Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Хорошее зрение. Как избавиться от близорукости, дальнозоркости, глаукомы, катаракты - Валентина Владимировна Коваленко на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

И окончательно доказанным фактом является развитие у части пользователей так называемой дисплейной болезни, или синдрома компьютерного зрения, как принято говорить у американцев.

Таким образом, при работе с компьютером огромное значение приобретают меры защиты: соблюдение гигиенических требований к режиму и условиям труда, использование специальных защитных очков с антикомпьютерным покрытием, которое наносится на корригирующие линзы и на так называемые «нулевки», использующиеся при нормальном зрении исключительно с защитной целью. Для снятия негативного действия цифровых гаджетов разработано специальное покрытие для линз, нейтрализующее синий спектр излучения. Несомненным лидером в этом разделе оптики является японская компания Hoya с ее инновационным покрытием BlueControl.

Все более популярными в последние годы у программистов и пользователей компьютеров становятся демократичные по цене линзы Blue Blocker польского производства. Благодаря интенсивному цвету (голубой и желтый) их невозможно спутать с другими линзами – они выглядят очень яркими. И в то же время они очень хорошо воздействуют на орган зрения. Многослойный фильтр Blue Blocker, действуя по принципу интерференционного избирательного фильтра, изменяет проходящий сквозь линзу свет, отсекая жесткую синюю составляющую видимого спектра и ультрафиолетовые лучи в трех диапазонах (UVA, UVB, UVC). Этот фильтр повышает контрастность изображения, не изменяя естественных цветов, и значительно уменьшает эффект «бликования» от внутренней поверхности линзы (это могут чувствовать люди, носящие минусовые линзы с большими диоптриями). Наибольший эффект «прояснения» от фильтра Blue Blocker проявляется в сумерках, на рассвете, в тумане, при дождливой погоде. Именно потому эти фильтры любят водители транспортных средств и спортсмены.

3.8. Телевизор и зрение

Телевизор в наших домах сегодня столь же привычен, как солонка на столе. И мы не задумываемся о том, к чему могут привести слишком частые и долгие телесеансы. А задуматься стоит, потому что это влечет за собой проблемы в любом возрасте.

Начнем со взрослых людей трудоспособного возраста. Вечер перед телевизором во многих семьях – самое распространенное времяпрепровождение. Причем смотрят все подряд, без особого разбора. Телевизоры нынче у всех цветные – а как же! Между тем многие отцы семейства на следующее утро сядут за руль автомобиля – кто своего, кто служебного, а кто и людей повезет в автобусе или маршрутке. И если зрение даст сбой, никто и не подумает связать это с вечером, проведенным перед цветным экраном. А связь есть, и она научно доказана. За этот вечер организм теряет почти половину наличного витамина А, который, как всем известно, исключительно важен для зрения. Он обеспечивает нормальную работу зрительных пигментов сетчатки. И не удивительно, что острота зрения после такого вечера падает на 30 % (доказано в специальных исследованиях). Для восстановления ей нужен длительный отдых и пополнение в организме запасов витамина А. Для водителя автотранспортного средства дефицит витамина А – это не только проблемы со зрением, но и ослабление реакции в целом. И не напрасно в 80-х годах прошлого века в гигиенических требованиях к условиям труда на автотранспортных предприятиях был пункт для водителей дальних рейсов о запрещении просмотра цветных телепередач накануне рабочего выезда[5]. Это только один пример.

Мама-бухгалтер уйдет утром на службу и весь день будет жаловаться, что не может нормально работать за компьютером. А чему удивляться? Ведь телевизор и компьютер – близнецы-братья. И любой перебор сказывается на зрительной работоспособности.

Профессор Ульв Спицер из Германии, невропатолог, вообще считает, что привычка коротать вечер перед телевизором приводит людей к преждевременной смерти. Он проанализировал уровень смертности своих пациентов от ожирения, гипертонии, диабета, атеросклероза и его последствий и выявил прямую связь с продолжительностью просмотра телевизионных передач. Установлено также, что избыточное «общение» с телевизионным экраном способно вызвать судорожный припадок у людей с повышенной судорожной готовностью, например, при эпилепсии.

Если говорить о пожилых людях, то бесконечные телевизионные сериалы обходятся им в итоге очень дорого – они ускоряют прогрессирование катаракты, если она уже есть, либо приближают ее возникновение. Ведь нарушается нормальный уровень обменных процессов в глазу, да и электромагнитные излучения здоровья хрусталику не добавляют. А частота дистрофий сетчатки даже у лиц относительно молодого возраста? В прежние времена такого диагноза не знали до самой старости, потому что жизнь вели более здоровую, питались полноценной пищей, пусть и не всегда досыта. Сегодня же нарушения в обмене веществ настигают людей уже в молодости, поэтому с годами мы должны быть все более внимательны к своему органу зрения. К сожалению, диагноз «макулодистрофия сетчатки» никогда не снимается.

Что же делать, спросите вы? Неужели положение безвыходное? Нет, конечно же нет. Но все, что мы делаем, нужно делать разумно, отдавая себе отчет в возможных последствиях собственных поступков.

В аспекте рассматриваемой сейчас проблемы стоит осветить два момента – режим зрительной работы и меры защиты органа зрения.

Режим зрительной работы при просмотре телевизионных передач заключается, главным образом, в правильном освещении помещения, расстоянии от глаз до экрана и времени просмотра. Что значит правильное освещение? В комнате с работающим телевизором должен быть включен слабый верхний свет либо торшер, стоящий позади зрителей. Нельзя смотреть телепередачи в темной комнате, особенно если имеются заболевания органа зрения либо зрительные проблемы, – это излишне напрягает и утомляет зрительный аппарат за счет разницы в освещении центра и периферии сетчатки. Экран телевизора должен находиться на линии взора смотрящего, параллельной полу, на расстоянии не менее 3 м, а при нынешних больших размерах экранов – 5 м. Если на этом расстоянии плохо видно изображение на экране, проблема решается не уменьшением дистанции, а совсем другим путем – оптическим, то есть очками. Время просмотра передачи без перерыва ограничивается 2 часами, с перерывами иногда может достигать 4 часов, но при условии строгого обеспечения всех мер защиты. Родителям напомню режим для детей: до 3 лет – к телевизору не подходить, до школы – 20 минут, до 10 лет – полчаса, до 12 лет – 40 минут и потом в подростковом возрасте 1–1,5 часа, если все в порядке со зрением. Я понимаю, что такие нормы могут показаться кому-то смешными (мы ведь привыкли к другому), но они научно обоснованы, и никуда нам от этого не деться.

В качестве защитной меры для органа зрения можно рассматривать оптические средства коррекции зрения – очки. Они нужны практически всем. Начнем с того, что с возрастом острота зрения у каждого человека падает не только для близкого расстояния (возникает потребность в очках для чтения), но и при зрении вдаль. Это естественный физиологический процесс, в результате которого человек в возрасте 55–60 лет обычно видит на таблице с расстояния 5 м уже не 10 строчек, как раньше, а только 6–7. Для обычной жизни этого вполне хватает, вот почему такую остроту зрения называют бытовой. Но этого недостаточно для рассмотрения деталей на экране телевизора. Чтобы обеспечить четкое восприятие, глаз напрягает все свои приспособительные механизмы, и это приводит к зрительному утомлению, нарушению внутриглазного кровообращения и тока жидкости в глазу. А это уже путь к развитию ряда заболеваний органа зрения, включая глаукому, ангиопатии сетчатки, катаракту и др. Поэтому помимо очков для работы (в которых можно читать, писать, шить и т. д.) у каждого пожилого человека должны быть очки для дали. По сути, это очки для телевизора, поскольку в кино, театры и на выставки люди ходят сейчас не слишком часто (но и там они будут полезны). Эти очки должны обеспечить человеку максимально полную остроту зрения. Ведь даже люди, никогда не жаловавшиеся на зрение, имеют, как правило, небольшую степень дальнозоркости, исправлять которую с возрастом придется очками. Чтобы выполнить свою защитную функцию, такие очки должны иметь еще специальное просветляющее покрытие, что повышает контрастность восприятия и существенно облегчает процесс зрения.

Очками для дали с просветляющим покрытием должны пользоваться при просмотре телевизионных передач люди любого возраста, которые по роду занятий тесно контактируют с компьютером или просто увлекаются Интернетом и компьютерными играми. Даже если зрение вдаль у них нормальное и специальной коррекции не требует, в таких случаях используются стекла без диоптрий, выполняющие за счет покрытия защитную функцию.

Ну и конечно, мерой защиты будет регулярное восполнение витамина А, который организм расходует на защиту от агрессивных воздействий и зрительные цели. Но об этом мы подробнее поговорим в следующем разделе.

3.9. Значение питания для здоровья глаз и зрительной функции

Питание имеет огромное значение в жизнедеятельности организма. Именно оно дает нам необходимые вещества, чтобы мы могли вырабатывать энергию и поддерживать столь нужное нам для здоровья и нормального самочувствия постоянство внутренней среды. Ингредиенты, поступающие в организм с питанием, призваны обеспечивать полноценность работающих в нашем теле активных веществ, обусловливающих нормальный уровень обменных процессов (гормоны, ферменты). Поэтому так важно дать своему телу все питательные вещества, необходимые для жизнедеятельности каждой клетки, всех тканей и организма в целом. Как это сделать правильно, учит наука ХХ века – нутрициология[6]. Она пришла на смену диетологии, дополняя ее.

Хорошо известно, что в питании современного человека недостает полноценных белков, полиненасыщенных жирных кислот, а также витаминов и микроэлементов. А дефицит их отражается на функционировании органа зрения очень ощутимо, тем более что многие виды зрительной деятельности требуют увеличения их поступления в организм. При работе с компьютером, например, резко возрастает потребность организма в витаминах-антиоксидантах (А, С, Е), микроэлементах антиоксидантных систем (селен, медь, цинк, магний) и растительных комплексах антиоксидантного действия (каротиноиды, биофлавоноиды, олигомерные проантоцианидины и др.). При активном просмотре обычного бытового телевизора увеличивается потребность в витамине А. Дефицит тех или иных питательных веществ входит в круг этиологических факторов возникновения многих заболеваний органа зрения. Это я постараюсь вам показать в ходе дальнейшего изложения материала.

Говорить о роли витаминов и минералов в поддержании здоровья и функционального состояния органа зрения можно очень долго – этим вопросам посвящена не одна научная монография. Понятно, что в рамках этой книги я не имею возможности широко осветить эту тему, но некоторые моменты все-таки хочу подчеркнуть.

В наши дни мы уже не говорим, как в прошлом веке, об авитаминозах (то есть полном отсутствии какого-либо витамина) как причине тяжелейших заболеваний глаз. Но проблема гиповитаминоза (иначе говоря, дефицита витаминов) остается, и она достаточно серьезна. При этом категорически не рекомендуется пополнять запасы витаминов за счет приема их синтетических аналогов – действие их далеко не идентично. В качестве примера приведу витамин А. Источник информации – серьезная научная монография из раздела эмбриологии, посвященная врожденным уродствам[7]. Так вот, то, что к тератогенным факторам (способствующим развитию врожденных уродств у плода) относится синтетический аналог витамина А, доказано совершенно определенно. Добавлю, что у детей и взрослых избыточные дозы синтетического витамина А могут привести к развитию токсикоза, то есть отравления. И не напрасно в фармацевтическом справочнике указывается максимально допустимая доза этого витаминного препарата (!). Натуральный витамин А может применяться без всяких ограничений и осложнений в сколь угодно больших дозах, как, например, при лечении аллергии. Что касается синтетического аналога витамина С, то здесь на первое место выходит его повреждающее действие в больших дозах на самые мелкие сосуды – капилляры. В прошлом этим пользовались женщины, желающие сорвать незапланированную беременность, – плацента, как наиболее богатый кровеносными сосудами орган, выводилась из строя большими дозами аскорбиновой кислоты. Вас это убеждает?

Теперь буквально некоторые данные из научной литературы о роли витаминов в этиологии ряда заболеваний глаз.

Витамин В1 (тиамин) – недостаток этого витамина является основной причиной ретробульбарных невритов с исходом в слепоту у алкоголиков, беременных женщин и кормящих матерей. Приводит также к развитию параличей глазодвигательных мышц и цилиарной мышцы глаза (паралич аккомодации).

Дефицит витамина В2 (рибофлавина) – причина зуда в глазах, быстрой утомляемости при зрительной нагрузке и прорастания сосудов в роговую оболочку. Этот витамин входит в состав зрительного пурпура, защищающего сетчатку от воздействия ультрафиолетовых лучей. Как и витамин С, он не синтезируется в организме, и мы должны получать его в достаточном количестве с питанием.

Точка приложения гиповитаминоза РР (никотиновой кислоты) – роговица и зрительный нерв. Дефицит витамина В6 (пиридоксина) может быть причиной развития хронического воспаления краев век (блефарит) и рецидивирующих ячменей.

Инозит как витаминоподобное вещество играет важную роль во внутреннем обмене для структур, не имеющих своего кровоснабжения, – роговицы и хрусталика. По относительному количеству инозита на первом месте в организме стоит хрусталик (1500 мг/л). Понятно, чем чревато нарушение его поступления с питанием.

Для сохранности прозрачности хрусталика ему нужен витамин С. Однако мы знаем, что этот витамин в организме не накапливается – работает только то его количество, которое поступило сегодня. Значит, для хрусталика важно получать этот витамин каждый день, причем в больших дозах (об этом мы будем говорить дальше).

Другая прозрачная ткань глаза, не имеющая своего кровоснабжения, – роговица. Чтобы она всегда была прозрачной, гладкой и блестящей, ей нужны растительные комплексы под названием биофлавоноиды, и особенно кверцетин. Биофлавоноиды мы получаем в основном из цитрусовых. При этом они важны также для поддержания сердечно-сосудистой системы. Известно, что минимальная суточная доза биофлавоноидов, обеспечивающая защиту нашего сердца и сосудов, – 100 мг. Мы, к сожалению, в своем обычном дневном рационе такого количества этих биологически активных веществ не получаем.

Перечень можно продолжать еще очень долго, но и сказанного достаточно, чтобы направить наши взгляды в сторону натуральных витаминов и регулярно принимать витаминно-растительные комплексы.

Исключительно важным для глаз является также обеспечение организма необходимыми микроэлементами. Это понятие означает металлы, присутствующие в биологических жидкостях в очень низких концентрациях (ниже 1 мкг на 1 г жидкой массы). Но при этом значение их для физиологических процессов, протекающих в организме, очень велико. Нужно отметить, что проблема биологической роли микроэлементов была поставлена в трудах крупнейшего русского ученого, академика В. И. Вернадского, положившего начало этим исследованиям еще в 1891 году.

Однако сегодня статистика, касающаяся минерального обмена в организме, печальна. По данным ряда ученых, дисбаланс минерального обмена у взрослого работоспособного населения достигает 90–97 %. При этом глаз как важнейшая энергоинформационная система организма является уникальным индикатором дисбаланса микроэлементов в организме. Например, нарушения окраски белочной оболочки глаза – склеры могут указывать на нарушения обмена кальция (в этом случае через истонченную склеру просто просвечивает пигментный эпителий). А диагностика по радужной оболочке глаза позволяет определить не только пораженные болезнью органы, но и нарушения обмена микроэлементов: меди, железа, цинка, хрома и других. Дефицит микроэлементов лежит в основе многих глазных заболеваний – прогрессирующей близорукости, катаракты, глаукомы, дистрофии сетчатки, поражения зрительного нерва.

Напомню, что из 92 минеральных элементов, встречающихся в природе, 81 обнаружен в организме человека, при этом некоторые из них относятся к категории эссенциальных, то есть жизненно необходимых, без которых организм не может полноценно функционировать. Это кальций, фосфор, калий, хлор, натрий, цинк, магний, молибден, йод, селен, марганец, железо, медь, кобальт. О каждом из этих элементов можно рассказать много интересного. Но здесь мы лишь остановимся на констатации этого факта. И отметим, что у современных людей достаточно часто встречается недостаток в организме определенных элементов (ученые называют это микроэлементозами). В специальных исследованиях установлено, например, что дефицит селена может достигать 86 %, а кальция и цинка – 67 %. При этом организм часто загрязнен избыточным количеством токсических металлов. И это еще раз говорит о необходимости регулярной очистки организма и пополнения запасов минеральных веществ.

Из сказанного мы делаем для себя важный вывод: рациональное питание – это не только путь к общему здоровью и сохранению нормальной физической формы, но и средство поддержания органа зрения и зрительных функций. При этом, как бы разумно мы ни строили свой рацион и сколь много денег ни вкладывали в него, достичь успеха без применения дополнительных биологически активных добавок в наших условиях жизни невозможно. Это хорошо понимают во многих странах, где потребление БАДов достигает: 45–50 % – в Европе, 80 % – в США, 90–95 % – в Японии. Непонятно, почему мы так трудно постигаем эту науку. И если мне скажут, что по причине недостатка денежных средств, не поверю. Потому что столько еды на праздничных столах, как у нас, не бывает ни в одной другой стране. И вообще мы употребляем много лишних продуктов, тем самым не просто выкидываем деньги на ветер, а гораздо хуже – наносим ущерб своему здоровью.

Я как врач занимаюсь вопросами нутрициологии (науки о правильном питании на клеточном уровне) уже скоро 20 лет. За эти годы я исследовала продукцию многих компаний, выпускающих биологически активные добавки (БАДы). Не могу сказать, что всегда попадала в точку, но в результате накопленного опыта смогла подобрать производителей, продукция которых дает наибольшую пользу моим пациентам. Своими знаниями я готова поделиться и буду упоминать в соответствующих разделах наиболее эффективные, с моей точки зрения, БАДы. Скажу сразу, что для своей практики я избрала три компании-производителя. Это: 1) российская компания «Витамакс» с производственной базой в США и Франции; 2) украинская компания «Грин-Виза» с производственной базой в Харькове и 3) американская компания NSP (Nature`s Sunshine Products). Продукция всех трех компаний целиком производится из качественного натурального сырья без добавления химических ингредиентов. Тщательно отработанные рецептуры изготовляемых препаратов позволяют получить не только профилактический, но и в ряде случаев лечебный эффект при воздействии на организм и орган зрения. И наконец, эта продукция абсолютно безопасна для потребителя.

3.10. Несколько слов о видеоэкологии

Задумывались ли вы когда-нибудь о том, почему мы с таким удовольствием смотрим на старинные дома, оригинальные памятники и зеленые уголки? Почему столь популярными стали в последние годы туры с посещением старинных дворцов и замков? Думается, не только и не столько потому, что в нас вдруг проснулся интерес к истории. Скорее, мы подсознательно стремимся дать своим глазам возможность видеть оригинальные, непохожие друг на друга сооружения, любоваться элементами интерьера, рассматривать скульптуры и портреты. Дело в том, что мы просто устали смотреть на монотонные ряды однотипных зданий, бесконечные гладкие поверхности из стекла и бетона, прямые углы и ровные линии. Наш глаз не приучен к этому за прожитые человечеством тысячелетия, он жаждет разнообразных впечатлений. И мы оказываемся заложниками урбанизации. Прагматичные устремления градостроителей, особенно ярко проявившиеся во второй половине прошлого века, привели к тому, что мы вынуждены существовать в непривычных нашему глазу условиях. И мы отреагировали ростом зрительной патологии, психических расстройств и сердечно-сосудистых нарушений. Не будем кривить душой, сталинский ампир, хоть и не впечатляет нас сегодня своим содержанием, для глаза куда приятнее, чем хрущевский примитивный модерн.

Вы, конечно, знаете, что на заре советского периода жизни нашего общества велась активная борьба с проявлениями буржуазного образа жизни. Была объявлена война подушечкам, салфеточкам, слоникам и другим украшениям – все, мол, должно быть просто и лаконично. И совершенно неосознанно, интуитивно женщины ответили на это мощным всплеском увлечения вышивкой, вязанием и плетением кружев. Каждая стремилась заполнить свой дом приятными для глаза предметами. Злополучные слоники, кстати, тоже выжили, несмотря ни на какие гонения. И это правильно. Чем больше ярких, радующих глаз объектов зрительного восприятия будет в нашем доме, тем лучше для нашего здоровья.

Понять это нам помогает относительно новая наука – видеоэкология. Это область знаний о взаимодействии человека с видимой окружающей средой. Прикладная область экологической науки. И нужно сказать, что появилась она, в общем-то, вовремя, чтобы уберечь нас от многих негативных последствий нашей не всегда разумной деятельности. Конечно, знания эти нужны в первую очередь градостроителям, архитекторам, ландшафтным и интерьерным дизайнерам, однако и нам, рядовым гражданам, лишними не будут. Ведь в своем доме мы и архитекторы, и декораторы, и дизайнеры. И это значит, что всем нам стоит помнить о видеоэкологии, чтобы создать в своем жилище теплую, уютную обстановку, способствующую физиологическому и психологическому комфорту всех членов семьи.

На чем зиждутся постулаты видеоэкологии как науки?

Нет сомнений в том, что одним из аспектов воздействия окружающей среды на человека является видимое глазом пространство – визуальная среда обитания. Это такой же действенный экологический фактор, как, скажем, воздух или вода, электромагнитные поля и излучения, хотя это и не осознается нами в полной мере. Между тем именно через орган зрения человек получает львиную долю информации об окружающем мире. И уже давно установлено, что визуальная информация воздействует не только на зрительные центры, но и на весь организм, что более всего изучено в отношении вегетативной нервной системы. Так, хорошо известно, что восприятие красного цвета бодрит, тонизирует, учащает сердцебиение, а зеленого – наоборот, успокаивает; восприятие же синего цвета угнетает. Экспериментальные исследования с применением электрофизиологических методов показали, что излучение люминесцентных ламп с большой долей синей части спектра вызывает у человека негативные сдвиги в работе головного мозга.

Когда ученые вплотную занялись вопросами зрительного восприятия, стало понятно: все то, что мы видим глазами, активно воздействует на нас, равно как и другие факторы окружающей среды. Да-да! Видимое глазом пространство, или визуальная среда обитания, может влиять на нас как положительно, так и негативно. Наша зрительная система определенным образом реагирует на расположение, форму, цвет окружающих предметов и дает обратную реакцию в виде физиологических сдвигов и эмоциональных всплесков. Если реакция негативна, при длительном воздействии возможны неблагоприятные изменения в самом органе зрения и болезненные проявления со стороны психики – от резкой смены настроения, эмоциональной угнетенности и легких психозов до психических заболеваний. По данным Всемирной организации здравоохранения (ВОЗ), процессы урбанизации в мире ведут к неуклонному росту числа психических заболеваний. И есть все основания полагать, что проблемы визуальной среды обитания современного человека вносят в это свою лепту.

В результате многочисленных исследований и экспериментов стало известно, что огромное влияние на нашу нервную систему оказывают гомогенные и так называемые агрессивные визуальные поля. Гомогенные поля – это монотонные по окраске и лишенные объектов для фиксации взгляда поверхности: голые стены, монолитное стекло, глухие заборы, подземные переходы, асфальтовое покрытие, гладкие крыши домов. Агрессивные же поля – это большое число многократно повторяющихся одинаково и равномерно рассредоточенных на поверхности геометрически правильных элементов: окна на стене дома, прямоугольная плитка на тротуарах или стене, рейки, сетки. Хочу обратить внимание на то, что некоторые люди плохо переносят вид тканей с рисунком подобного рода, например в горошек. При этом большое значение имеет цвет фона и самого горошка, а также его величина и густота расположения. Можно однозначно сказать, однако, что такими тканями не стоит украшать ни себя, ни свое жилище.

В условиях воздействия гомогенных и тем более агрессивных визуальных полей невозможна полноценная работа фундаментальных механизмов зрения, нарушается работа бинокулярного аппарата зрительной системы и фоторецепторов сетчатки глаза. Длительное пребывание в условиях замкнутого ограниченного пространства приводит к нарушениям в аппарате аккомодации и сложной системы, управляющей реакциями зрачка, его расширением и сужением. Как следствие этого – зрительное утомление, слабость и спазм аккомодации, развитие близорукости и прогрессирование уже имеющейся миопии.

Но это еще не все. Важно отметить, что визуальная среда обитания оказывает выраженное воздействие и на психическое состояние человека. Гомогенные видимые поля приводят к угнетению психической деятельности и даже способны вызывать депрессивные состояния. Агрессивные же визуальные поля могут провоцировать поведенческие реакции негативного характера, особенно у индивидуумов с неустойчивой психикой.

Сказанное выше имеет отношение, несомненно, и к возросшей частоте зрительных нарушений у детей и подростков. По нашим собственным данным, полученным в середине 90-х годов прошлого века, частота явных зрительных расстройств у школьников достигала 35 %. Это, безусловно, много, однако такой показатель никого особенно не удивил, поскольку близкие к нему цифры фигурировали в литературе уже несколько лет. Важнее было другое. Применение специальных физиологических методик, дающих возможность оценить уровень функционального состояния основных зрительных механизмов, и использование авторской компьютеризированной экспертной системы позволило обнаружить еще около 40 % скрытых зрительных расстройств. Основные из них – нарушения в аккомодационном аппарате и истощение сетчатки.

Причин, приводящих к формированию приобретенных зрительных расстройств у детей и подростков, известно несколько: неполноценное питание, неудовлетворительные гигиенические условия, недостаточная двигательная активность, нерациональный режим дня и зрительной работы. Понятна и роль экологии в формировании врожденной патологии зрительного аппарата – опосредованно, через обменные процессы в организме матери. Однако причины возникновения скрытых нарушений на функциональном уровне не так очевидны. Нарушения в состоянии здоровья, столь распространенные среди современных школьников, конечно же, играют свою роль. Но всего не объясняют. И принять как рабочую гипотезу влияние видеоэкологии очень соблазнительно. Тем более что и частота патологических изменений в психоневрологической сфере у школьников достаточно высока.

Не будем вдаваться в детали вопроса, но отметим для себя важность его для сохранения зрения человека. С этих позиций заслуживает всяческого одобрения наметившаяся в последние годы тенденция к разнообразию в украшении городских улиц и площадей, жилых и служебных помещений. С этих же позиций следует приветствовать наше стремление к улучшению и разнообразию декора в помещениях своих квартир, а также пребывание людей, как взрослых, так и детей на природе, где разнообразие визуальной среды обеспечено с максимальной полнотой.

И следует сказать, что довольно непростой, но чрезвычайно важной задачей для каждого человека является создание в его жилище комфортных условий для зрительного восприятия. Необходимо насытить помещение визуальными объектами, привлекающими взгляд и создающими положительный эмоциональный настрой, чему должны способствовать не только смысловое содержание объектов и их форма, но и цветовая характеристика. Это особенно значимо в отношении детей. Ученые доказали, что даже новорожденные дети плохо реагируют на гомогенные поля. А длительное пребывание младенцев в плохо освещенной комнате может привести к развитию глубинных физиологических нарушений в органе зрения. Следовательно, детская комната должна быть светлой, насыщенной яркими предметами, создающими комфортную визуальную среду. Особенно важно это для детей с дефектами зрения (амблиопия, слабовидение, косоглазие) – подобная визуальная среда должна быть как у них дома, так и в специализированных детских садах.


Глава 4

Оптическая система глаза


Чтобы наш глаз мог ясно и четко видеть различной величины и формы объекты на разном расстоянии, природа подарила ему великолепнейшее устройство, по своей сложности и точности превосходящее все, что изобретено человеческим гением за многие тысячелетия. Это оптическая система глаза. Но для того, чтобы разобраться в ней, нам придется прибегнуть к упрощению и для начала рассмотреть оптическую систему глаза с позиции устройства оптического прибора. Так будет легче перейти к более сложной живой оптической системе.

4.1. Глаз как оптический прибор

Мы вправе сравнивать глаз с любым самым совершенным техническим устройством для передачи изображений – фотоаппаратом, кинокамерой, передающим монитором телевизионной системы и т. д. Ведь и там, и там есть три основные составляющие: отверстие для прохождения световых лучей; структура, преломляющая эти лучи, и поверхность, на которой они фокусируются. В глазу свет пропускает зрачок, преломляет оптическая система глаза и воспринимает сетчатка.

При этом основные составляющие оптической системы глаза – это роговица и хрусталик, о которых мы уже говорили в главе 1. Водянистую влагу и стекловидное тело как жидкое и гелеобразное образования мы в расчет не принимаем, хотя они имеют свой показатель преломления (1,336), пусть и более слабый, чем у роговицы (1,376) и особенно у хрусталика (1,386). Плотные же образования оптической системы – роговица и хрусталик – имеют кривизну с радиусами различного значения. Так, по расчетным данным, передняя поверхность роговицы имеет радиус 7,7 мм, а задняя – 6,8 мм. У хрусталика разница еще больше – 10,0 мм передняя поверхность и 6,0 мм задняя. Общая преломляющая сила роговицы при этом составляет 43,05 Д, а хрусталика – 19,11 Д. В живом глазу эти параметры значительно варьируют: преломляющая сила роговицы колеблется в пределах 38,0–46,0 Д, а хрусталика – 15,0–23,0 Д. Общая же преломляющая сила глаза составляет 52,0–71,0 Д (в среднем 60,0 Д) при длине передне-задней оси глаза от 19,0 до 30,0 см (в среднем 23,0–23,5 см). Таким образом, суммарная преломляющая сила оптической системы, как мы видим, существенно превышает значения, которыми мы оперируем, говоря об увеличительных линзах. Глаз преломляет свет значительно сильнее.

Нужно сказать, что многие известные ученые прошлых веков, пытаясь понять и четко определить преломляющую способность живого глаза, разрабатывали так называемый «схематический глаз». Основывались подобные разработки на очень сложных расчетах, как, например, схематическая модель глаза по Гульстранду. Этому шведскому оптику удалось наиболее удачно описать оптическую систему нормального человеческого глаза (рис. 5) и дать точные параметры, на которые мы уже ссылались. Я не стану вдаваться в такие детали, как передний главный фокус (F1), задний главный фокус (F2), главные плоскости и фокусные расстояния. Я просто хочу продемонстрировать сложность тончайших расчетов при оценке оптики глаза.


Рис. 5. Строение оптики глаза по Гульстранду:

F1 – передний главный фокус; F2 – задний главный фокус; f1 – переднее фокусное расстояние; f2 – заднее фокусное расстояние; Н1 и Н2 – передняя и задняя главные плоскости; fв. п – переднее вершинное (т. e. отсчитанное от вершины роговицы) фокусное расстояние; fв. з – заднее вершинное фокусное расстояние

Есть и более простые схемы оптической системы глаза, в которых для легкости изложения принимается в расчет только одна из преломляющих поверхностей, – это так называемый редуцированный глаз. Показатели его наиболее полно были рассчитаны советским офтальмологом В. К. Вербицким.

Но все эти подходы и расчеты относятся к идеальному, усредненному глазу. В реальности все намного сложнее, и заниматься этими вопросами приходится в рамках таких разделов науки, как физиологическая оптика и медицинская оптометрия. Ведь в живом человеческом глазу нужно привести в гармоническое состояние два основных параметра – длину передне-задней оси и преломляющую силу оптической системы. И тот и другой параметр, как мы уже говорили выше, варьируют в широких пределах, и исключительно редки случаи, когда они укладываются в классические расчеты. И здесь в дело включается аккомодация. О строении аккомодационной (ее еще называют цилиарной) мышцы мы говорили в главе 1. Теперь давайте посмотрим, как она работает.

Когда глаз в спокойном состоянии направлен на отдаленный объект (в офтальмологии принято называть далеким расстояние более 5 м), аккомодационная мышца находится в состоянии относительного покоя и равновесия. Ведь ее задача – помочь глазу рассмотреть более мелкие и близко расположенные предметы. Если аппарат аккомодации не включен, воспринимаемый глазом близкий предмет проецируется на сетчатке нечетко, контуры его размыты. При этом автоматически посылается сигнал в мозг, и оттуда приходит приказ начинать действовать цилиарной мышце. Она сокращается, меняется сила натяжения цинновых связок, поддерживающих хрусталик, и его кривизна тоже меняется. Чтобы можно было рассмотреть мелкие объекты на близком расстоянии, хрусталик должен стать более выпуклым. Преломляющая сила глаза при этом увеличивается. Когда взгляд переводится опять вдаль, цилиарная мышца автоматически расслабляется, циннова связка натягивается и хрусталик приобретает более плоскую форму; преломляющая сила оптической системы глаза при этом уменьшается.

Этот процесс кажется очень сложным, когда о нем говоришь словами. На самом деле все происходит легко и быстро, в доли секунды. И тем легче и быстрее, чем больше глаз человека натренирован в переводе взгляда с близкого расстояния вдаль и обратно. Смотреть вдаль действительно очень полезно. Цилиарная мышца при этом хорошо расслабляется и потом меньше устает при напряжении. Причем в пределах города наша «даль» ограничена десятками, в лучшем случае сотнями метров. Настоящая «даль» – на природе. Недаром раньше, в эпоху парусного флота, считалось, что наилучшее зрение имеют моряки – ведь они часто и долго всматриваются в даль, отстоящую на десятки и сотни километров.

4.2. Понятие клинической рефракции глаза

Для того чтобы систематизировать варианты строения оптической системы живого глаза, было введено понятие «рефракция»[8]. Она характеризует соотношение переднезадней оси глаза и его преломляющей силы в состоянии покоя, когда аккомодация отключена, и, соответственно, положение фокуса преломленных глазом лучей по отношению к сетчатке. Принято различать три вида рефракции: эмметропию, гиперметропию и миопию.

Лучше всего вам это покажет схема. Взгляните на рис. 6. Вы видите здесь все три варианта клинической рефракции глаза.


Рис. 6. Три вида клинической рефракции глаза:

М – миопия (близорукость); Em – эмметропия (соразмерная рефракция); H – гиперметропия (дальнозоркость)

А теперь охарактеризуем их.

Под эмметропией, или соразмерной рефракцией, следует понимать такой вид оптического устройства глаза, когда гармоническое соотношение длины глазного яблока и силы его оптической системы обеспечивает положение фокуса преломленных лучей непосредственно на сетчатке. Понятно, что это самый лучший вариант, и острота зрения при этом будет максимальной. Эмметропический глаз наиболее приспособлен к восприятию внешнего мира. Четкое зрение не только при взгляде в бесконечность, но и в пределах от бесконечности до 1,5 м от глаза осуществляется без напряжения аккомодации. Но на более близкие дистанции требуется аккомодативное усиление. Такой вид рефракции встречается, по данным различных исследователей прошлых лет, у 30–40 % населения земного шара, однако практика показывает, что у современного человека идеальная соразмерная рефракция глаза встречается намного реже.

Гиперметропия, или дальнозоркость, характеризуется тем, что фокус преломленных в глазу лучей оказывается позади сетчатки. Другими словами, это укороченный глаз. И для того, чтобы достичь нормальной остроты зрения, вмешательство аккомодации нужно всегда, даже при взгляде вдаль. Однако в большинстве случаев глаз с этим справляется. Исследователи, проводившие большие статистические наблюдения, считают, что это наиболее распространенная рефракция. Во всяком случае, когда в начале ХХ века была построена кривая распределения рефракции у большого контингента обследованных (несколько тысяч человек), пик ее пришелся на дальнозоркость в 0,5 Д. Замечу, к слову, что подавляющее большинство детей рождается с дальнозоркостью, и только потом, в течение нескольких лет, глаза ребенка растут и параметры их меняются, формируя окончательную рефракцию к 10–12 годам.

При миопии, или близорукости, длина глаза увеличена, вследствие чего фокус преломленных лучей располагается впереди сетчатки. Понятно, что изображение на самой сетчатке получается нечетким, размытым и острота зрения всегда понижена. Тут уже не приходится ожидать помощи от напряжения аккомодации, поскольку этим путем можно только приблизить фокус к сетчатке, отдалить же нельзя никак, и нужно искать другие пути для нормализации зрения.

Итак, подведем итог. Клиническая рефракция характеризует глаз с точки зрения расположения фокуса преломленных оптической системой лучей света по отношению к сетчатке, от чего, вполне понятно, зависит острота зрения. Эмметропия характеризуется гармоничным сочетанием длины глаза и его оптической силы, острота зрения всегда в норме. Это – идеальная рефракция. Гиперметропия (дальнозоркость) представляет собой вариант укороченного глаза. Достаточная острота зрения достигается за счет включения аккомодации. Миопия (близорукость) – наиболее неблагоприятный вариант строения глаза, когда длина его слишком велика в соотношении с оптической силой. Острота зрения всегда понижена.

Исходя из сказанного, мы делаем заключение, что практически нормальной, идеальной рефракцией является только эмметропия. Она не требует вмешательства специалиста, во всяком случае в молодом возрасте, поскольку острота зрения достаточна и способность к зрительной работе обычно сохранена. Два других вида рефракции уже не обеспечивают идеального зрения и нуждаются во вмешательстве специалиста, чтобы обеспечить хорошую остроту зрения и достаточный уровень зрительной работоспособности. Поэтому их объединили в одну группу и, в отличие от эмметропии, назвали аметропиями, то есть несоразмерными рефракциями. Применяется еще один термин – аномалии рефракции.

Рассмотрим их подробнее, поскольку это важно для практических целей и представляет интерес для каждого человека.

4.3. Дальнозоркость

Когда мне на заре моей научной деятельности в области офтальмологии пришлось осуществить детальный осмотр органа зрения у более чем 5000 школьников, я на собственном опыте убедилась, что гиперметропия действительно является наиболее распространенным видом рефракции. При этом у большинства обследованных школьников острота зрения была нормальной, а степень дальнозоркости – слабой.

С клинических позиций аметропии принято делить еще и по степеням – на слабую, среднюю и высокую. Применительно к дальнозоркости слабая степень укладывается в границы 2,0 Д, средняя – 5,0 Д и высокая – больше 5,0 Д. Правда, иногда можно встретить и другую градацию по степеням (до 3,0; до 6,0 Д и свыше 6,0 Д), но первая из них более приемлема и удобна. Обычно нормальная острота зрения наблюдается только при слабой степени гиперметропии. Средняя и высокая степень практически всегда обусловливают понижение зрения и нарушение зрительной работоспособности – такие люди быстро устают при длительном выполнении мелкой работы на близком расстоянии. Напомню еще раз, что нормальное расстояние для зрительной работы – это 33 см. При таком расстоянии в глазу с соразмерной рефракцией используется 3,0 Д аккомодации, и это считается нормой. Если человек уменьшает расстояние от глаз до объекта зрительной работы (это часто делают дети, которые, как говорят, «пишут носом»), то он искусственно увеличивает нагрузку на аккомодационный аппарат. И это может привести к негативным последствиям, о чем мы будем говорить дальше.

Люди, имеющие дальнозоркость средней и высокой степени, как правило, всегда имеют нарушенную остроту зрения для дали. И им обычно тяжело дается работа на близком расстоянии. Чем можно помочь в таком случае?

Выход только один – компенсировать недостаток оптической системы глаза специальными линзами.

Оптическая коррекция дальнозоркости осуществляется использованием двояковыпуклых, или плюсовых, линз. Приставляя их к глазу, определяют величину его аметропии.

Понятно, что чем больше степень аметропии, тем дальше от сетчатки располагается фокус лучей, преломленных оптической системой глаза (вспомните рис. 6). Но мы не имеем возможности измерить это расстояние непосредственно. Это делается путем приставления к глазу в пробной очковой оправе плюсовой линзы той или иной силы.

Если нарушенная острота зрения восстанавливается полностью при приставлении линзы +1,0 Д, то речь идет о дальнозоркости в 1,0 Д, то есть гиперметропии слабой степени. Так осуществляется проверка зрения в глазном кабинете, и вы, я полагаю, знаете об этом. Если же для восстановления остроты зрения требуется линза силой в +3,5 Д, то речь идет уже о средней степени дальнозоркости. Это так называемый субъективный метод определения рефракции глаза.

Есть, конечно, и специальный диагностический аппарат – рефрактометр. Такими аппаратами оснащены в наше время многие оптические салоны. Их имеют специализированные центры по лечению зрительных расстройств.

Однако глазные кабинеты районных поликлиник такой аппаратурой не располагают. И если врач имеет намерение определить объективным путем степень аметропии, он прибегает обычно к методу скиаскопии. В этом случае при обследовании в темной комнате через различной силы оптические стекла, вставленные в специальную линейку, нейтрализуется движение тени, образующейся при направлении в глаз пучка отраженного света от специального зеркальца. Этот метод, разумеется, менее точный, однако представление о рефракции глаза он дает вполне достаточное.

А как определить степень дальнозоркости, если острота зрения в норме? Да точно так же, но только ориентиром будет уже не восстановление остроты зрения, а ее сохранение при приставлении все более сильных линз.

Теперь возникает вопрос: нужно ли носить очки при дальнозоркости? Думаю, ответ вам уже ясен. Если зрение вдаль нарушено и человек лишен возможности полноценно воспринимать своими глазами окружающее пространство, то очки ему необходимы. Тем более что, как мы уже с вами знаем, нет другого пути изменить ситуацию – укороченный глаз не вытянешь никаким способом. Однако в тех случаях, когда зрение вдаль нормально и нет никаких сложностей со зрительной работой, без очков вполне можно обойтись. Во всяком случае, в молодом возрасте, пока аккомодация сильна.

Бывает, что зрение вдаль нормальное, но зрительная работа на близком расстоянии затруднена и быстро возникает чувство усталости и дискомфорта. Что делать в таком случае? Использовать очки только для зрительной работы, а постоянно ходить без них.

Чтобы убедить вас окончательно, покажу схематически, как влияет приставленное плюсовое стекло на фокус преломленных лучей (рис. 7). Как вы видите, фокус под воздействием линзы четко совмещается с сетчаткой.




Поделиться книгой:

На главную
Назад