Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Как предсказать курс доллара. Расчеты в Excel для снижения риска проигрыша - Владимир Георгиевич Брюков на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Таблица 2.2. Регрессионная статистика


Источник: расчеты автора

В таблице 2.3 дается дисперсионный анализ (от лат. dispersio, что в переводе означает разброс, рассеяние), суть которого заключается в изучении влияния одной или нескольких независимых переменных на зависимую результативную переменную. В данном случае дается анализ изменения результативного признака «Курс доллара к рублю» под воздействием включенной в уравнение регрессии одной независимой переменной – «Порядковый номер торгового дня». Здесь в столбце значимость F дается уровень статистической значимости в целом уравнения регрессии.

Следует иметь в виду, что чем ближе значимость F к нулю, тем более обоснованным будет наш вывод о статистической значимости в целом всего уравнения регрессии. Причем, если значимость F меньше 0,01, то можно говорить о статистической значимости уравнения регрессии с 1% значимостью (или 99% уровнем надежности). Если значимость F больше 0,01, но меньше 0,05, то тогда говорят о статистической значимости уравнения регрессии с 5% значимостью (или 95% уровнем надежности).

Таблица 2.3. Дисперсионный анализ


Источник: расчеты автора

Правда, значимость F-критерия в данном случае дается Excel в экспоненциальном виде, который может быть непонятен для некоторых неискушенных в математике читателей. Для тех, кто хочет разобраться, хочу заметить, что число в экспоненциальном виде легко преобразовать в обычную цифру. Например, 1,60E+04=1*10^4=16000, а 1,60E-04 = 1*(1/10^4)=0,00016. При этом E+04 в данном случае означает умножение 1,60 на 104, а E-04 означает умножение 1,60 на 10-4 или (что одно и то же) умножение 1,60 на 1/104.

Тот, кто не хочет ломать голову над числом в экспоненциальном виде, может эту проблему решить, преобразовав формат данной ячейки с экспоненциального в числовой. С этой целью наведем курсор мышки на эту ячейку, и, щелкнув ее правой кнопкой, в появившемся диалоговом окне выберем опцию ФОРМАТ ЯЧЕЕК. После этого появится диалоговое окно ФОРМАТ ЯЧЕЕК, в котором нужно выбрать опцию ЧИСЛОВОЙ – см. рис. 2.2. В результате нам удастся выяснить, что значимость F=0,00. Следовательно, в данном случае значимость F меньше 0,01, то есть можно сделать вывод, об 1% статистической значимости этого уравнения регрессии с (или 99% уровнем надежности). Хочу обратить внимание читателей, что для большей надежности для целей прогнозирования лучше использовать уравнения регрессии со значимостью F меньше 0,01.


Рис. 2.2

В таблице 2.4 представлены коэффициенты уравнения регрессии и оценки их статистической значимости. При этом в разделе Коэффициенты цифра 32,10052 слева от Y-ПЕРЕСЕЧЕНИЕ в формуле линейного тренда: Y=AX+С обозначает исходный уровень (его также называют свободный член или константа), то есть дает числовое значение буквы С. А вот коэффициент 0,123085 слева от независимой переменной «Порядковый номер торгового дня» дает числовое значение буквы A в формуле линейного тренда.

Следовательно, в результате решения в Excel уравнения регрессии нами получена следующая формула для расчета линейного тренда (числовые значения после запятой округлены до четырех знаков):

Y = 0,1231X + 32,1005

Где: Y‑ курс доллара к рублю по итогам торгового дня, а X – порядковый номер торгового дня.

Интерпретация данного уравнения регрессии следующая: с каждым торговым днем (увеличением номера торгового дня X на одну единицу) величина курса доллара Y за период с 27 июня по 28 ноября 2014 года в среднем вырастала на 12,31 копейки при исходном уровне, то есть расчетном значении курса доллара к рублю перед началом торгов 27 июня 2014 года, равном 31,1005 рублей.

Заметим, что такую же формулу мы получили и графическим способом – см. рис. 1.16, поскольку при графической аппроксимации колебаний независимой переменной трендом также используется МНК.

Особое внимание следует обратить на столбец Р-ЗНАЧЕНИЕ, в котором сгенерированы уровни значимости, соответствующие вычисленным в предыдущем столбце значениям t-статистики. Причем, если Р-значение меньше 0,01, то можно говорить о статистической значимости соответствующего члена уравнения регрессии с 1% значимостью (или 99% уровнем надежности). Если Р-значение больше 0,01, но меньше 0,05, то тогда говорят о статистической значимости соответствующего члена уравнения регрессии с 5% значимостью (или 95% уровнем надежности). Для большей надежности лучше для целей прогнозирования использовать члены уравнения регрессии с Р-значением меньше 0,01.

В таблице 2.3 оба Р-значения даются Excel в экспоненциальной форме, но мы уже знаем, как их можно преобразовать в числовой формат. В результате выясним, что оба Р-значения равны 0,00. Отсюда легко сделать вывод, что коэффициенты A и С в формуле линейного тренда имеют 1% статистическую значимостью (или 99% уровень надежности).

В таблице 2.3 нужно также обратить внимание на столбцы Нижние 95% и 99% и Верхние 95% и 99%, которые показывают соответственно нижние и верхние интервалы значений коэффициентов при 95% и 99 % уровнях надежности, заданных пользователем Excel. Причем, если при переходе того или иного коэффициента от столбца Нижние к столбцу Верхние происходит смена знака от минуса к плюсу или наоборот, данный коэффициент считают статистически незначимым для данного уровня надежности. Вполне очевидно, что в практических расчетах столь неоднозначно изменяющийся коэффициент уравнения, который может быть как положительным, так и отрицательным, либо даже равен 0, нельзя использовать.

Таблица 2.4. Коэффициенты уравнения регрессии и оценки их статистической значимости


Источник: расчеты автора

Как мы уже говорили ранее, уравнение регрессии в отличие от обычных уравнений, оценивающих функциональную, т. е. жестко детерминированную связь между переменными, дает прогноз зависимой (результативной) переменной с учетом воздействия случайного фактора, поэтому фактические значения результативного признака практически всегда отличаются от его расчетных (теоретических) значений. Далее покажем, как находится для каждого наблюдения (торгового дня) величина случайной компоненты, то есть остатка.

В таблице 2.5 даются найденные по данному уравнению регрессии расчетные значения курса доллара yрасчет (см. раздел Предсказанное Курс доллара к рублю и остатки (см. раздел Остатки). Расчетный курс доллара к рублю вычисляется для торгового дня №1 по уже найденной нами формуле:

Y расчет = 0,1231X + 32,1005=0,1231*1+ 32,1005=32,2236

Таким образом для наблюдения 1, то есть для торгового дня с порядковым №1 (27 июня 2014 года) расчетный курс доллара к рублю оказался равен 32,2236 рублям.

При этом остаток для каждого наблюдения (торгового дня) находится путем вычитания из фактического курса доллара его расчетного значения на этот торговый день. Так, фактический курс доллара для торгового дня № 1 равен 33,6306 рублей. Тогда остаток для этого наблюдения равен:

Остаток для наблюдения 1 = 33,6306-32,2236=1,4070 рублей.

Таблица 2.5. Вывод остатка


Источник: расчеты автора

Теперь нам нужно оценить относительную точность уравнения регрессии с учетом величины полученных остатков. С этой целью построим таблицу 2.6, в которую возьмем данные из таблицы 2.5. Плюс правее раздела «Наблюдение» добавим в новую таблицу раздел «Фактический курс доллара к рублю». Кроме того, для последующих расчетов в таблицу 2.6 добавим правее раздела «Остатки» еще разделы «Остатки по модулю» и «Средняя ошибка аппроксимации, в %».

«Остатки по модулю» в Excel легко найти с помощью функции ABS. Сделать это можно двумя способами.

Первый способ. В пустой ячейке (ячейка D2), расположенной в первом ряду под заголовком столбца «Остатки по модулю» (ячейка C2), нужно напечатать английскими буквами = ABS. Сразу всплывет подсказка этой функции, которую нужно щелкнуть левой кнопкой мышки, а затем навести курсор на ячейку с остатком для наблюдения 1 и закрыть скобку этой функции. Таким образом получим следующий результат: ABS(1,4070)= 1,4070, то есть «Остаток по модулю» для наблюдения 1 равен 1,4070.

Второй способ. Нужно навести курсор на ту же пустую ячейку (ячейка D2). Потом надо щелкнуть левой кнопкой мышки иконку ФОРМУЛЫ, расположенную вверху рабочего листа Excel, а затем щелкнуть появившуюся иконку Fx. После этого на экране возникнет диалоговое окно МАСТЕР ФУНКЦИЙ, в котором внизу надписи ВЫБЕРИТЕ ФУНКЦИЮ: остается только выбрать функцию ABS ‑ см. рис. 2.3.


Рис.2.3

В результате появится окно АРГУМЕНТЫ ФУНКЦИИ ABS – см. рис. 2.4. Сразу после этого надо навести курсор мышки на ячейку с численным значением остатка для наблюдения 1 (ячейка D2), равное 1,4070. Это нам, как и при первом способе работы с функцией, позволит получить тот же результат ABS(1,4070)= 1,4070.


Рис. 2.4

Далее, перемещая курсор мышки вниз по столбцу «Остатки по модулю» (ячейки D2:D110), найдем с помощью функции ABS остатки по модулю для всех остальных 109 наблюдений – см. таблицу 2.6. Прежде чем тянуть курсор мышки вниз, нужно сначала его навести на правый угол ячейки C35 и при этом убедиться, что он приобрел форму черного крестика.

Для тех, кто не силен в математике, скажу, что функция ABS, меняя знак у отрицательных остатков, у положительных остатков его не меняет. Например, отрицательный «Остаток по модулю» для наблюдения 105 становится положительным: ABS(-0,2392)= 0,2392. Если же суммировать все остатки, не беря их по модулю, то сумма их отрицательных и положительных значений будет взаимно погашаться и будет равна нулю для уравнений регрессии со свободным членом, а без свободного члена – близка к нулю. Все это не позволяет найти среднюю ошибку аппроксимации без преобразования остатков по модулю.

Чтобы найти среднюю ошибку аппроксимации (в %) для каждого наблюдения надо относящийся к нему «Остаток по модулю» поделить на «Фактический курс доллара к рублю», а полученный результат умножить на 100. Так, для наблюдения 1, «Средняя ошибка аппроксимации»= 1,4070/33,6306*100=4,2%.

После того как мы найдем для всех наблюдений средние ошибки аппроксимации, их нужно сложить. В результате получим итоговую сумму = 311,1– см. таблицу 2.6. Потом эту сумму нужно поделить на общее количество наблюдений, то есть в данном случае на 109.

В результате выясним, что средняя ошибка аппроксимации равна 2,9%. Для справки замечу, что в статистической литературе рекомендуется делать прогнозы по статистическим моделям лишь в том случае, если средняя ошибка аппроксимации у них не превышает 7%-10%.

Таблица 2.6. Оценка средней ошибки аппроксимации, в %


Источник: расчеты автора и данные Банка России

2.3. Тестируем автокорреляцию в остатках

Однако прежде чем использовать данное уравнение регрессии для прогнозирования курса доллара к рублю нужно посмотреть – нет ли автокорреляции в остатках. Автокорреляция в остатках – это наличие статистической связи между значениями полученных остатков со сдвигом (лагом или отставанием), например, в один день (или любой другой отрезок времени). При наличии автокорреляции каждый последующий остаток зависит от предшествующего.

Например, при наличии автокорреляции со сдвигом (лагом) в один период времени (в данном случае в один торговый день) величина остатка наблюдения 1 влияет на величину остатка наблюдения 2, а величина последнего ‑ на величину остатка в наблюдении 3 … И так далее.

Выявить автокорреляцию в остатках можно: либо с помощью критерия Дарбина-Уотсона (см. подробности – стр. 436-442, в Эконометрика: Учебник/И.И.Елисеевой, С.В. Курышева, Т.В. Костеева и др.; Под. ред. И.И.Елисеевой. ‑ 2-е изд., перераб. и доп. – М.; Финансы и статистика, 2006), либо построив точечный график остатков с определенным лагом (отставанием).

Критерия Дарбина-Уотсона нельзя применять для моделей авторегрессии, то есть для уравнений, в которых результативная переменная зависит от своей лаговой переменной. Кроме того графический способ выявления автокорреляции в остатках, на наш взгляд, более проще, поэтому остановимся на последнем. Поскольку мы планируем делать прогнозы с прогнозируемым горизонтом в один день (при большем горизонте точность их снижается), то, следовательно, нам нужно посмотреть – нет ли автокорреляции в остатках с лагом в один торговый день. С этой целью мы построим таблицу 2.7, в которой будет 108, а не 109 наблюдений, так как одно наблюдение мы потеряли после создания лаговой переменной.

Таблица 2.7. Тестирование на автокорреляцию в остатках однофакторного уравнения регрессии



Поделиться книгой:

На главную
Назад