Если бы это было справедливо для нормального процесса восприятия, мир был бы похож на колышущийся кисель.
Нет возражений против того, что организация "целого" важна, но нетрудно отыскать примеры, свидетельствующие о ее зависимости от индивидуального опыта. Например, мы группируем буквы - языковые символы; это, безусловно, выученный процесс. Один английский комический актер носил имя НОСМО КИНГ. Это был его псевдоним, который он буквально "открыл" однажды, обнаружив, как преобразилась надпись на двойной двери, ведущей в партер, когда дверь распахнулась; до этого там было написано: НО СМОКИНГ[2].
Крупнейший немецкий естествоиспытатель Герман Гельмгольц (1821-1894) отводил значительную роль индивидуальному опыту (обучению) в развитии восприятия. Он писал:
"Существуют многочисленные примеры жестких и с неизбежностью происходящих ассоциаций идей, причиной которых является частое повторение связей... так возникает, например, связь между словом, составленным из букв, звучанием и значением этого слова... Факты, подобные названному, показывают глубочайшее влияние опыта, тренировки, привычки на наше восприятие".
Вряд ли эти слова вызовут какие-либо возражения, но тем не менее изначальность некоторых организующих перцептивных процессов, "заложенных" еще до рождения, остается неопровергнутой. Такая возможность не вступает в противоречие с принципом экономии, и потому мы вправе ожидать этого. Сегодня из нейрофизиологических исследований мы знаем, что некоторые зрительные детекторы формы встроены в сетчатку и в ткань мозга. За последние 10 лет это было установлено прямыми записями электрических потенциалов отдельных нервных клеток глаза и мозга.
Рис. 11. Поверхность с четко выраженной фактурой снята под некоторым углом по отношению к вертикали. При рассматривании фотографии неизбежно возникает впечатление наклонной поверхности кирпичей, но отнюдь не страницы. Эта двойственность - часть парадокса, который представляют собой картины
Изучение электрической активности участков сетчатки в глазах лягушки показало, что далеко не все характеристики паттернов стимуляции находят свое отражение в активности нервных клеток, а это значит, что в мозг передаются лишь немногие характеристики стимула. Сигналы к мозгу пойдут, если изменится интенсивность стимулирующего света, причем одни клетки просигнализируют включение, другие - выключение света, третьи сработают при любых изменениях интенсивности (первые называются "он-рецепторами", вторые - "офф-рецепторами", третьи - "он-офф-рецепторами"). Рецепторы, сигнализирующие об изменении интенсивности, служат, вероятно, и для сигнализации движения, а это жизненно важно для лягушки - она должна обнаруживать и ловить мух. Впрочем, это важно для всех животных: движение, как правило, сигнализирует о появлении потенциальной пищи или об опасности.
Уже на первой ступени восприятия - в сетчатке - мы обнаруживаем нервные механизмы, реагирующие на особые паттерны с различными временными и пространственными характеристиками. В очень интересной статье "Что глаз лягушки рассказывает мозгу лягушки" Леттвин, Матурана, Маккаллох и Питтс определяют несколько специфических механизмов, реагирующих на различные паттерны. Глаз выделяет движение (объектов), изменение освещенности и то, что можно назвать "степенью округленности". Появление маленькой черной тени вызывает сильную импульсацию; в ответ пробуждается рефлекс ловли. Этот рефлекс подобен выстрелу, который происходит при нажиме на спусковой крючок: лягушка выбрасывает язык в направлении "мухи" мгновенно - время не тратится ни на какую "переработку зрительной информации" мозгом. Кстати, мозг лягушки получает от глаз очень немного информации о паттернах. Вообще с развитием мозга в процессе эволюции строение глаз становится проще и в то же время от них поступает в мозг все больше информации. Ретина - не просто слой светочувствительных клеток, это также "вспомогательная вычислительная машина", в которой происходит предварительная переработка информации - подготовка к мозговой работе. Что же касается жизненно важной информации, например о движении, то она от сетчатки передается непосредственно к органам движения; это особенно характерно для хорошо развитых глаз (например, глаз кролика); очень вероятно, что то же самое есть и у человека.
Лет десять назад два американских нейрофизиолога- Д. Хьюбель и Т. Визель - сделали поистине основополагающее открытие. Они обнаружили, что различные зрительные сигналы, соответствующие разным паттернам стимуляции, вызывают реакцию различных клеток мозга. Это открытие было сделано с помощью микроэлектродов, введенных в зрительную зону коры головного мозга (в так называемую стриарную зону, расположенную в затылочной части мозга) кошки. Оказалось, что одни клетки реагируют только на движение в каком-то одном, определенном направлении, другие - только на линии, ориентированные определенным образом, третьи - только на ломаную линию. В исследованной части поверхности коры головного мозга распределение активности нервных клеток приблизительно совпадает с пространственным распределением стимуляции на сетчатке - как бы некая грубая "карта" границ электрической активности проецируется из сетчатки на поверхность затылочных зон коры головного мозга, но в глубине коры это пространственное соответствие уже не обнаруживается, и ответом на подробный сетчаточный паттерн является электрическая активность небольшого числа мозговых клеток.
Рис. 12. Один из своих основных экспериментов Д. Хьюбель и Т. Визель провели на одиночных клетках зрительной коры головного мозга кошки. Здесь показана электрическая активность одной клетки, возникающая в ответ на изменения простого зрительного раздражителя - линии, ориентированной под разными углами к горизонтали. Глаз кошки видит линию (серую), и в данной клетке мозга возникают разряды (спайки активности) в зависимости от ориентации этой линии
В одной из следующих работ Хьюбель и Визель показали, что информация о различных паттернах стимуляции скапливается в так называемых колоннах, ориентированных перпендикулярно ясно видимым слоям стриарной зоны. Сами функциональные колонны невидимы глазом и были открыты с помощью тонких методических приемов. По-видимому, колонны представляют собой решение давней проблемы - как связываются в мозге три пространственных измерения, а также цвет, движение и другие предметные характеристики. Прежнее простое представление плоского "картографического" типа оказалось недостаточным, потому что ему не хватало размерностей, отражающих в совокупности нечто большее, чем просто три пространственных измерения внешних объектов, - ведь сам мозг тоже представляет собой трехмерный пространственный объект.
Исходя из электрофизиологических данных, можно предположить, что восприятие строится на основе нервных механизмов, реагирующих на определенные простые формы, на движение, на цвет. Эти параметры связываются в уже известных нам корковых колоннах. Логически это похоже на комбинацию букв, образующих слова: существенные признаки, очевидно, представляют собой перцептивный "язык" мозга. Продолжая аналогию, добавим, что пока еще совершенно не ясно, каким образом нейронные "слова" сочетаются, образуя "предложения", то есть каким образом выходы колонн комбинируются для формирования предметного восприятия. Предположительно можно сказать, что здесь должна быть тесная связь со складами памяти, но что представляют собой эти хранилища, пока не известно. Мы не знаем даже, являются ли таковыми отдельные клетки или память хранится в виде паттернов, вовлекающих большое число клеток; а если верно последнее, то процесс сохранения следов стимуляции должен быть подобен процессу сохранения оптических паттернов при голографии в отличие от запечатления "точки в точку", характерного для обычного процесса фотографирования.
Ответы на эти вопросы - дело будущего, пока же следует изучать феномены восприятия, чтобы подготовить почву для этих ответов. Нейрофизиологическое объяснение - это еще не все. Нельзя понять деятельность нервной системы, не зная того, каким задачам она служит. Большое число полезных объяснений сформулировано в функциональных терминах, а не в терминах структуры и активности структур. Для сравнения заметим, что инженеру, обслуживающему электронные вычислительные устройства, не обязательно глубоко знать физику, чтобы разбираться в цепях машины; точно так же математику, знающему логику машины и умеющему пользоваться ею, не обязательно глубоко разбираться в электронике. (Заявление вроде "Я понимаю, почему она сбежала с Биллом" может иметь вполне реальный смысл, хотя говорящий на самом деле не имеет ни малейшего представления о том, какие физические события происходили у "нее" в мозгу, когда принималось роковое решение.)
Мысль, что восприятие - просто процесс комбинирования активности разных систем обнаружения паттернов, в ходе которого строится нейронное "описание" окружающих объектов, весьма заманчива. На самом же деле процесс восприятия - наверняка нечто гораздо более сложное, хотя бы потому, что главная задача воспринимающего мозга - отобрать единственный из многих возможных способов интерпретации сенсорных данных. Ведь из одних и тех же данных можно "вывести" совершенно разные объекты. Но воспринимаем мы лишь один объект и обычно воспринимаем верно. Ясно, что дело не только в сочетании, сложении нервных паттернов, восприятие строится и из решений. Чтобы понять это, стоит внимательнее рассмотреть неоднозначность объектов, причем тут следует иметь в виду, что выделение некоторой области паттерна как соответствующей объекту, а не просто части фона есть лишь первый шаг в процессе восприятия. Остается еще принять жизненно важное решение: что есть этот объект ? Вопрос стоит остро, поскольку любой двумерный паттерн может отвечать бесконечному числу возможных трехмерных форм. Восприятию помогают дополнительные источники информации - стереоскопическое зрение, параллакс, возникающий при движениях головы. Во всяком случае, остается фактом, что мы почти всегда достаточно надежно решаем, "ЧТО есть этот объект?", несмотря на бесконечное число возможных решений.
Одни и те же формы в разное время могут восприниматься как различные объекты. Подобно тому как рисунки, где фон и фигура попеременно меняются местами, некоторые формы, непрерывно представляющие в восприятии объект, "колеблются" - попеременно воспринимаются как различные объекты или как разные положения в пространстве одного и того же объекта. Здесь необходимо вспомнить работы Эдельберта Эймса - американского психолога, который придумал наиболее поразительные опыты, основанные на том, что видимые глазом формы весьма неоднозначны.
Эймс начинал как художник, а стал известен как автор замечательных "демонстраций работы зрения". Правда, далеко не всегда ясно, как именно работает зрение при этих "демонстрациях". К сожалению, сам Эймс писал очень мало, он больше любил смотреть.
Эймс предложил несколько моделей (некоторые из них в масштабе 1:1), предназначенных для того, чтобы наблюдатель получал такое изображение на сетчатке глаза (причем соответствующее знакомому объекту), которое бы существенно отличалось от истинной формы модели объекта. Правда, модель дает такое изображение только при определенном ("критическом") положении наблюдателя и только при условии, что наблюдение ведется одним глазом. Самая известная из моделей - "комната Эймса". Когда наблюдатель рассматривает эту комнату одним глазом сквозь отверстие, расположенное в критической точке (рис. 13), он видит нормальную комнату кубической формы; на самом деле форма комнаты далека от кубической. Ее противоположная стена повернута так, что левый угол находится гораздо дальше правого, но в глазу наблюдателя изображения обоих углов одинаковы. Чтобы достичь этого результата, Эймс сделал стену постепенно увеличивающейся по мере приближения к дальнему углу. Так комната Эймса приобрела одну из бесчисленного множества трехмерных форм, каждая из которых дает в глазу наблюдателя, помещенного в критической точке, изображение, соответствующее нормальной кубической комнате. Строго говоря, не Эймс был первым исследователем, разработавшим такую ситуацию. Пятьюдесятью годами раньше ее предложил Гельмгольц:
Рис. 13. Комната Эймса (в плане). Форма комнаты резко отлична от прямоугольной, кроме того, комната не плоская, тем не менее при ее наблюдении глаз получает обманчивое изображение нормальной прямоугольной комнаты, потому что ее форма искажена так, что все более удаленные части имеют в то же время больший размер. При правильном выборе соотношений размера с расстоянием комната неизбежно кажется наблюдателю нормальной, поскольку в его глазу возникает изображение, соответствующее именно комнате обычной формы
"Глядя на обычную комнату одним глазом, мы уверены, что видим ее так же четко и определенно, как обоими глазами. На самом деле мы увидели бы ее {одним глазом) точно такой даже в том случае, если бы все ее участки были как угодно отодвинуты или приближены к глазу - лишь бы они оставались в тех же видимых направлениях".
Но Эймс был действительно первым, кто изготовил такую "искаженную" комнату и кто представил, что произойдет, если внутрь такой комнаты поместить объекты известных наблюдателю размеров, удалив их от него на разное расстояние. Результат показан на рис. 14. Мы видим с критической позиции комнату Эймса, когда в ней находятся двавека. Один из них кажется меньше другого, хотя на самом деле они одинакового роста. Тот, кто кажется меньше ростом, находится примерно вдвое дальше другого от фотокамеры, поэтому размер фигуры первого человека на фотопластинке (и в глазу наблюдающего из критической позиции) вдвое меньше размера фигуры второго. Таким образом, дело здесь не в искажающей иллюзии (описанной в главе 4), а в том, что наблюдатель, решая эту задачу, ошибочно принимает изменение размера вместо изменения расстояния до объектов.
Рис. 14. Так выглядит комната Эймса
Совершенно ясно, что эта комната без введенных в нее людей или других объектов будет выглядеть нормальной кубической комнатой - она дает глазу соответствующее изображение. Очень может быть, что Гельмгольц не видел необходимости в постройке "искаженной комнаты" только потому, что считал результат само собой разумеющимся. Но введение в комнату объектов сразу изменило ситуацию - перед глазом встала альтернатива: наблюдатель должен решить, что имеет место на самом деле - комната искажена или люди разного роста? Ответ заранее предвидеть нельзя, он может быть получен только в результате эксперимента. И вот наблюдатель видит комнату кубической (какой она на самом деле не является), а людей - неравновысокими (хотя на самом деле они одного роста). Пари было заключено, и мозг сделал неверную ставку. Пари проиграно, зрение обмануто. Но так бывает далеко не всегда; утверждают, например, что новобрачная не обманывается, если в комнате находится ее муж: она продолжает видеть его высоким, а комнату - искаженной примерно так, как это и есть на самом деле. Несомненно, этот эффект можно с пользой применить для оценки женской преданности.
Если наблюдатель будет изучать комнату, используя для этого не только зрение, но и длинную палку, он постепенно увидит близкую к истинной форму комнаты. Активное исследование сможет исправить ошибку восприятия, хотя чисто интеллектуальное знание не позволяет этого. Чтобы перцептивное и интеллектуальное знания совпали, необходимо действие. Если бы этот факт был известен теоретикам эмпиризма XVIII столетия, развитие философии могло бы пойти совсем иначе. Можно не сомневаться, что сказанное справедливо и для политических суждений и оценок.
Все ли этим исчерпано? Не совсем. Пусть комната Эймса - интересная и поучительная демонстрация. Но позволяет ли эта демонстрация вывести точное заключение? Если это так, то необходимо показать, что эксперимент допускает контрольную ситуацию. Можно ли найти таковую в пределах искаженной комнаты или вне ее?
Вопрос, несомненно, надо поставить следующим образом: что произойдет, если повторить эксперимент Эймса без комнаты? Возьмем двух людей, поместим их на "пустом" фоне, причем одного из них поставим на расстоянии, вдвое меньшем, чем другого. Не покажется ли более удаленный человек стоящим на том же расстоянии, что и приближенный, только вдвое меньшего размера? А если нет, то чему приписать эффект, получаемый в комнате Эймса?
На рис. 15 показана фотография двух человек, один из которых был вдвое дальше другого от камеры, - их размеры различаются точно так же, как на фотографии, сделанной в комнате Эймса. Фотокамеру к тому же помещали достаточно низко, чтобы не возникло линейной перспективы, по которой можно было бы судить об относительной удаленности этих людей.
Рис. 15. 'Комната Эймса без комнаты'!
Большинство наблюдателей, рассматривающих эту фотографию, говорят, что человек, стоявший ближе, и на фото виден несколько ближе, кроме того, размеры его фигуры намного больше, чем у другого человека. Иными словами, разница в размерах воспринимается как только отчасти зависящая от расстояния. Таким образом, добавление Эймса к ситуации, предложенной Гельмгольцем, не является существенным.
Широко известен также "стул Эймса". Он составлен из нескольких металлических стержней, поддерживаемых струнами тонкой проволоки, которые сходятся к одной точке. Стержни наблюдаются из этой точки, так что струны проволоки представляют собой как бы материализованные перспективные линии, соединяющие глаз наблюдателя с концами стержней. Последние расположены так, что именно отсюда дают в глазу наблюдателя схематическое изображение стула, а из любой другой точки виден просто беспорядочный набор стержней. Опыт интересен, но, как и комната Эймса, ничего неожиданного сам по себе не содержит. Если модель сделана правильно, то она должна восприниматься как любой объект, имеющий на самом деле какую угодно форму, но дающий в этой ситуации именно такое изображение на сетчатке глаза, какое дал бы обыкновенный стул.
Замечательно не то, что опыт Эймса всегда удается, если не вводятся конфликтующие с заданной моделью элементы (это, кстати, само по себе очень интересно), а то, что перцептивная система все-таки удовлетворяется одной-единственной интерпретацией ретинальных изображений, формируемых нормальными объектами. Может быть, именно в этом и заключается суть опыта. Удивительно то, что из сонма возможностей мозг обычно извлекает практически наилучшую.
Рис. 16. Так была получена фотография 'комнаты Эймса без комнаты'. Обе женщины стояли на фоне белого экрана и на разных расстояниях от фотокамеры, расположенной низко над полом. Вследствие этого информация о перспективе и о фактуре фона была утеряна. Оценить влияние этой утраты на восприятие можно лишь в эксперименте. Так мы получаем сведения о допущениях, которые строит воспринимающий мозг, и о значении ретинальной информации для изменения этих допущений в различных условиях наблюдения
Нам уже сейчас придется допустить, что процесс восприятия предусматривает выбор (всегда спорный, нечто близкое к пари) той интерпретации сенсорных данных, которая является наиболее вероятной, если исходить из мира реальных объектов. Перцепция строит что-то вроде гипотез, с помощью которых из сенсорных данных выводится объективная реальность. К тому же поведение не полностью контролируется сенсорными данными, а основывается на допущениях, выведенных в процессе восприятия из этих данных. Это становится ясным из анализа повседневного опыта: я кладу книгу на стол, не проверяя предварительно, выдержит ли он книгу. Я действую в соответствии с тем, как представляю себе физический объект - стол, а не в соответствии с тем коричневым пятном, которое находится в моем глазу, когда я смотрю на поверхность стола. Таким образом, процесс восприятия включает своего рода "блок принятия решений", то есть разум.
Говоря о восприятии, Гельмгольц употреблял термин "бессознательные умозаключения". Автор не совсем понимает, почему это представление Гельмгольца не стало популярным среди психологов. Гельмгольца особенно занимал тот факт, что, хотя сенсорная деятельность начинается на поверхности нашего тела, включая сетчатку глаза, мы все же ощущаем предметы как "вещи, находящиеся где-то там", то есть вне нас. К тому же даже иллюзорные ощущения, "проецирующиеся" вовне, бывают чрезвычайно сильными. Например, если осветить совершенно темную комнату краткой, но очень яркой вспышкой света, наблюдатель увидит интенсивный последовательный образ (послеобраз), в котором будет различима каждая деталь комнаты. И хотя наблюдатель точно знает, что он видит лишь "фотографию", оставшуюся в глазу после вспышки, даже выйдя из комнаты и закрыв за собой дверь, он воспринимает этот видимый послеобраз как подлинную комнату.
Рис. 17. Стул Эймса. Слева - наблюдение ведется из точки, в которую сходятся струны проволоки, поддерживающие стержни. Справа - вид 'стула Эймса' из любой другой точки наблюдения
Гельмгольц предположил (хоть и не в форме силлогизма, который дается ниже), что мозг постоянно выводит "бессознательные умозаключения" такого рода:
Активность фоторецепторов сетчатки (почти вся) вызывается воздействием внешних объектов.
Это есть активность фоторецепторов сетчатки.
Значит, она (почти наверное) вызвана воздействием внешних объектов.
Нам пора совершенно четко уяснить себе, что в черепе нет никакого "человечка", строящего силлогизмы, да Гельмгольц, без сомнения, так и не думал. Но многим людям в его время, а некоторым и теперь (особенно тем, кто не знаком с работой электронных вычислительных машин) может показаться, что выражение "бессознательные умозаключения", прямо относящееся к восприятию, подразумевает присутствие этакого "внутричерепного человечка". Знакомство с ЭВМ снимает даже возможность появления недоразумений такого рода. У нас больше нет оснований считать логические действия исключительно человеческой способностью, с необходимостью требующей участия сознания. Свои "бессознательные умозаключения" при восприятии Гельмгольц описывал следующим образом:
"Психическая деятельность, в результате которой мы воспринимаем определенный объект, находящийся перед нами в определенном месте и обладающий определенными признаками, есть в общем не сознательная, а бессознательная деятельность. Ее результат эквивалентен заключению, поскольку зарегистрированное воздействие на наши органы чувств позволяет нам сформулировать вывод о возможной причине этого воздействия; ведь фактически воспринимаются только нервные стимулы, вызванные воздействием, а никоим образом не сами внешние объекты. По-видимому, такие выводы отличаются от заключений в обычном понимании этого слова тем, что заключение, как правило, продукт сознательного мышления. Так, например, астроном приходит к подлинным заключениям, когда он вычисляет положение звезды в пространстве, ее удаленность и т. п., исходя из перспективных изображений этой звезды, полученных в разные моменты времени и с различных точек земной орбиты. Эти заключения основаны на сознательном применении законов оптики. В обычном акте зрения знание этих законов не фигурирует. И все же позволительно говорить о психических актах обычного восприятия как о бессознательных заключениях, отделяя их таким образом от так называемых сознательных заключений. Безусловно, были, есть, а может быть, и навсегда останутся некоторые сомнения относительно степени сходства между этими двумя видами психической деятельности, но нет никаких сомнений в наличии сходства между результатами, к которым можно прийти с помощью сознательных и бессознательных заключений".
Почти вся эта книга, в сущности, посвящена разбору только что приведенного отрывка из трудов Гельмгольца. Совершенно ясно, что в процессе зрения самое важное для животного - уметь различить, что именно (в тех паттернах, которые свет формирует в его глазах) соответствует объектам, находящимся в поле зрения животного, а что - пространству между этими объектами. Следующее по важности - опознать эти объекты, руководствуясь характерными для них паттернами. Но, как мы уже говорили, видимые объекты представляют собой нечто большее, чем паттерны, которые формируются на поверхности рецепторов, причем для обладателя глаз гораздо важнее именно те свойства объектов, которые непосредственно не воздействуют на глаза. Как же объекты "извлекаются" из паттернов? Нам предстоит рассмотреть внутреннюю "логику" восприятия. При этом главное мое положение заключается в том, что перцепция (восприятие) есть своего рода способность к решению проблем.
Рисунки, картины, изображения трактуются здесь как замечательные изобретения, для восприятия которых надо вырабатывать особое умение; предполагается, что некогда вслед за картинами появились абстрактные символы и, наконец, письменность. Разбирая восприятие объектов, отображенных в рисунках и в символах (включая пиктограммы древних языков), я надеюсь показать, что даже человеческая способность к чисто абстрактному мышлению может быть прямо выведена из первых попыток объективной интерпретации изображений-паттернов, формировавшихся в примитивном глазу.
2. Странные свойства картин
Картины ведут двоякое существование. Прежде всего - это объекты как объекты: узоры на плоских листах бумаги; но в то же время глаз видит в них и совсем другие предметы. Узор состоит из пятен, линий, точек, мазков или из фотографического "зерна". Но эти же самые элементы складываются в лицо, дом, корабль средь бурного моря. Картины - уникальный класс предметов, потому что они одновременно видны и сами по себе и как нечто совсем иное, чем просто лист бумаги, на котором они нарисованы. Картины парадоксальны. Никакой объект не может находиться в двух местах одновременно; никакой объект не может быть одновременно двумерным и трехмерным. А картины мы видим именно так. Картина имеет совершенно определенный размер, и в то же время она показывает истинную величину человеческого лица, здания или корабля. Картины - невозможные объекты.
Впервые в эволюции органического мира с картинами столкнулись лишь глаза человека. До этого любые предметы были важны или, напротив, совершенно неинтересны сами по себе. Картина сама по себе пустяковый предмет, ибо что за важность - узор из пятен и линий. Картины важны только потому, что глаз видит в них отсутствующие предметы. Биологически это чрезвычайно странно. На протяжении миллионов лет животные реагировали лишь на реально существующую ситуацию или на предвидимые в ближайшем будущем изменения какой-то конкретной ситуации. Картины же и иные символы вызывают (допускают) реакции, направленные на ситуации, весьма отличные от реально существующих в данный момент; более того, они подчас порождают восприятие "объектов", которых вообще не существует в реальном мире.
Если оставить в стороне картины и другие символы, то органы чувств обслуживают поведение и контролируют его в соответствии с физическими свойствами окружающих объектов, а не с какими-либо иными, реальными или воображаемыми, свойствами. В связи с этим способность человека реагировать на отсутствующие, воображаемые ситуации, представленные в картинах, является важным этапом в развитии абстрактного мышления. Возможно, что именно картина была первым шагом прочь от тесной реальности - тем шагом, без которого реальность нельзя по-настоящему глубоко понять.
Ретинальные изображения объектов не имеют двоякой природы, свойственной "внешним" картинам. Мы не воспринимаем эти изображения одновременно и как паттерны и как нечто иное. Мы "извлекаем" реальность из паттернов, образующихся в наших глазах, но мы не можем к тому же еще и рассматривать эти паттерны как картину. Это может сделать кто-нибудь другой, заглянув в наши глаза с помощью специального оптического инструмента. Но изображение, находящееся в собственном глазу, - всего лишь одно из звеньев в цепи информации, циркулирующей в нервной системе. Мы столь же неспособны увидеть ретинальные изображения в собственных глазах, как и нервную деятельность, протекающую в собственном зрительном нерве и в клетках зрительной зоны собственного мозга. Таким образом, ретинальные изображения суть картины лишь для стороннего наблюдателя, но они не имеют двоякой природы, свойственной картинам с точки зрения того человека, в чьих глазах они образуются.
Способность извлекать неоптическую действительность из оптических изображений, формирующихся в глазу, - это и есть чудо зрительного восприятия. То, что мы способны увидеть, выходит далеко за пределы оптической способности наших глаз. Извлекая нечто подобное действительности из рассматриваемой картины, мы выполняем на самом деле в высшей степени замечательную операцию, лишь отчасти похожую на решение задачи по извлечению сведений о реальности из ретинальных изображений. Картины ни в коем случае нельзя назвать обычными объектами; зато они представляют собой чрезвычайно интересный объект для изучения особенностей восприятия.
Картины по сути дела представляют собой трехмерные объекты, спроецированные на плоскость. Достоверно известно, что невозможно втиснуть три измерения в одну плоскость, не утратив при этом никакой информации. Поэтому "глубина" на картинах всегда неоднозначна. И удивительно то, что мы все-таки способны разобраться в этих проекциях, хотя любая из них бесконечно неоднозначна; она могла бы отвечать бесконечному множеству объективных форм - и все же мы обычно воспринимаем лишь одну из них.
Чтобы разобраться в странностях картин, нам следовало бы сравнить в эксперименте то, что мы видим, глядя на обычные объекты, с тем, что мы видим, глядя на картины. Для этого надо рассмотреть непосредственно объект, а также картины, на которых изображен этот объект. Можно было бы, конечно, нарисовать нужные нам объекты, используя линейную перспективу и другие приемы проективной геометрии, но это - скучное занятие. Есть гораздо более экономное решение задачи - проецирование теневых изображений наших объектов. Такое решение тем более удобно, что мы имеем возможность проецировать изображение с любой точки зрения, в любой перспективе и даже вовсе без перспективы (рис. 18). Если мы возьмем маленький и яркий источник света и поместим объекты между ним и экраном, то плоские теневые изображения предметов на экране будут выглядеть точно так же, как если бы мы смотрели на предметы одним глазом из той точки, где находится наш источник света.
Рис. 18. Для экспериментальных целей удобно получать картины - плоскостные проекции предметов - с помощью точечного источника света, отбрасывающего тень предмета на экран. Этот способ удобнее, чем способ получения изображений с помощью линз, потому что теневые проекции обладают бесконечной глубиной резкости и геометрия теневых изображений проста и точна
Этот фокус с проекцией теневых изображений предметов чрезвычайно пригодится нам в нескольких экспериментах, которые нетрудно проделать самому читателю. В большинстве случаев в качестве объектов хорошо использовать проволочные каркасы; такие предметы в проекции похожи на рисованные схемы; кроме того, они не имеют скрытых частей - разве что при особых (и немногих) положениях на пути от источника света к экрану.
Если проволочную окружность расположить параллельно экрану, она даст тень в форме окружности, но если наклонить ее, тень получится эллиптическая. Чем больше наклонена окружность в натуре, тем больше эксцентриситет ее эллиптической проекции. Глядя на экран и зная, что объект представляет собой окружность, мы воспринимаем теневое эллиптическое изображение как окружность, но только видимую не прямо, а чуть сбоку, хотя на сетчатке нашего глаза изображение будет иметь форму эллипса. Однако предположим, что нам не известна истинная форма объекта; тогда окажется, что имеется бесконечное число возможных вариантов наклона и эксцентриситета, которые дадут ту же самую проекцию - и то же изображение на сетчатке глаза. Проекция и ретинальное изображение бесконечно неоднозначны. Потому точно узнать объект по его изображению мы не сможем, даже если наша жизнь будет поставлена на карту.
Сказанное справедливо и для более сложных предметов. Рассмотрим сделанный из проволоки каркасный куб (рис. 19). Перспективная проекция показывает ближайшую грань куба увеличенной по сравнению с дальней. Это различие в размерах может быть гораздо более значительным (когда тенеобразующий источник света расположен очень близко к объекту) - и все же по теневой проекции обычно опознается куб, то есть тело с равными гранями и прямыми углами, хотя в изображении, получающемся на сетчатке глаза, все это выглядит совершенно иначе. Мы истолковываем плоскую проекцию предмета как подходящий для возникновения такой проекции трехмерный объект, хотя "подходящий" вовсе не значит "сколько-нибудь похожий по форме".
Рис. 19. Каркасный куб. Изменяя расстояние между кубом и источником света, а также изменяя положение куба, мы можем увидеть соответствующие изменения плоскостной проекции теневых изображений, причем теневые проекции меняются точно так же, как менялось бы ретинальное изображение в глазу, наблюдающем куб из точки, где расположен источник света
И тут же возникают вполне обоснованные сомнения. В самом деле, почему мы видим это изображение как куб, а не как любую из бесконечного разнообразия форм, которые могли бы дать точно такую же проекцию?
Например, это вполне могла бы быть проекция усеченной пирамиды, обращенной меньшим своим основанием к тенеобразующему источнику или к глазу.
По-видимому, не все возможные ответы на вопрос, какой предмет дал эту проекцию, для нас равнозначны. Мы "предпочитаем" одни объекты, более часто встречающиеся, другим, встречающимся реже. Кубы встречаются чаще, чем усеченные пирамиды, и мы видим эту проекцию скорее как куб, нежели как усеченную пирамиду или любую из бесконечного числа форм, которым могла бы принадлежать данная проекция, полученная с разных точек наблюдения.
То, что мозг выбирает именно наиболее вероятный из возможных ответов, таит в себе и некоторую опасность: трудно, а иногда просто невозможно воспринять очень необычный предмет, особенно в тех случаях, когда его проекция (его изображение) оказывается такой же, как проекция (изображение) привычных, знакомых предметов. И это не пустяк, так как необычные формы действительно встречаются и не исключено, что в каком-то случае от правильного восприятия их будет зависеть многое.
Мы - на пути к тому, чтобы заняться фундаментальными вопросами восприятия. Пусть восприятие имеет целью установить, какому объекту вероятнее всего соответствует данная форма. Тогда неизбежен вопрос: из какого набора объектов производится выбор? Во всяком случае, не из всего реального мира объектов, так как ретинальные изображения явно служат только для того, чтобы обеспечить выбор из уже запасенного ранее набора объектов, представленных условными обозначениями в "зрительной части" мозга. По всей вероятности, восприятие заключается в том, чтобы опознать настоящее с помощью сведений, накопленных в прошлом.
Но если зрительно воспринимаемые признаки объектов служат для выбора сведений, накопленных в предшествующем опыте, и смысл видимого мира зависит от ограниченного запаса ответов, полученных в прошлом, то что же происходит, когда мы сталкиваемся с чем-то уникальным? Что происходит, когда глазу предъявляются противоречивые признаки? Что происходит, когда зрительно воспринимаемые признаки, используемые для идентификации данного объекта с одним из ранее известных, оказываются неподходящими для опознания одного (и только одного) объекта? Иначе говоря, когда мы получаем противоречивую информацию, значит ли это, что на "глупый зрительный вопрос" будет дан "глупый перцептивный ответ"?
Рассматривая картины с целью найти ответ на поставленные вопросы (отметим, что к вопросу художественной ценности картин такой подход имеет в лучшем случае косвенное отношение), мы можем разобраться в некоторых сторонах перцептивной деятельности мозга. Правда, картины - чрезвычайно искусственное средство исследования, и об этом всегда надо помнить; но, с другой стороны, то же самое можно сказать почти о любом лабораторном эксперименте.
3. Неоднозначные, парадоксальные и неопределенные фигуры
Неоднозначные фигуры
Поскольку существует бесконечное число возможных трехмерных форм, дающих одну и ту же проекцию на плоскость (одну и ту же картину), нет ничего удивительного, что восприятие может быть неточным и неоднозначным. Замечательно как раз то, что нас так редко беспокоит и обманывает неоднозначность оптической проекции объектов на сетчатке глаза. На обычные объекты в нормальных условиях мы смотрим обоими глазами; так как каждый глаз получает несколько иную проекцию объекта, многие глубинные формы воспринимаются однозначно. К тому же с помощью движений головы мы (сходным образом) избавляемся от неоднозначности. Однако ни тот, ни другой способ не годятся для восприятия глубины на картинах - и все же мы воспринимаем глубину на картинах в основном однозначно. Есть, впрочем, исключения. Эти исключения показывают, как реагирует мозг в тех случаях, когда не удается прийти к единственному решению.
Наиболее известный пример такого рода - каркасный куб, нарисованный без соблюдения правил перспективы (ближняя и дальняя грани куба одинакового размера); это знаменитый куб Неккера. Швейцарский кристаллограф Л. А. Неккер описал свой куб в 1832 году. С тех пор - в разных вариациях и по разным поводам - куб фигурирует в психологических работах. Ретинальное изображение такого куба получается при проекции с любой из двух разных позиций. Поэтому здесь одинаково возможны два разных ответа на один и тот же вечный вопрос перцепции: что есть этот предмет и где он находится? Один общий ответ на эти вопросы дать нельзя - не хватает информации. И мозг, не давая окончательного ответа в этой неясной ситуации, принимает поочередно каждую из двух возможных гипотез (рис. 20). Другой пример аналогичного характера - каркас полуоткрытой книги, фигура Маха (рис. 21).
Рис. 20. Куб Неккера. Это плоскостная проекция куба, видимого с очень большого расстояния. Перспектива отсутствует - разницы в размерах граней нет. При наблюдении фигура спонтанно (самопроизвольно) 'переворачивается': одна объемная проекция сменяется другой. По-видимому, в данном случае имеется не одно, а два равноправных решения перцептивной проблемы: что есть данный объект? Мозг 'пробует' каждую из этих гипотез поочередно, не останавливаясь окончательно ни на одной из них
Глубинная неоднозначность - лишь одна из форм перцептивной неоднозначности. Неясным может оказаться и то, что представляет собой объект, показанный на картине или спроецированный оптикой глаза на сетчатку. А иногда вообще непонятно, содержит ли данная картина (данное изображение) какой-нибудь объект. Так, глядя на "абстрактную" картину, мы подчас далеко не уверены в том, что художник вообще хотел изобразить какие бы то ни было предметы - пусть даже весьма условно. Впрочем, быть может, он и не хотел этого.
Рис. 21. Фигура Маха. Еще один пример самопроизвольно переворачивающейся фигуры. Она похожа на корешок книги, обращенной к вам то страницами, то обложкой
Да это и не обязательно. Даже в чернильных пятнах содержатся намеки на формы предметов. Этот факт положен в основу одного из специальных тестов исследования личности - теста Роршаха (рис. 22). Так, облака иногда похожи на лицо человека, или на корабль, или еще на что-нибудь, но разве лишь мистик и впрямь поверит в небесные портреты или флотилии.
Рис. 22. Клякса или предмет? Это один из тестов, характеризующих личность. Роршах предложил его, основываясь на том, что наш мозг стремится увидеть предметы даже в фигурах с очень нечеткой структурой. Куб Неккера дает только две альтернативы восприятия. Клякса содержит бесчисленное множество таких альтернатив, причем ни одна из них не довлеет над другими. Поэтому каждый выбирает 'объект', представляющий для него лично наибольший интерес, - в этом проявляются индивидуальные особенности восприятия и другие свойства личности
Намеренно (или случайно) можно создать картину, в которой "одно и то же" видно как два разных объекта. Наиболее известный пример такого рода показан на рис. 23, это картина американского психолога Э. Дж. Боринга. Она воспринимается то как портрет прелестной молодой девушки, то как лицо ужасной старухи, причем когда воспринимается один объект, совершенно "исчезает" другой. Девушка на картине видна в профиль; ресницы одного глаза осеняют щеку, на шее у нее - черная лента. Когда на картине "возникает" старуха, то подбородок юной леди превращается в противный громадный нос, а черная лента, окружавшая шею девы, - в узкую щель жесткого рта "старой развалины". Очень любопытно наблюдать за своими ощущениями во время альтернативного восприятия
Рис. 23. Э. Боринг. 'Неоднозначная теща'
("вывертывания") этой картины. Значение каждого элемента картины меняется столь разительно, что трудно поверить в объективную неизменность рисунка: один рисунок как будто незаметно и ловко подменяют другим.
Эта картина обычно кажется неизменной до тех пор, пока взгляд не перейдет на новую часть рассматриваемого рисунка, причем фиксация взгляда на некоторых частях рисунка как бы способствует удержанию одного изображения, а перенос фиксации на иные части - появлению другого изображения. Когда кокетливо повернутая щечка превратится в хищный нос, остальная часть лица девушки как бы тает, перетекая вслед за носом в другое лицо (почти так же, как лицо доброго доктора Джекилля исчезает, уступая место зловещей физиономии мистера Хайда)[3].