в стране.
Пневмония, которую некогда называли «убийцей номер один», начинается с кашля. Когда инфекция проникает глубоко в легкие, она вызывает затруднение дыхания и лихорадку. Пневмонию, больше похожую на целый букет симптомов, чем на болезнь, имеющую единственную причину, вызывает целая армия микробов – от крошечных вирусов, бактерий и грибков до протозойных («простейших») паразитов. В возникновении инфекционной диареи тоже повинно множество микроорганизмов. У нее немало разных ипостасей: «синяя смерть», или холера, которая вызывается бактериями; «кровавый понос», или дизентерия, которую обычно вызывают паразитические амебы; «бобровая лихорадка», или лямблиоз, тоже переносится паразитами. Третий грозный убийца – туберкулез – поражает легкие, как и пневмония, но имеет более специфический источник: его вызывает немногочисленная группа бактерий, принадлежащих к роду микобактерий (