Тем не менее эти чудеса синхронизма в живой природе всегда можно объяснить результатами эволюции, следствием миллионов лет естественного отбора. В этом свете должно быть совершенно понятно, почему открытие Гюйгенса, совершенное благодаря его интуитивной прозорливости, оказалось столь шокирующим.
Дело в том, что он обнаружил феномен синхронизма в
Бездушные, безжизненные предметы могут самопроизвольно достигать синхронизма.
Взаимная симпатия маятниковых часов показала нам, что способность к синхронизму не зависит от наличия интеллекта, души или естественного отбора. Она возникает из самого глубинного источника всего сущего – из законов математики и физики.
Этот вывод породил глубочайшее почтение к синхронизму в технологии. Например, если бы не синхронизм, у нас не было бы лазерной хирургии глаза, проигрывателей компакт-дисков, сканеров, которыми пользуются кассиры в супермаркетах, и прочих устройств на основе лазеров, которые применяются в нашей повседневной жизни. Интенсивный, когерентный, тонкий, как иголка, лазерный луч является результатом синхронного испускания световых волн триллионами атомов. Сами по себе эти атомы ничем не отличаются от атомов в обычной лампочке накаливания – хитрость заключается лишь в способе их взаимодействия. Вместо света, создаваемого какофонией разных цветов и фаз, у лазерного света лишь один цвет и одна фаза – как у хора, поющего лишь одну ноту. Можно добиться, что этот свет будет очень сильным (хотя это вовсе необязательно); он сосредоточен в узком луче и может быть сфокусирован в виде крошечного светового пятна. Напротив, силу обычного света можно существенно увеличить лишь за счет приложения очень большой энергии (возможно, настолько большой, что приложение ее станет для нас непозволительной роскошью); обычный свет сильно рассеивается, а его интенсивность резко снижается с увеличением расстояния от источника света; к тому же обычный свет трудно сфокусировать. Все эти преимущества лазерного света позволяют легко управлять им. Например, хирургические лазеры создают пятно сконцентрированной энергии, диаметр которого оказывается меньше толщины режущей кромки обычного хирургического скальпеля и может добираться до больных тканей в таких местах, куда обычным хирургическим скальпелем добраться невозможно[109]. Кроме того, лазерная хирургия почти бескровна, поскольку свертывание крови происходит практически мгновенно: в процессе разрезания ткани лазерный луч прижигает ее.
В течение многих лет после изобретения лазера никто не знал, для каких целей можно использовать это изобретение. Кое-кто, посмеиваясь, описывал лазер как решение, для которого еще предстоит найти задачу. Тем не менее этот плод фундаментальных исследований, родившийся из чистого любопытства ученых, которым просто хотелось исследовать поведение световых волн в синхронизме, стал одним из самых универсальных устройств нашего времени, область применения которого никто не мог предвидеть. На торжественном вечере, устроенном в честь сорокалетия лазера, Артур Шавлов, лауреат Нобелевской премии по физике за 1981 г. (в частности, за совместную с Чарльзом Таунзом разработку лазера), вспоминал:
Мы полагали, что он может найти применение в научных исследованиях, а также в системах связи, однако мы не имели в виду какие-то конкретные его применения. Если бы имели в виду что-то конкретное, это могло бы лишь помешать нам… Некоторые из вас, возможно, уже слышали мое высказывание о том, что, хотя в газетах много пишут о так называемых «лучах смерти», в действительности никаких таких «лучей смерти», насколько мне известно, не существует. Но одним из первых практических применений лазеров было их использовании в хирургии сетчатки глаза для предотвращения слепоты, вызванной отслоением сетчатки. Ни Чарли, ни мне никогда не приходилось слышать о выполнении хирургических операций для предотвращения слепоты, вызванной отслоением сетчатки глаза, а если бы слышали, то, наверное, не стали бы заниматься такой ерундой, как индуцированное излучение из атомов[110].
В этих словах – «индуцированное излучение из атомов» – заключен принцип действия лазера. Правда, – и мне стыдно сознаться в этом – мне не менее десяти раз пытались объяснить принцип действия лазера, но эти объяснения так и не закрепились у меня в голове. Все эти рассуждения о возбужденных атомах и инверсиях населенностей энергетических уровней[111] входят в одно мое ухо, задерживаются в голове на несколько секунд, рождая некое смутное и весьма приблизительное понимание, и благополучно выходят из другого уха. Я не теряю надежды подыскать какую-нибудь простую аналогию, которая будет иметь смысл для меня, – что-нибудь такое, что я могу нарисовать в своем воображении и закрепить в памяти, – но чувствую, что это будет дьявольски сложно. Если читатель понимает принцип действия лазера – или если ему, на самом деле, все равно, как работает лазер, – он может не читать следующий раздел.
Вообразите, что однажды утром вы проснулись на какой-то другой планете и вашему взору открывается безжизненная пустыня. Вокруг вас нет ничего, кроме арбуза, рядом с которым стоит табуретка. Вас, естественно, интересует, зачем здесь табуретка. В поисках ответа на этот вопрос вы берете в руки арбуз и кладете его на табуретку. После этого арбуз начинает проявлять беспокойство, ерзая и слегка подпрыгивая на табуретке. Почти сразу же он сваливается с табуретки и раскалывается на мелкие кусочки. Расколовшись, он сразу же выстреливает семечком, которое со скоростью пули вылетает в случайном направлении.
Описанная мною картина может служить некой аналогией того, как вырабатывается обычный свет. Допустим, вы включили свой тостер и его нагревательный элемент испускает яркий красный свет. Причина этого свечения заключается в том, что электрический ток, проходя через нагревательный элемент, накаляет его. Нагрев переводит атомы нагревательного элемента на более высокий энергетический уровень (аналогией такого перевода на более высокий энергетический уровень может служить поднятие вами арбуза на табуретку). Спустя короткое время каждый разогретый атом самопроизвольно соскакивает на свой самый нижний энергетический уровень – то есть переходит в свое «базовое состояние» – и отдает свою избыточную энергию, испуская фотон (световую частицу) в процессе, называемом спонтанным испусканием; это подобно тому, как беспокойно ерзающий на табуретке арбуз скатывается с нее, раскалывается на части и выстреливает семечком. Накаленный нагревательный элемент излучает красный свет, поскольку возбужденные атомы нагревательного элемента самопроизвольно испускают множество красных фотонов.
Продолжая исследовать планету, на которой вы проснулись, вы подходите к краю обширного поля, на котором разбросано огромное множество арбузов, причем рядом с каждым арбузом стоит табуретка. Вас начинает разбирать любопытство: а что, если семечко, вылетевшее со скоростью пути из расколовшегося арбуза, попадет в другой арбуз? Чтобы инициировать этот процесс, вы поднимаете один из арбузов и кладете его на табуретку, которая стоит рядом с ним. Вскоре этот арбуз падает, раскалывается и выстреливает семечком в произвольном направлении, однако, на ваше счастье, на пути его движения оказывается другой арбуз, лежащий на земле (хотя речь идет о неизвестной планете, будем называть ее поверхность землей). Как только арбуз, оказавшийся на пути семечка, вберет в себя энергию удара, он вспрыгнет на свою табуретку и сразу же начнет ерзать на ней, после чего скатится с нее, расколется на части, выстрелит своим собственным семечком – разумеется, в произвольном направлении. Это будет поистине завораживающее зрелище: одно семечко будет инициировать выстреливание другого семечка, арбузы будут вспрыгивать на свои табуретки, а затем скатываться с них… Подняв первый арбуз, вы непреднамеренно запустили цепную реакцию – правда, очень слабую и невзрывоопасную: ее масштаб поддерживается на постоянном уровне, каждый раз выстреливает лишь одно семечко. Правда, нужно заметить: если какое-либо из выстреливших семечек не попадет ни в один из арбузов, наша цепная реакция полностью «заглохнет».
Этот каскадный процесс представляет немалый интерес, но он не является аналогией лазера. Он не обеспечивает усиления света, поскольку не увеличивает количество фотонов в воздухе. Мы упустили из виду лишь один – но очень важный – аспект этой «физики арбузов»: что произойдет, если семечко попадет в арбуз, который находится на табуретке, а не на земле? Чтобы ответить на этот вопрос, вы одномоментно поднимаете много арбузов и кладете их на соответствующие табуретки (правда, для этого вам придется очень быстро перебег
Именно в этом и заключается принцип действия лазера. Этот принцип действия называется индуцированным излучением, и вы видите, что он обеспечивает возможность увеличения количества фотонов, движущихся в определенном направлении. Каждый раз, когда фотон попадает в возбужденный атом, он удваивается, усиливая количество света, движущегося в данном направлении. Теперь читателям должно быть понятно, откуда взялось название
Однако самое главное здесь заключается в том, что новый фотон неотличим от породившего его фотона. Если эти фотоны представлять себе не как частицы, а как крошечные световые волны, то они оказываются идеально синхронизированными. Все их пики и впадины оказываются строго выровненными по времени, а это означает, что они являются носителями света одного и того же цвета, который движется в одном и том же направлении и с одной и той же фазой.
Руководствуясь логикой здравого смысла, нам не понять возможность индуцированного излучения, как нельзя понять на основе той же логики здравого смысла возможность появления нового фотона, представляющего собой точную копию «старого» фотона. Этот феномен является следствием «нелогичной логики» квантовой механики, физики атомного и субатомного мира, не подчиняющегося логике здравого смысла. Эйнштейн открыл теоретическую возможность индуцированного излучения еще в 1917 г., но прошло еще 43 года, прежде чем ученые поняли, как можно использовать индуцированное излучение для создания первого в мире действующего лазера[112].
Вообще говоря, индуцированное излучение является условием необходимым, но не достаточным: лазер базируется еще на двух важнейших составляющих[113]. Во-первых, мы должны придумать способ, как поддерживать большинство арбузов на их табуретках в течение достаточно продолжительного времени, поскольку именно они являются теми мишенями, которые могут привести к возникновению индуцированного излучения. Если арбуз покоится на земле, проку с него мало. А это означает, что мы должны приложить значительную энергию, поскольку арбузы скатываются на землю каждый раз, когда возникает индуцированное излучение. Процесс непрерывного подъема их на табуретки называется «накачкой» лазера, которая обеспечивает «инверсию населенностей (энергетических уровней)». В зависимости от типа используемого вами лазера вы возбуждаете атомы путем одновременного нагрева их, или воздействия на них с помощью импульсной лампы, или пропускания через них электрических разрядов. Такое инжектирование энергии инвертирует населенности – в том смысле, что оно переводит б
Вторым необходимым условием работы лазера является способ усиления света и создания узкого пучка света, движущегося в строго определенном направлении. То и другое условие выполняются путем помещения атомов в эхо-камеру для света – то есть то, что физики назвали бы резонатором. Труба орг
К самой большой загадке здесь – почему вновь создаваемые фотоны всегда пребывают в синхронизме с фотонами, породившими их, – мы еще вернемся в следующей главе, когда мы присмотримся пристальнее к феномену синхронизма в квантовом мире.
Еще одна разновидность синхронизма положена в основу единой энергосистемы[114] Соединенных Штатов – электроэнергетического монстра, который обеспечивает подачу переменного тока к розеткам в наших домах и офисах. Тысячи электрогенераторов на электростанциях по всей стране соединены между собой, образуя два гигантских синхронных электрогенератора – региональные энергосистемы, которые обслуживают все штаты, расположенные на восток и на запад от Скалистых гор. (Техас, конечно же, располагает своей собственной энергосистемой – на то он и Техас…) Каждая такая энергосистема функционирует как единый огромный электрогенератор, причем все составляющие его генераторы вращаются в унисон.
Мне уже давно приходилось слышать о такой энергосистеме, но никогда раньше я не задумывался над тем, что же все это означает в действительности. Возможно, и вы, подобно мне, никогда не задумывались над тем, откуда берется электричество в ваших розетках, а если и задумывались, то, скорее всего, полагали, что оно вырабатывается вашей местной электростанцией, как и во всех остальных уголках Соединенных Штатов. Однако в действительности ситуация такова, что, когда Средний Запад накрывает жара, воздушный кондиционер где-нибудь в Висконсине может приводиться в действие электричеством, выработанным мгновением раньше на какой-то из электростанций в Южной Каролине. В отсутствие синхронизма такое перераспределение электроэнергии, совершенно незаметное для ее потребителей, было бы невозможно.
В общих чертах эта система работает так. Каждая электростанция использует ту или иную форму природной энергии для приведения в движение турбины, которая вращает генератор, вырабатывающий электричество. Например, электростанция может сжигать уголь, мазут или природный газ или использовать ядерную энергию для выработки тепла, достаточного для нагревания воды до кипения и превращения ее в пар, который затем подается на лопатки турбины и вращает ее. Для выработки электроэнергии может также использоваться энергия падающей воды (как на Ниагарском водопаде), которая вращает гидротурбину. После того электричество сгенерировано, оно преобразуется в электрический ток очень высокого напряжения (до 765 тысяч вольт), передаваемый по единой электросети страны. Это дает возможность электростанциям передавать электроэнергию с одного конца страны на другой, компенсируя таким образом нехватку электроэнергии в тех или иных местах или используя к своей выгоде ценовые дифференциалы. На конце электропередающей линии напряжение понижается до 120 вольт, которые мы снимаем с розеток у себя дома или в офисе.
История единой энергосистемы восходит к 1882 г., когда состоялось открытие электростанции Томаса Эдисона Pearl Street Station на Манхэттене, поставлявшей электроэнергию 59 потребителям. Эта новая технология стала настоящей сенсацией, и к концу 80-х годов XIX столетия было электрифицировано несколько других городов. Молодая компания Эдисона General Electric поставляла своим потребителям так называемый постоянный ток (такого рода ток обеспечивают электрические батареи и аккумуляторы), который движется строго в одном направлении: от высокого потенциала к низкому потенциалу, подобно воде, стекающей сверху вниз.
Проблема с постоянным током, однако, заключалась в том, что его можно было передавать лишь на очень небольшие расстояния. При попытке передать постоянный ток на большие расстояния недопустимо большая часть энергии терялась на нагрев (неизбежное следствие сопротивления проводов). Единственным способом решения этой проблемы была передача электричества при очень высоком напряжении и очень малом токе (поскольку безвозвратные потери электроэнергии возрастают пропорционально квадрату величины тока, идеальным решением данной проблемы является максимально возможное снижение величины тока). Однако для питания маленьких лампочек и примитивных устройств потребителям нужно было именно
Между тем в 90-е годы XIX столетия компания Westinghouse Company экспериментировала с новым видом электричества, идея которого была предложена Николой Тесла, – с переменным током, который попеременно менял направление своего движения, синхронно с вращением электрогенератора, вырабатывающего этот ток. В результате острых дискуссий, касавшихся сравнительных достоинств постоянного и переменного тока, победителем оказался переменный ток, поскольку его оказалось гораздо легче преобразовывать из высокого напряжения в низкое и наоборот. К тому же конструкция генераторов переменного тока также оказалась намного проще, поскольку вращающиеся магниты автоматически создают переменный ток, тогда как для преобразования его в постоянный ток требуется дополнительный шаг.
Главным вопросом касательно переменного тока был выбор самой подходящей частоты. Иными словами, сколько раз в секунду ток должен изменять свое направление? В 1900 г., когда принималось это решение, многие из местных электростанций работали независимо друг от друга и использовали разные частоты. Некоторые упрямо цеплялись за постоянный ток, тогда как другие генерировали переменный ток с частотами 25, 50, 60, 125 или 133 циклов в секунду. Например, гидроэлектростанции на Ниагарском водопаде, а также другие гидроэлектростанции предпочитали частоту 25 циклов в секунду, поскольку турбины их электрогенераторов могли работать эффективнее именно на такой частоте. Эта частота обладала интересным недостатком, который носил не столько технологический, сколько психологический характер: она вызывала у лампочек накаливания мерцания, заметные и раздражающие для большинства людей. (В наши дни стандартной частотой переменного тока в Северной Америке является частота, равная 60 циклам в секунду, тогда как в других странах стандартная частота переменного тока равняется 50 циклам в секунду.)
Со временем, с ростом спроса на электроэнергию, местные электростанции расширяли территории, которые они охватывали своими услугами, и даже «вторгались» на территории друг друга. Примерно в это время началось становление единой энергосистемы. Такая консолидация обеспечивала несколько преимуществ. Сетевая система отличалась более высокой надежностью, поскольку, если на одной электростанции происходила авария или возникал дефицит вырабатываемой электроэнергии, другая могла его восполнить. Существовала и определенная финансовая выгода: электростанции в разных регионах могли продавать и покупать электроэнергию друг у друга, пользуясь разницей в себестоимости вырабатываемой ими электроэнергии. Подчас электростанции было выгоднее купить электроэнергию в сети, чем выработать ее самостоятельно.
Техническая трудность объединения в такую сеть заключалась в том, что нужно было строго синхронизировать скорость вращения всех электрогенераторов, даже если они отстояли друг от друга на сотни миль. В этом случае синхронизм играл решающую роль. В противном случае электроэнергия могла хаотически перетекать по сети туда и обратно, вызывая громадные скачки тока в линиях электропередачи. В наихудшем случае генератор мог принять на себя столь большую мощность, что это привело бы к взрыву или, по крайней мере, к серьезному повреждению. (В наши дни специальное защитное оборудование отключает любой генератор, который выбивается из синхронизма.) Частично решением этой проблемы стало использование законов физики. Электроинженеры обнаружили, что генераторы, соединенные параллельно друг другу, со временем взаимно синхронизируют скорость своего вращения. Другими словами, сеть, состоящая из параллельно соединенных между собой генераторов, проявляет тенденцию к самосинхронизации: превосходный пример самопроизвольной синхронизации, вполне в духе взаимной симпатии маятниковых часов Гюйгенса.
Этот эффект легче всего понять в случае двух генераторов, параллельно соединенных между собой. Если вдруг окажется, что они вращаются с разной скоростью, генератор, вращающийся с меньшей скоростью, автоматически примет на себя электроэнергию с более быстрого генератора, в результате чего медленный генератор начнет вращаться быстрее, а быстрый генератор замедлится, что приведет к устранению разницы их скоростей. Если пользоваться строго научными терминами, то любое возмущение, которое заставляет один генератор «оторваться» от другого генератора, уравновешивается корректирующими электрическими токами, которые тотчас же начинают циркулировать в цепи; это, в свою очередь, приводит к появлению вращающих моментов, которые приводят к взаимному выравниванию скоростей генераторов. Таким образом, пара генераторов проявляет тенденцию к самопроизвольной взаимной синхронизации.
Недостатком взаимосвязанности генераторов является возможность распространения сбоев по сети. Такие «эффекты домино» могут быть достаточно сложными, непредсказуемыми и драматичными. В вечерний час пикового потребления электроэнергии 9 ноября 1965 г. высоковольтные линии электропередачи от гидроэлектростанций на Ниагарском водопаде до Нью-Йорка работали с максимальной нагрузкой, когда произошел резкий скачок электроэнергии[115]. Незадолго до 17:15 случилось ложное срабатывание защитного устройства, которое заблокировало 300 тысяч киловатт электроэнергии, предназначавшихся для передачи в Нью-Йорк, и направило эту электроэнергию в какое-то другое место сети, запустив таким образом цепную реакцию, в ходе которой один за другим срабатывали автоматические выключатели. В результате единая энергосистема северо-востока страны разделилась на ряд автономных электрических «островков». Торонто погрузился во тьму в 17:15, Рочестер – в 17:18, Бостон – в 17:21. В конечном счете на протяжении примерно 13 часов без электричества оставались 30 миллионов человек, проживающих в штатах Нью-Гэмпшир, Вермонт, Массачусетс, Коннектикут, Род-Айленд, Нью-Йорк, в городе Нью-Йорк, а также в некоторых частях штата Пенсильвания.
Нетрудно понять, что каскадные сбои, подобные описанному выше, время от времени должны происходить. Энергосистема является чрезвычайно сложной и динамичной системой. Ей приходится решать задачи невероятной сложности: предоставлять электричество в соответствии с динамично изменяющимися потребностями, предоставлять его мгновенно – с требуемыми уровнями напряжения и строго определенной частотой. В отличие от других продуктов, электричество невозможно хранить «про запас». Его нужно вырабатывать и предоставлять потребителю тотчас же, по первому требованию; выработка электроэнергии является именно той отраслью, где продукцию нужно поставлять «точно в срок» – и никак иначе. Задача поставки электроэнергии потребителям чрезвычайно усложняется тем обстоятельством, что спрос на продукцию энергосистемы зависит от неконтролируемых факторов, например наступления жары или причуд человеческой психологии. После того как был зачитан вердикт по делу О. Джей Симпсона, в энергосистеме произошло резкое падение потребления электроэнергии, которое, скорее всего, было вызвано тем, что миллионы людей, выслушав приговор суда, практически одномоментно выключили телевизоры. Теперь, после принятия правительством решения о дерегулировании электроэнергетики и потенциально дестабилизирующего влияния экономики свободного рынка на функционирование единой энергосистемы, инженеры и ученые столкнутся с еще б
В других технологических системах синхронизм используется для поддержания надлежащего порядка вещей. Точное соглашение о времени суток в двух или нескольких удаленных на значительные расстояния друг от друга пунктах является жизненно важным для выполнения банками электронных переводов денег, для синхронизации телевизионных передач и для пересылок информации, начиная с электронной почты и заканчивая трансляцией песен на радио. (Когда вы настраиваетесь на какую-либо радиостанцию, вам нужно установить регулятор настройки на определенную частоту, что дает возможность вашему радиоприемнику синхронизироваться с соответствующей радиопередачей. В противном случае вы не смогли бы настроиться на радиоволну, транслирующую музыку, и не услышали бы ничего, кроме разрядов статического электричества.) Тот же принцип используется в мобильных телефонах и в спутниковой связи, а также во всех других формах беспроводной связи.
Все электрические компоненты в компьютерной микросхеме тактируются, чтобы они могли работать синхронно[116]. Тактовый генератор, задающий ритм работы компьютерной микросхемы, работает на частоте, равной нескольким миллиардам колебаний в секунду, включая и выключая определенным образом миллионы цифровых схем, входящих в состав этой микросхемы, что позволяет всем этим цифровым схемам эффективно взаимодействовать между собой. Такая централизованная система, все компоненты которой работают под управлением тактового генератора (играющего роль «центральных часов»), обладает рядом существенных недостатков: 15 % всех цифровых схем, входящих в состав микросхемы, занимаются исключительно распределением тактового сигнала, а сам тактовый генератор потребляет примерно 20 % мощности, потребляемой микросхемой в целом. Однако инженеры отдают предпочтение именно такому конструктивному решению из-за его концептуальной простоты, а также потому, что альтернативное решение – «демократия» многих локальных «часов» (тактовых генераторов), как в случае сообществ светлячков и клеток-задатчиков циркадного ритма – до сих пор не понято в достаточной степени, что не позволяет легко имитировать его на практике.
Самые технически совершенные применения синхронизма являются прямыми наследниками маятниковых часов Гюйгенса и упоминавшейся нами проблемы определения географической долготы. В наши дни самыми точными часами в мире являются атомные часы[117]. Подобно всем предшествующим конструкциям часов, принцип их действия основан на подсчете колебаний какого-либо периодического события. Но вместо того чтобы подсчитывать колебания маятника, как в случае маятниковых часов Гюйгенса, атомные часы подсчитывают переходы атома цезия с одного своего энергетического уровня на другой (у этого атома есть два энергетических уровня). Универсальный стандарт времени NIST-FI, поддерживаемый Национальным институтом стандартов и технологий (National Institute of Standards and Technology) в Баулдере, Колорадо, представляет собой цезиевые суперчасы, ошибка которых не превышает одной секунды за 20 миллионов лет. В настоящее время разрабатываются новые оптические часы, точность которых будет примерно в тысячу раз выше, чем у цезиевых суперчасов, а погрешность составит меньше одной секунды за время, которое прошло с момента возникновения Вселенной.
Одержимость желанием создать как можно более точный стандарт времени представляет собой нечто большее, чем свидетельство щепетильности ученых. Точно так же, как наличие надежных часов было ключом к решению проблемы определения географической долготы, атомные часы позволили определять любое местоположение на Земле с точностью до нескольких метров. Соответствующая технология известна как глобальная система навигации и позиционирования (Global Positioning System – GPS). Впервые информация о глобальной системе навигации и позиционирования (определения местоположения), разработанной американскими военными для повышения точности запуска баллистических ракет с подводных лодок, была опубликована в открытой печати в 1991 г.[118], когда она обеспечила очень точное наведение крылатых ракет во время войны в Ираке (ракеты залетали буквально в окна зданий, предназначенных для уничтожения) и позволяла войскам коалиции ориентироваться в иракской пустыне ночью. Мирные применения GPS могут быть самыми разными, начиная с оказания помощи водителям, потерявшимся в автомобилях, взятых ими напрокат, и заканчивая усовершенствованными системами оказания экстренной помощи («служба 911»), которые автоматически определяют кратчайшие маршруты для автомобилей «скорой помощи» и пожарных расчетов. В настоящее время проводятся испытания еще более совершенных версий GPS, обеспечивающих «слепую» посадку самолетов в условиях сильного тумана (в этих случаях самолет нужно позиционировать с точностью до 10 сантиметров как по горизонтали, так и по вертикали). Однако GPS – это не просто навигационная система: она обеспечивает временн
Глобальная система навигации и позиционирования состоит из 24 спутников, вращающихся по орбитам на расстоянии примерно 11 тысяч миль от Земли. Они распределены по своим орбитам таким образом, чтобы в любой данный момент времени любое место на нашей планете было одновременно видно по меньшей мере шести спутниками системы GPS. На борту каждого такого спутника имеются по четыре экземпляра атомных часов, причем все они синхронизированы друг по отношению к другу (с помощью главных суперчасов в Баулдере) с точностью, не ниже миллиардной доли секунды. Любой GPS-приемник, подобный тем, которые устанавливаются в дорогих автомобилях или мобильных устройствах, принимает сигналы не менее чем с четырех таких спутников и использует эти четыре числа для вычисления своего местоположения в трехмерном пространстве, а также для определения текущего времени. Это вычисление основано на использовании принципа триангуляции: спутники непрерывно передают радиосигналы, каждый из которых снабжен меткой времени (с точностью до наносекунды – вот для чего нужны бортовые атомные часы спутников); затем приемник сравнивает время приема и время передачи сигнала и умножает разницу на скорость света, чтобы вычислить расстояние до спутника. Одновременно выполняя
Синхронизм в неживой природе не ограничивается лишь пределами ближнего космоса, который бороздят искусственные спутники Земли, входящие в систему GPS. Многие из нас даже не подозревают о существовании синхронизма в космическом масштабе. Возможно, это объясняется непостижимыми расстояниями и временами, которыми нам приходится оперировать применительно к космосу. Но после того как астрономы недавно открыли две малые планеты, вращающиеся вокруг звезды Gliese 876 (на расстоянии около 15 световых лет от Земли), одним из первых фактов, на которые они обратили внимание, было то, что эти планеты пребывают в состоянии так называемого орбитального резонанса[119] – грациозного танца, при выполнении которого одна из этих планет совершает вокруг своей звезды два полных оборота за то время, пока другая планета совершает вокруг этой звезды один полный оборот. Кое-что еще более впечатляющее происходит с нашей «родной» Луной: она вращается вокруг собственной оси точно с такой же скоростью, с какой она вращается вокруг Земли (именно поэтому мы всегда видим одну и ту же сторону Луны – ту, на которой можно увидеть, если у вас хорошо развито воображение, нечто, похожее на мужское лицо, тогда как темная сторона Луны всегда находится на затылке этой «головы»).
Синхронизацию между орбитой Луны и ее вращением вокруг собственной оси можно объяснить на интуитивном уровне. Чтобы упростить наши рассуждения, допустим, что Луна вращается вокруг Земли по круговой орбите. Диаметр этой окружности определяется балансом двух сил: силы притяжения со стороны Земли и центробежной силы, вызванной движением Луны (эта центробежная сила пытается оторвать Луну от Земли). (Центробежная сила – это сила, которая прижимает вас к двери вашего автомобиля, когда вы делаете резкий поворот.) Эти две силы – сила притяжения и центробежная сила – идеально уравновешивают друг друга в центре Луны. Но следует иметь в виду, что Луна представляет собой огромный шар, а не точку. В точках, отличных от центра, указанные силы не вполне уравновешивают друг друга. На ближней к нам стороне Луны сила притяжения оказывается сильнее, тогда как на дальней стороне Луны оказывается сильнее центробежная сила. Этот дисбаланс создает на Луне две небольшие выпуклости, одна из которых находится на ближней к нам стороне, а другая – на дальней стороне. То же самое происходит на Земле благодаря притяжению со стороны Луны (именно это является причиной океанских приливов и отливов). На Луне, где отсутствует вода, этот «приливной эффект» менее заметен, но все же важен, поскольку он деформирует Луну, превращая ее из строго сферической в слегка сигарообразную. Из-за гравитационного поля Земли эта «сигара» всегда стремится указывать строго в направлении центра Земли. Чтобы такое позиционирование сохранялось даже в процессе вращения Луны вокруг Земли, Луна должна совершать полный оборот вокруг собственной оси в точности за то самое время, которое требуется ей для совершения полного оборота вокруг Земли. Именно такое условие соблюдается на практике; это условие известно как резонанс 1:1 вращения вокруг собственной оси и вращения по орбите (так называемое приливное захватывание).
Если бы Луна по тем или иным причинам нарушила это состояние резонанса, то приливная сила обязательно вернула бы ее в состояние резонанса. Чтобы понять, почему это обязательно должно было бы произойти, допустим, что «сигара» не указывает в направлении центра Земли.
Возникшая ситуация несколько напоминала бы стрелку компаса, которая не указывает на север – силовое поле (магнитное для стрелки компаса и гравитационное для Луны) создает корректирующий вращающий момент, который стремится вернуть «сигару» в ее равновесное положение. Точнее говоря, сила притяжения Земли поворачивает ближнюю выпуклость Луны в одном направлении, а дальнюю ее выпуклость – в противоположном направлении, однако ближняя выпуклость поворачиваетя сильнее из-за того, что она ближе. В результате «сигара» возвращается в свое равновесное положение, что приводит к восстановлению упоминавшегося выше резонанса 1:1 вращения вокруг собственной оси и вращения по орбите.
Вместо аналогии со стрелкой компаса можно было бы воспользоваться аналогией, с детства знакомой многим из нас. Я имею в виду детскую игрушку «ванька-встанька»: если вы попытаетесь поставить такую игрушку с ног на голову, она обязательно, автоматически, вернется в свое исходное положение, поскольку центр ее тяжести искусственно смещен вниз. Образно говоря, у Луны центр тяжести тоже смещен вниз – в том смысле, что ее ближняя к нам выпуклость больше «нагружена» силой земного притяжения, что обеспечивает корректирующий вращающий момент, необходимый для возвращения Луны в состояние синхронизма.
Еще одна форма астрономического синхронизма может быть ответственна за вымирание динозавров на Земле[120] – событие, которое навсегда изменило ход жизни на нашей планете, предоставив возможность малым млекопитающим выжить, эволюционировать и в конечном счете превратиться в человека. Согласно господствующей ныне теории, предложенной Луисом и Уолтером Альваресами (отец и сын), а также их коллегами, динозавры и многие другие формы жизни внезапно исчезли с лица Земли, когда какой-то гигантский объект – возможно, астероид или комета – врезался в Землю примерно 65 миллионов лет тому назад. Воздействовав на Землю с разрушительной силой, эквивалентной примерно 100 миллионам водородных бомб, он вызвал катастрофу планетарного масштаба в форме пожаров, высоких температур, ядовитых кислотных дождей и непроницаемых облаков пыли и дыма, которые на многие месяцы полностью затмили солнечный свет.
Чтобы понять, как такой катаклизм может быть связан с синхронизмом, нам нужно сначала уяснить, почему время от времени на нас падают камни с неба. Ученые полагают, что эти метеоры представляет собой последствия неудавшейся попытки формирования некой планеты в первые дни существования нашей Солнечной системы. В то очень далекое от нас время частицы пыли вращались вокруг новорожденного Солнца и постепенно соединялись между собой, превращаясь в глыбы, которые, в свою очередь, соединялись между собой во все б
Одной из самых замечательных особенностей возникшей в то время солнечной системы является пустота, которая отделяет ближние планеты Солнечной системы (Меркурий, Венера, Земля и Марс) от более удаленной гигантской планеты – Юпитера. Большинство из нас имеют весьма приблизительное представление о величине расстояний, которые разделяют эти планеты. Эти расстояния кажутся просто непостижимыми. Но мы начинаем получать более отчетливое представление о них здесь, в Итаке, благодаря модели Солнечной системы, выполненной в масштабе. Эта модель называется Sagan Walk («Путь Сагана»); она была создана в честь ныне покойного Карла Сагана, выдающегося астрофизика, б
На самом деле это не совсем вакуум. Между Марсом и Юпитером находится пояс, состоящий из миллионов глыб, вращающихся вокруг Солнца; все это множество глыб называется поясом астероидов[121]. Некоторые из этих глыб цельные, тогда как другие представляют собой груды не скрепленных между собой камней разных размеров, начиная с песчинок и заканчивая огромными валунами шириной в милю. В отличие от привычных сплошных камней, цельность которых обеспечивается химическими связями, единственное, что удерживает между собой такие несвязанные скопления, – сила их взаимного притяжения.
Такой пояс астероидов является для нас загадкой по нескольким причинам. Во-первых, он представляется более «рыхлым», чем должен бы быть. Совокупная масса этого пояса сейчас составляет примерно одну двадцатую часть массы Луны, хотя в какое-то время он должен был содержать массу, достаточную для образования нескольких планет, таких как наша Земля. Однако сейчас масса астероидного пояса чрезвычайно далека от такой величины. Куда же она девалась?
Существует еще одна загадка, связанная с этой. На протяжении более чем ста лет астрономам известно о загадочных «пустотах» в этом поясе, круговых выемках, в которых отсутствуют астероиды (эти выемки представляют собой нечто наподобие промежутков между записями на виниловой грампластинке)[122]. Они были обнаружены в 1857 г. Дэниелом Керквудом, бывшим школьным учителем, который освоил алгебру, штудируя учебник по алгебре вместе с одним из своих учеников, и который впоследствии стал профессором математики в университете штата Индиана. Анализируя данные, собранные астрономами, Керквуд обратил внимание на неравномерность расположения этих промежутков; к тому же их местоположения не следовали каким-либо правилам, которым должны были следовать.
Важная подсказка, которая помогла найти ответ на этот вопрос, появилась в 1866 г., когда Керквуд переформулировал его как вопрос о времени, а не о расстоянии. Сколько времени, спросил себя Керквуд, понадобилось бы гипотетическому астероиду, находящемуся в одном из таких промежутков, чтобы совершить один полный оборот вокруг Солнца? Воспользовавшись третьим законом Кеплера (описывающим математическую связь между расстоянием от какого-либо небесного тела до Солнца и временем, которое требуется этому небесному телу, чтобы совершить один полный оборот вокруг Солнца), он смог вычислить орбитальные периоды для каждого такого промежутка. Например, чтобы совершить один полный оборот вокруг Солнца астероиду, находящемуся в самом большом промежутке, понадобилось бы примерно 4 года – интересное число, поскольку оно в точности равняется одной трети орбитального периода Юпитера, составляющего около 12 лет. Аналогично, астероид, находящийся в одном из других промежутков, совершил бы пять полных оборотов вокруг Солнца за то время, которое требуется Юпитеру для совершения двух полных оборотов вокруг Солнца. Вообще говоря, все промежутки подчинялись одному и тому же замечательному правилу: их орбитальные периоды всегда были связаны с орбитальным периодом Юпитера посредством некоторого соотношения небольших целых чисел, например 3:1, 5:2, 7:3 или 2:1.
Такая нумерология вовсе не была случайной. Эти промежутки, которые получили название промежутков Керквуда, представляют собой верный знак астрономического синхронизма. Они указывают на то, что все дело здесь в силе притяжения Юпитера: она «резонирует» с любым астероидом, который попал в промежутки, систематически воздействуя на него и в конечном счете выбрасывая его из пояса.
Этот резонансный механизм[123] работает следующим образом. Рассмотрим астероид с периодом, составляющим приблизительно 4 года; этот астероид вращается вокруг Солнца в 3 раза быстрее, чем Юпитер, что соответствует промежутку Керквуда 3:1. Когда Юпитер совершает свой величественный обход вокруг Солнца по практически круговой орбите, астероид начинает свое путешествие на плечах Юпитера, а затем устремляется к Солнцу по удлиненной, эллиптической орбите. Огромная сила притяжения Солнца играет астероидом, как мячиком, и швыряет его обратно, в сторону Юпитера, так быстро, что он успевает совершить три полный оборота вокруг Солнца за то время, пока Юпитер совершит один оборот. В конце своего третьего круга астероид оказывается именно в том самом месте, с которого началось его путешествие – на плечах Юпитера. Иными словами, эта точка наибольшего сближения всегда оказывается в одном и том же месте орбит астероида и Юпитера.
Эти тесные сближения оказывают сильное возмущающее воздействие на астероид, что обусловлено громадными размерами Юпитера и его огромной силой притяжения – особенно в момент их максимального сближения. Кроме того, одни и те же возмущающие воздействия все время аккумулируются, поскольку такие взаимодействия между астероидом и Юпитером всегда происходят в одной и той же точке орбиты. После того как совершится несколько сотен таких циклов, эти периодические напряжения накапливаются до такой степени, что искажают траекторию астероида, делая ее хаотической, что существенно повышает вероятность выхода астероида за пределы пояса. (Если бы астероид не находился в резонансе 3:1, он сближался бы с Юпитером в произвольных точках своей орбиты, в результате чего на достаточно продолжительном отрезке времени все перечисленные эффекты взаимно компенсировались бы.)
Компьютерное моделирование показывает, что астероиды, отрывающиеся от пояса, чаще всего падают на Солнце или покидают пределы Солнечной системы. Иногда, однако, они сталкиваются с одной из ближних планет. Если такой ближней планетой оказывается Земля и если размеры астероида оказываются сопоставимы с размерами горы Эверест (а именно такими, по-видимому, были размеры астероида, уничтожившего динозавров на нашей планете, если принять во внимание величину кратера, обнаруженного южнее полуострова Юкатан и образовавшегося в результате падения этого астероида), то нетрудно понять, насколько важен для нас этот астрономический синхронизм.
Однако эта аргументация не может служить исчерпывающим ответом на первую загадку. Промежутки Керквуда чересчур узкие, чтобы их существование могло объяснить всю массу, которая покидает пояс. Это делает крайне маловероятным предположение о том, что ее источником может быть лишь Юпитер. Астрономы Джон Чемберс и Джордж Уэзерилл недавно предложили альтернативное решение. Они предположили, что на заре развития Солнечной системы несколько «планетарных эмбрионов» – некоторые из них величиной с Марс – сформировались из глыб, обитающих в поясе астероидов (точно так же, как это происходило в других местах при формировании планет, которые мы видим сегодня). Эти протопланеты воздействовали на другие глыбы, обитающие в поясе астероидов, подталкивая их в резонансные «аварийные люки», что приводило к более быстрому утоньшению пояса астероидов, чем в случае воздействия лишь со стороны Юпитера. Со временем некоторые из этих эмбриональных планет (или все они) сами попадали в промежутки Керквуда – лишь для того, чтобы впоследствии быть выброшенными из пояса и исчезнуть навсегда.
В развитие этой логики астрономы Алессандро Морбиделли и Джонатан Лунини предположили, что один из этих неуправляемых «планетарных эмбрионов» мог врезаться в молодую Землю, что привело к появлению на ней океанов. Вообще говоря, появление воды на Земле всегда было загадкой для ученых[124]. На других ближних планетах вода отсутствует (или почти отсутствует). Учитывая положение Земли в Солнечной системе, мы располагаем гораздо большими запасами воды, чем должны были бы.
Традиционное объяснение заключается в том, что кометы, которые содержат б
Таким образом, новая гипотеза заключается в том, что избыточное количество воды на нашей планете могло оказаться делом случая, удачным результатом случайного столкновения с ледяной глыбой, запущенной из астероидного пояса. Если правильность этой гипотезы подтвердится, нам останется лишь поблагодарить астрономический синхронизм не только за уничтожение динозавров и расчистку места для эволюции наших предков, но и за доставку воды, без которой жизнь на нашей планете была бы невозможна.
Сколь бы величественное зрелище ни представлял собой синхронизм в космических масштабах, еще более впечатляет он в микромире. Здесь, глубоко в недрах материи, роль осцилляторов исполняют электроны, светлячки микромира. Но в отличие от настоящих светлячков, которых мы, для большего математического удобства, решили считать идентичными, эти квантовые частицы идентичны по-настоящему. Каждый электрон во Вселенной неотличим от любого другого электрона. Они никогда не стареют. Они никогда не ломаются и не разрушаются. А совершенство электронов обеспечивает возможность их беспрецедентного группового поведения, которому нет аналогов в макромире.
В своей повседневной жизни мы привыкли к электричеству лишь в его хаотической форме – суета независимых частиц, не сотрудничающих между собой. Электрический ток, который питает тостер, представляет собой беспорядочную толкотню электронов, продирающихся через нагревательный элемент и раскаляющих его. Но если взять те же самые электроны и упорядочить, скоординировать их движение, вы получите одно из самых восхитительных явлений, известных науке, – триллионы электронов, которые маршируют в ногу, не встречая на своем пути никакого электрического сопротивления и проскальзывая сквозь металл без каких-либо затрат энергии в форме трения или нагрева. Эта невероятно неустойчивая форма электрической проводимости называется в наши дни сверхпроводимостью. Подобно открытию «взаимной симпатии» маятниковых часов, явление сверхпроводимости было открыто благодаря интуитивной прозорливости – в данном случае благодаря тому, что ученым стало интересно, что происходит с электричеством при температурах, близких к абсолютному нулю.
Глава 5. Квантовый хор
Когда мне было шесть лет, мои родители подарили мне в качестве игрушки большую батарею – такую, которые обычно используют в мощных электрических фонарях. Мне почему-то пришло в голову соединить проволокой два полюса этой батареи. Пока я шел к дому моего приятеля Кейси, чтобы продемонстрировать ему свою новую игрушку, я чувствовал, что проволока и батарея нагреваются у меня в руках все больше и больше. Электричество бешено циркулировало по созданной мною цепи, а сопротивление этой цепи электрическому току вырабатывало значительное количество тепла[125].
На микроскопическом уровне триллионы электронов продвигались по проволоке, соскакивая в произвольных направлениях с пространственной решетки атомов меди подобно тому, как во время игры в пинбол шарики соскакивают с амортизаторов в пинбол-машине. Вообще говоря, движение электронов оказывается еще более хаотическим, чем движение шариков во время игры в пинбол. Атомы меди, в отличие от амортизаторов, не стационарны. Они все время трясутся и покачиваются. Чем выше окружающая температура, тем больше они трясутся и покачиваются. Поэтому более точной аналогией была бы совокупность шариков, пытающихся проложить себе путь через препятствие в виде множества вибрирующих амортизаторов. Каждое столкновение с вибрирующей атомной пространственной решеткой препятствует движению электронов и порождает сопротивление.
Эта модель электрической проводимости была знакома всем физикам еще в начале XX столетия. Согласно этой модели, сопротивление металла должно неуклонно снижаться по мере снижения температуры (поскольку меньшая подвижность пространственной решетки означает уменьшение количества и силы соударений). Когда эксперименты подтвердили такой теоретический вывод, некоторые физики заинтересовались: что могло бы произойти с электрической проводимостью в случае снижения температуры металла до абсолютного нуля, то есть до температуры, при которой движение атомов прекращается? Одна группа ученых полагала, что сопротивление должно снижаться вместе с температурой и полностью исчезнуть при абсолютном нуле. Другие ученые утверждали, что сопротивление будет снижаться до определенного предела, но никогда не исчезнет полностью по причине наличия в реальной пространственной решетке всевозможных дефектов и примесей.
Долгое время ученым не удавалось получить окончательный ответ на этот вопрос, поскольку не удавалось достичь абсолютного нуля. Научный прорыв удалось совершить после того, как голландский физик Хейке Камерлинг-Оннес придумал способ сжижения гелия, что позволило ему охлаждать объекты до 269 °C, то есть всего на 4 градуса выше абсолютного нуля. Теперь ничто не мешало Камерлинг-Оннесу получить ответ на вопрос о «нулевом сопротивлении», не дававший покоя ученым. В 1911 г. он обнаружил, что ожидания как той, так и другой групп ученых оказались несостоятельными. Когда он снизил температуру, погрузив в жидкий гелий тонкую трубку, наполненную ртутью, сопротивление ртути вначале постепенно снижалось, что, впрочем, ни для кого не стало неожиданностью. Однако затем, при температуре примерно на 4,2 градуса выше абсолютного нуля, сопротивление ртути резко «обнулилось». Оно не снизилось постепенно до нуля – оно отвесно рухнуло до нуля. При какой-то температуре ртуть демонстрировала ощутимое сопротивление, но после того как температура понизилась буквально на какую-то долю градуса, сопротивление исчезло.
Так Камерлинг-Оннес открыл явление сверхпроводимости[126].
С точки зрения классической физики, сверхпроводимость вообще невозможна. Материал, который проводит электричество без какого-либо сопротивления, кажется столь же безумной концепцией, как пресловутый вечный двигатель, то есть двигатель, работающий бесконечно долго, не испытывая силы трения и не требуя для себя энергии. Однако результат, полученный Камерлинг-Оннесом, вовсе не нарушал законы термодинамики; хитрость в том, что его система функционировала не как двигатель – в том смысле, что она не выполняла никакой работы по отношению к своему окружению. Тем не менее, если не принимать во внимание эту принципиально важную оговорку, сверхпроводники действительно способны обеспечивать своего рода «вечное движение». Последующие эксперименты продемонстрировали, что импульс электрического тока может годами циркулировать по контуру сверхпроводящего проводника без каких-либо потерь энергии. Насколько нам известно – и каким бы неправдоподобным это ни казалось, – сопротивление в состоянии сверхпроводимости не просто близко к нулю: оно
В течение многих десятилетий после открытия Камерлинг-Оннеса ученые не могли найти объяснения сверхпроводимости. Почему сопротивление падает столь резко? Как оно может исчезнуть при температуре выше абсолютного нуля, когда атомная пространственная решетка все еще не погрузилась в состояние полного покоя? Было невозможно вообразить триллионы шариков, которые движутся мимо трясущихся, вибрирующих амортизаторов, не обращая на них даже малейшего внимания. Что-то было «не так» в традиционной модели.
В начале XX столетия, когда ученые начали проникать все глубже и глубже в недра материи, в микроскопическое царство атомов и электронов, подобные научные прорывы наблюдались во многих областях физики. Например, классическая физика не могла объяснить устойчивость электронов, вращающихся вокруг ядер атомов. Преобладающие теории утверждали, что в процессе такого вращения электроны должны непрерывно излучать часть своей энергии в окружающее пространство, что в конечном счете должно заставить их «пикировать» на ядро. Ничего хорошего в таком падении, конечно, не было бы и, к счастью, ничего подобного не наблюдалось в действительности.
В течение нескольких следующих десятилетий эти парадоксы разрешались один за другим творцами квантовой механики, революционного направления физики, которое исходило из того, что материя и энергия фундаментально дискретны[127]. Макс Планк предположил, что материя упакована в крошечные комочки, и пришел к выводу, что это позволяет объяснить характерные картины излучения, испускаемого раскаленными докрасна материалами. Альберт Эйнштейн выдвинул концепцию квантов света – частиц, которые сейчас называют фотонами, – чтобы объяснить загадочное явление, называемое фотоэлектрическим эффектом, когда свет, попадая на определенные металлы, вызывает испускание ими электронов. До Эйнштейна (который впоследствии получил за свою работу Нобелевскую премию) никто не мог понять, почему некоторые цвета света испускали электроны с высокими скоростями, тогда как другие были совершенно бесплодны. Нильс Бор разгадал тайну «пикирующих электронов», издав соответствующее постановление: он объявил, что электроны могут вращаться лишь по определенной совокупности орбит, угловой момент которых определяется в единицах измерения, называемых постоянной Планка. Это позволило ему вычислить спектральные линии – штрих-код цветных световых волн, – которые испускаются атомами водорода в возбужденном состоянии, что полностью соответствовало результатам измерений, на протяжении десятилетий остававшимся без объяснения.
Последующие концепции в квантовой теории казались еще более парадоксальными. Свет иногда вел себя как частицы, иногда – как волны. То же самое можно сказать об электронах, атомах и всех квантовых объектах. Даже пустота ничем не заполненного пространства уже не была тем, чем казалась. В теории квантового поля вакуум становился скоплением хаотически движущихся частиц и античастиц, внезапно рождащихся из ничего, а затем столь же быстро исчезающих.
Если бы нужно было выразить квинтэссенцию этой квантовой странности одним предложением, то таким предложением должен был бы стать знаменитый принцип неопределенности Вернера Гейзенберга, уточненная версия изречения, гласящего, что за все в нашем мире приходится платить: если вы пытаетесь что-то улучшить, то это улучшение непременно достигается за счет ухудшения чего-то другого. Принцип неопределенности выражает обратно-пропорциональное соотношение между флуктуациями определенных пар переменных, таких как позиция электрона и его скорость. Все, что снижает неопределенность одной переменной, обязательно должно повышать неопределенность другой переменной; вы не можете одновременно снизить неопределенность обеих переменных. Например, чем сильнее вы удерживаете электрон, тем сильнее он мечется. Пытаясь как можно точнее зафиксировать позицию электрона, вы усложняете себе задачу определения его скорости. С другой стороны, пытаясь как можно точнее зафиксировать скорость электрона, вы лишь повышаете неопределенность, «размытость» его позиции; в конечном счете это приводит к тому, что его позиция может оказаться практически какой угодно.
В течение долгого времени ученые утешали себя мыслью, что столь странные результаты ограничиваются лишь субатомарным уровнем. Сегодня нам известно больше. Сегодня мы понимаем, что сверхпроводимость – это не что иное, как вторжение квантовой механики в наш повседневный, макроскопический мир. В этом заключается намек на то, что странность, скрывавшаяся где-то в подвале, уже поднимается по лестнице на поверхность.
Оказалось, что ключом к разгадке сверхпроводимости является выдающаяся способность электронов объединяться в пары и двигаться синхронно. Чтобы понять, как вообще возможно такое «сотрудничество электронов», нам сначала нужно узнать немножко больше о правилах поведения квантовых групп[128].
Все квантовые частицы можно классифицировать, разделив их на «фермионы» и «бозоны»[129]. Фермионы являются отшельниками: два фермиона никогда не могут одновременно пребывать в одном и том же квантовом состоянии. Это правило, известное как принцип исключения Паули, обеспечивает строгий порядок заполнения электронами орбитальных оболочек вокруг атомов; электроны строго соблюдают очередь, занимая в каждый отдельный момент времени определенную, «персональную» орбитальную оболочку (по одному электрону в каждой оболочке), подобно вежливым людям, занимающим свои места в определенном ряду театра. Стремление фермионов избегать друг друга порождает в конечном счете базовые законы химии, в частности структуру периодической таблицы элементов, правила образования химических связей между атомами и поведение магнитов.
У бозонов противоположный характер. У них очень сильны стадные инстинкты. Сколь угодно большое их число может одновременно пребывать в одном и том же квантовом состоянии. Вообще говоря, они предпочитают находиться в обществе себе подобных: чем больше бозонов находится в каком-то определенном состоянии, тем привлекательнее это состояние для других бозонов. В частности, вероятность перехода какого-либо бозона в определенное состояние прямо пропорциональна количеству бозонов, уже пребывающих в этом состоянии, плюс единица. Это означает, например, что квантовое состояние, содержащее 99 бозонов, оказывается в 100 раз более привлекательным, чем незаполненное состояние. В этом смысле бозоны являются закоренелыми конформистами, «компанейскими ребятами». Им нравится петь хором.
Первым, у кого возникло представление о таком квантовом хоре, был Альберт Эйнштейн[130]. Это случилось в 1924 г. Недавно Эйнштейн получил письмо от молодого малоизвестного индийского физика по имени Шатьендранат Бозе (по-другому его имя произносится как Сатьендра Нат Бозе), у которого возникла парадоксальная идея, которую он хотел бы опубликовать; к сожалению, его статью уже отвергли в одном научном журнале, и теперь он хотел заручиться поддержкой столько авторитетного ученого, как Эйнштейн, прежде чем повторять свои попытки. В отличие от прочих писем, которые Эйнштейн в изобилии получал от всевозможных непризнанных гениев, это письмо заинтриговало Эйнштейна. Бозе придумал оригинальный способ доказательства закона излучения, который был впервые сформулирован Планком в 1900 г. и стал теоретическим прорывом, ознаменовав собой начало квантовой революции. Старое доказательство, предложенное Планком, имело характер ad hoc, то есть было ориентировано лишь на данный случай – это доказательство не вполне устраивало даже самого Планка. Но Бозе, по-видимому, удалось переформулировать его более изящным образом. Однако после более тщательного анализа идеи, предложенной Бозе, Эйнштейн обратил внимание на оригинальную логику, заложенную в вычисления Бозе: в ходе перечисления множества разных способов, какими неразличимые между собой квантовые частицы могли занимать энергетические уровни, Бозе предложил новые правила подсчета[131].
Данный вопрос, если сформулировать его более понятным для читателей образом, мог бы звучать так: сколькими разными способами два полных близнеца, Питер и Поль, могут сидеть на двух стульях? Привычный для нас подсчет показывает, что таких способов существует два: Питер может сидеть справа, а Поль – слева, или наоборот. Но допустим, что Питера совершенно невозможно отличить от Поля, и если вы на мгновение повернетесь к ним спиной, а затем вновь посмотрите на них, то уже не сможете сказать наверняка, поменялись ли они местами. Таким образом, если они неразличимы между собой, то в действительности существует лишь одна конфигурация: по одному из близнецов на каждом стуле. Когда объекты неразличимы между собой, утверждал Бозе, подсчет нужно вести по-другому. Спустя многие годы Бозе признал, что на самом деле сам он не заметил никакой новизны в своем подходе. Его интуитивный «выстрел в темноте» показался ему вполне естественным.
Эйнштейн расширил рамки работы Бозе, рассмотрев групповое поведение
Ход рассуждений Эйнштейна носит слишком узкоспециальный характер, чтобы я мог описать его здесь на языке, понятном широкому кругу читателей, – даже в метафорическом виде. Но его выводы станут более понятны, если мы применим принцип неопределенности, открытый Гейзенбергом три года спустя, в 1927 г. Приведенное ниже упрощенное доказательство, даже если оно покажется вам анахроничным, соответствует тому, как большинство физиков в наши дни понимает явление, предсказанное Эйнштейном.
Запомните: мы хотим показать, что при достаточно низких температурах огромное количество бозонов может превратиться («сплавиться») в некий единый объект. Пытаясь представить себе бозон, не воображайте его как некую точку; вместо этого нарисуйте силой своего воображения некое размытое, размазанное облако вероятности, которая говорит вам о том, где вероятнее всего находится бозон.
Вы, наверное, помните персонажа по имени Пигпен из старого комикса Peanuts. Вы редко видите Пигпена; все, что вы видите, это облако пыли, окружающее его; вы только знаете, что он находится где-то там, внутри облака. Аналогично, бозон окутан сферическим облачком, которое представляет собой совокупность концентрических оболочек вероятности, темный центр которого является наиболее вероятным местонахождением самой частицы. Этот центр является областью самой высокой вероятности – местом, где «находится» бозон, согласно привычному для нас доквантовому образу мышления – хотя всегда существует какая-то вероятность того, что он находится на самом краю такого облака.
Теперь представьте себе совокупность таких облачков, которые хаотически мечутся в трехмерном простанстве. Эта совокупность представляет собой газ бозонов. Вопрос: что произойдет с этим газом, если мы охладим его до температур, близких к абсолютному нулю? Согласно принципу неопределенности Гейзенберга, должно произойти нечто очень странное: эти размытые облачка станут еще более размытыми. Эти облачка вероятности станут шире и тоньше, а это означает, что перемещения бозонов станут б
При достижении некой критической температуры эти облачка вероятности расширяются настолько, что начинают взаимно перекрываться, а бозоны начинают сливаться друг с другом. Как только это произойдет, говорил Эйнштейн, больш
Спустя семьдесят один год после формулирования Эйнштейном этой математической концепции ее удалось воплотить – в 1995 г., в одной из лабораторий Баулдера, Колорадо. С помощью магнитных полей, охлажения испарением и лазеров, подобных тем, которые используются в устройствах считывания и записи компакт-дисков, Эрик Корнелл и Карл Виман охладили разреженный газ атомов рубидия до менее чем миллионной доли градуса[133] выше абсолютного нуля – температуры, которая вызывает благоговейный ужас даже у специалистов по низким температурам. В этих экстремальных условиях – которые, вполне возможно, ранее не достигались нигде во Вселенной – они наблюдали, как тысячи атомов ведут себя как один. В 2001 г. Корнелл, Виман и Вольфганг Кеттерле из МТИ стали лауреатами Нобелевской премии по физике за создание ими этого экзотического состояния материи, известного в настоящее время как бозе-эйнштейновская конденсация[134]. Как было написано в пресс-релизе Королевской Академии наук Швеции, этим ученым удалось заставить атомы «петь в унисон»[135].