Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Почему. Руководство по поиску причин и принятию решений - Саманта Клейнберг на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

В материалах исследований, к примеру, говорится: «По мнению 90 % участников, в автокатастрофе виноват водитель». Но кто эти самые участники? Подавляющее большинство лиц, задействованных в психологических исследованиях, – студенты западных колледжей[92]. Неудивительно, что основная масса работ в этой области выполняется университетами, и контингент опрошенных, набранный из учащихся, позволяет регулярно обеспечивать нужное количество людей для экспериментов. В некоторых случаях можно наблюдать общие явления, но нельзя с определенностью утверждать, что все воспринимают каузальность одинаково или судят о причинности так же, как остальные, тем паче молодежь до 21 года. Это ограничивает генерализацию обсуждаемых выводов.

Чтобы понять степень обобщаемости, некоторые ученые сравнивали каузальные восприятия и суждения участников с разными культурными корнями. Одно из основных отличий разделяет факторы, обладающие каузальной релевантностью относительно результата[93]. Если пловец выиграл Олимпийские игры, кто-то скажет, что он победил, так как соперники были слабые, или семья оказала ему поддержку (ситуационный фактор), или благодаря врожденному таланту (личная предрасположенность). Все это могло иметь значение, однако различие в том, какие именно из них выделены. Чтобы это проверить, Майкл Моррис и Кайпин Пэн в 1994 году изучили описания одних и тех же преступлений в китайских и английских газетах. Британцы чаще приводили факторы предрасположенности (например, преступник испытывал злость), а восточные обозреватели больше внимания привлекали к ситуационным (например, убийцу недавно уволили с работы). Ученые получили аналогичный результат, попросив китайских и американских студентов взвесить важность различных аргументов. Те же выводы были сделаны при сравнении других западных и восточных культур[94].

Эти культурные различия формируются в течение всей жизни. В одном из первых экспериментов в этой области, автором которых стала Джоан Миллер (1984), задействовали американцев и индусов четырех возрастных групп (8, 11, 15 лет и взрослые). Между участниками 8 и 11 лет из двух стран было обнаружено мало отличий. Когда их просили пояснить, почему кто-то знакомый совершил хороший поступок, а кто-то – плохой, дети-американцы делали основной упор на личные качества (например, друг – добрый), а дети-индусы – на ситуацию (например, он просто сменил работу). Самые же крупные несходства проявились среди взрослых. Это могло быть следствием как действительных изменений во взглядах, так и возросшего понимания того, что от них ожидалось. Известно, что само участие в эксперименте влияет на поведение, поскольку испытуемые пытаются поступать в соответствии с восприятием утверждений экспериментатором (то есть делать ему приятное) или, как вариант, намеренно бросать вызов. В одном случае простое изменение заголовка в вопроснике изменило фокус реакций участников[95].

С точки зрения каузальной атрибуции социальные подсказки оказывают некоторое влияние на то, какие именно обстоятельства люди считают наиболее важными (например, о чем говорится в новостях) и как они формулируют значимость причинных факторов (какое влияние оказывают контекст и личные качества), но механизм, лежащий в основе такого поведения, до сих пор неизвестен. Недавно было экспериментально доказано, что культурные различия воспринимаются через принятие, то есть важно персональное мнение о групповых взглядах[96]. Иными словами, даже если результаты исследований совпадают с выводами Морриса и Пэна, все участники могут иметь одинаковые убеждения в целом, но по-разному думать о деталях; например, во что, по их мнению, верят китайцы и американцы. Именно это объясняет различия в суждениях.

Может казаться очевидным, что вы и я приходим к различным выводам о том, кто виновен в дорожном происшествии, поскольку это результат влияния разных социально-культурных условий. Участник кампании против неосторожного вождения может целиком сосредоточиться на том, что водитель писал эсэмэски, а другой обвинит автопроизводителя в неисправности тормозов. Есть гипотеза, что именно различия в культурах индивидуализма и коллективизма становятся причиной разной атрибуции, поскольку проявляются только в ситуациях, воспринимаемых как социальные (взаимодействие групп животных или людей), а не физические (движущиеся объекты). Восприятие физических событий не стоит приписывать одним и тем же культурным отличиям. Однако ряд недавних исследований выявил разницу в движениях глаз при восприятии по культурному признаку (можно предположить, что внимание уделялось разным компонентам сюжета)[97].

Пределы, свойственные человеку

Основополагающая задача долгосрочных исследований – создание алгоритмов, способных воспроизводить ход мысли. Однако человек думает не как компьютерные программы, которые можно контролировать или подчинять определенным правилам. Правда, мы способны быстро обучаться каузальным взаимосвязям на основе новых наблюдений, но верные причины выявляем далеко не всегда.

Еще более сильное беспокойство вызывает наша склонность к повторяющимся ошибкам, даже если они очевидны. Как мы увидим в главе 3, многие когнитивные смещения приводят к тому, что мы начинаем отмечать несуществующие корреляции, поскольку выискиваем информацию в подтверждение собственных убеждений (например, ищем других людей, которым помогает акупунктура) или придаем ей большую значимость (например, в магазине обращаем внимание только на ту очередь к кассе, которая движется быстрее). Существуют факторы, которые заметно затрудняют наше обучение причинным зависимостям, например большое временное отставание следствия от причины или структурная сложность, так как требуется распутать множество неявных взаимозависимостей. Но даже с простой структурой и своевременностью мы все равно становимся жертвами ошибок каузального мышления.

Правда ли, что беда не приходит одна? Правда ли, что разбитое зеркало означает семь лет невезения? Правда ли, что проглоченная жевательная резинка переваривается годами? Одна из самых убедительных форм искаженных причинных убеждений – суеверие. Вообще-то никто не подсчитывал годы невезения ни до, ни после того, как треснет зеркало, не сравнивал группы людей, разбивавших и не разбивавших зеркала; так почему же разумные люди продолжают в это верить?

Некоторые суеверия можно объяснить в терминах видов каузальных смещений, которые вынуждают нас видеть ошибочные корреляции между совершенно не связанными событиями. Иными словами, мы начинаем замечать больше плохого после, а не до того, как разбили зеркало, потому что усиливаем внимание к подобным вещам. Хуже того: если вы верите в «семь лет неудач», то начинаете наклеивать ярлык невезения на события, которые в противном случае просто не заметили бы или вообще не сочли неудачей.

В других случаях простая фиксация на суевериях провоцирует эффект плацебо. Известно, что сам факт лечения может воздействовать на пациента; в этом случае прием лекарств значения не имеет. Или, точнее, они сравниваются с аналогичными средствами, которые даже не считаются эффективными[98]. Например, можно сравнить аспирин и сахарные таблетки как средство от головной боли, вместо того чтобы противопоставить аспирину отсутствие лечения вообще, поскольку только в первом случае можно проконтролировать следствие приема некой таблетки. Именно по этой причине высказывания типа «Экспериментальное лечение привело к десятипроцентному снижению симптоматики!» не имеют смысла, если альтернатива – отсутствие лечения вообще. В действительности эффект плацебо обнаруживали даже в ситуациях, когда пациенты знали, что получают пустышку, которая никак не может им помочь[99].

Аналогичным образом, просто веря, что у вас есть счастливый карандаш, а некий ритуал перед баскетбольным матчем помогает забить больше мячей, вы и в самом деле вызовете желаемое следствие. Важно отметить, однако, что не сам предпочитаемый предмет или ритуал вызывает положительный исход. Скорее, его побуждает к жизни вера в их действенность, а следствие производится чувствами, которые генерирует вера: к примеру, снижается стресс, или возникает ощущение, что вы контролируете ситуацию[100].

Возможно, сейчас вы подумали: «Да, звучит здорово, но число 7 для меня и вправду очень много значит – как же это может быть совпадением?» Но каковы шансы, что все хорошие события в вашей жизни происходят, когда на часах или в дате отмечается 7?

Как только у вас утвердилось некое суеверие, случаи, когда оно подтверждается, обретают особый вес и лучше запоминаются. В этом-то все и дело. Иными словами, вы начинаете игнорировать ситуации, противоречащие вашей вере (к примеру, позитивные события, не связанные с семеркой). Эта тенденция поиска и запоминания событий, подтверждающих индивидуальные убеждения, называется предвзятостью подтверждения (confirmation bias). Мы поговорим о ней подробнее в следующей главе. Она может формировать достаточно невинные, хотя и ложные, убеждения, но способна также усиливать вредные наклонности.

В чем-то это похоже на угрозу стереотипов, когда знание, что некий предмет или событие относится к группе с негативными характеристиками, может вызвать страх, что такие стереотипы подтвердятся.

Одно из исследований показало: результаты женщин на экзаменах по математике существенно разнились в зависимости от информации, что оценки зависят / не зависят от половой принадлежности (первой группе не сообщалось, у лиц какого пола результаты лучше)[101]. Женщины показали равные с мужчинами результаты, когда им сообщили, что никаких гендерных преимуществ нет, и гораздо худшие, когда говорили обратное. Подобные разновидности ложных каузальных верований имеют реальные последствия. Концепции, основанные на неверной каузальной информации, в лучшем случае неэффективны, а использование некорректных причин ведет к несправедливым судебным приговорам (см. главу 1).

Итак, нет ничего плохого в бесплатном и скромном ритуале (если скрестить пальцы «на удачу», вряд ли побочный эффект будет слишком велик). Но в итоге вы полагаетесь на весьма непрочные взаимосвязи, что порой приводит к переоценке влияния действующей силы (то есть чьей-либо способности контролировать или предсказывать события)[102]. Люди формулируют гипотезы и ищут признаки, подтверждающие собственные суеверия. Однако строгие рассуждения о причинности требуют признать потенциал предубежденности и быть открытыми к свидетельствам, противоречащим верованиям.

Далее мы увидим, как это сделать.

3. Корреляция. Почему множество каузальных утверждений ошибочны

В 2009 году ученые обнаружили поразительную взаимосвязь между вирусом XMR[103] и синдромом хронической усталости (СХУ)[104]. Миллионы американцев страдают от этого заболевания с симптомами в виде сильной и постоянной утомляемости, однако причина его неизвестна, и это препятствует профилактике и лечению. Вирусы, недостаточность иммунной системы, генетические факторы и стресс – вот лишь единичные гипотезы, пытающиеся объяснить, что запускает механизм заболевания[105]. И в придачу ко всем соперничающим причинным объяснениям затруднительно даже просто поставить соответствующий диагноз, поскольку нет единого биологического маркера, достоверно тестируемого в лабораторных условиях. Многие случаи остаются незамеченными, и, возможно, СХУ – это в действительности целый букет различных болезней[106].

Группа исследователей во главе с доктором Джуди Миковитц обнаружила, что среди 101 пациента с СХУ вирус XMRV имеют 67 % по сравнению со всего 3,7 % из 218 контрольных подопытных. Вирус объяснял не все случаи заболевания; была подгруппа пациентов, у которых СХУ стал результатом его действия, у других болезнь не диагностировалась. Для проблемы, в которой оказалось так трудно разобраться, результаты выглядели просто потрясающими, вызвав к жизни массу попыток их подтвердить. Самые разные исследования не смогли обнаружить связь СХУ и XMRV[107]; но в 2010 году ученые выявили похожий вирус, который также превалировал у пациентов с СХУ (86,5 %: у 32 из 37) в сравнении со здоровыми донорами крови (6,8 %: у 3 из 44)[108].

Эти результаты запустили новый виток гипотез и попыток подтвердить или опровергнуть обнаруженную взаимосвязь. Ученые предположили, что подобная мощная корреляция означает, что именно вирус XMR вызывает СХУ, то есть на этой основе стоит строить лечение. Кое-кто из пациентов, отчаянно желая выздороветь от изматывающей болезни, даже стал требовать у врачей лекарства против ретровируса на основе тестов XMRV.

Выявление у подавляющего большинства людей с СХУ этого вируса в крови – несомненно, интересная находка, которая помогла последующим экспериментам, но эта корреляция не доказывает, что вирус и есть виновник болезни или что антиретровирусное лечение будет эффективным. Вероятно, СХУ ослабляет иммунную систему, повышая подверженность вирусным заболеваниям. Даже если есть некая взаимосвязь, это не дает верного направления; иными словами, она не объясняет, что такое вирус для СХУ – причина или следствие, или же у всего есть общая причина.

В 2011 году оба исследования, выявившие корреляцию между вирусом и СХУ, были отвергнуты после яростных (часто публичных) дебатов. Что касается исследования доктора Миковитц, опровержение было частичным, а в одном случае журнал дал полное опровержение (правда, без согласия автора)[109]. Произошло следующее: пробы СХУ оказались заражены вирусом XMRV, выявив видимые отличия между двумя группами[110]. Помимо этого, был поставлен вопрос о возможной фальсификации данных, поскольку некоторая информация о методе приготовления образцов в подписях к рисункам была опущена, и кое-кто посчитал, что один и тот же рисунок был представлен с несхожими этикетками в разном контексте[111]. Наконец, исследование 2012 года, где различным группам (в том числе группам Миковитц) давались «слепые» образцы для анализа, не обнаружило связи СХУ и XMRV[112].

Интенсивные усилия, подогретые изначальными выводами, и накал страстей во время публичных дебатов между сторонниками и противниками новой теории – яркий пример того, насколько сильна может быть единственная корреляция, которую сочли убедительной.

* * *

Фраза «корреляция не обязательно означает причинно-следственную связь» прочно вбита в мозги любого студента, изучающего статистику; но даже те, кто понимает это высказывание и согласен с ним, порой не могут удержаться от попыток трактовать связи как причинные зависимости. Ученые часто заявляют о корреляциях, много раз поясняя, почему эти соотношения не имеют каузальной взаимосвязи и какой информации для этого недостает. Однако корреляции по-прежнему интерпретируются и используются как причинные зависимости (достаточно лишь проанализировать порой весьма серьезные расхождения между научной статьей и ее популярным вариантом в прессе). Сильная взаимосвязь может показаться убедительной и инициировать ряд успешных прогнозов (хотя в случае с СХУ это не так). Но даже она не объясняет, как работают те или иные вещи и с помощью каких вмешательств их действие можно изменить. Видимая связь между XMR и СХУ не доказывает, что можно вылечить последний с помощью первого, однако пациенты интерпретировали это открытие именно так.

Видимые корреляции могут объясняться еще не измеренными причинами (исключение данных о курении может вызвать взаимосвязь между раком и множеством иных факторов), однако случайные соотношения способны существовать, даже когда две переменные вообще никак не связаны. Корреляции бывают результатом абсолютной случайности (например, вы много раз за неделю сталкиваетесь с подругой на улице), искусственных условий эксперимента (вопросы могут быть подстроены под конкретные реакции), ошибки или сбоя (баг в компьютерной программе).

Иными словами, корреляция – это одно из основополагающих заключений, которые мы способны сделать, и свидетельство в пользу наличия причинной взаимосвязи. В этой главе мы рассмотрим, что такое корреляции и для чего они используются, а также познакомимся с некоторыми из множества путей, посредством которых они возникают без каких бы то ни было причинно-следственных связей.

Что такое корреляция

Х ассоциируется с раком, Y связан с припадками, а Z привязан к сердечным приступам. Каждый термин описывает корреляцию, сообщая, что эти явления соотносятся между собой. Хотя и не говоря, как именно.

Суть в том, что две переменные коррелируют, если изменения в одной из них ассоциируются с изменениями в другой. К примеру, рост и возраст детей коррелируют, потому что увеличение возраста соответствует увеличению роста: дети, как правило, с годами растут. Эти соотношения могут быть выборочными (измерения множества детей различного возраста за один раз), временными (измерения одного ребенка в течение жизни) или учитывать оба фактора (измерения разных людей в течение долгого срока). С другой стороны, между ростом и месяцем рождения нет долговременной корреляции. Это значит, что если месяц рождения варьируется, то рост так регулярно не меняется.

На рис. 3.1 (a) продемонстрировано, как возрастные изменения соотносятся с изменениями роста. Если увеличивается одна переменная, вместе с ней растет и другая. Напротив, на рис. 3.1 (б), где показаны рост и месяц рождения, мы видим набор случайно размещенных точек: месяц рождения варьируется, но соответствующего изменения в росте нет.


Рис. 3.1. Возраст и рост коррелируют, но рост и месяц рождения – нет

Это также означает, что, зная возраст ребенка, мы можем примерно предсказать его рост, а зная месяц рождения – нет. Чем ближе точки друг к другу, формируя линию, тем точнее наши прогнозы (поскольку при этом взаимосвязи теснее). Предсказание – одна из ключевых сфер применения корреляций, и в ряде случаев его можно сделать и без причинных взаимосвязей (хотя не всегда успешно).

Когда корреляции сильны, они могут приобретать видимые очертания, как на рис. 3.1 (a). Но нам необходимы методы измерения этой силы, чтобы провести количественное сравнение и оценку. Существует много единиц измерения корреляций, а одна из них наиболее употребительна – коэффициент корреляции Пирсона (обычно его обозначают буквой r)[113]. Этот показатель может иметь значение от 1 до –1. При значении 1 переменные обладают абсолютной положительной корреляцией (положительное изменение одной переменной прямо соответствует положительному изменению другой), а значение – 1 говорит об их абсолютной отрицательной корреляции (если одна переменная уменьшается, другая всегда увеличивается).

Получается, коэффициент корреляции Пирсона показывает, как варьируются вместе две переменные по сравнению с индивидуальными модуляциями (эти две меры называются «ковариация» и «вариация»). К примеру, мы можем отметить, сколько часов студенты в некой группе проводят за подготовкой к заключительному экзамену, чтобы посмотреть на соотношение показателей. Зная о наборе экзаменационных баллов и количестве часов, проведенных за подготовкой, но не имея возможности сопоставить итоговые оценки и соответствующие временные показатели, мы не определим, есть ли между ними корреляция. В этом случае получится наблюдать индивидуальные вариации каждой переменной, но не их взаимоизменения. То есть мы не можем выяснить, действительно ли большее время, потраченное на занятия, сопровождается более высокими оценками.

Без вариации нет корреляции

Скажем, вы хотите узнать, как получить грант, поэтому спрашиваете всех друзей, которые его имеют, что, по их мнению, помогло им. Все кандидаты оформляли заявку шрифтом Times New Roman; согласно мнению половины, важно, чтобы на каждой странице была как минимум одна иллюстрация; а треть рекомендуют представить заявку за 24 часа до установленного срока.

Означает ли это, что есть корреляция между названными условиями и получением гранта? Нет, не означает, потому что, не видя вариации исходного результата, нельзя определить, соотносится ли с ним какой-то иной фактор.

К примеру, если в течение некоей последовательности дней, когда температура доходила до 80°F (примерно 26,6 °C), на углу улицы стояли две тележки с мороженым, трудно сказать о корреляции погоды и мороженщиков, поскольку нет вариации значения той или другой переменной (температуры или количества мороженщиков). То же справедливо и для случая, когда есть вариация только одной переменной – например, на улице всегда два мороженщика, а температура изменяется от 80 до 90 градусов. Этот сценарий показан на рис. 3.2: отсутствие вариации ведет к тому, что данные скопились в одной точке, а модуляция единственной переменной дает горизонтальную линию[114]. Именно такой вариант в примере с грантом. Поскольку все результаты идентичны, нельзя сказать, что произойдет, если поменять шрифт или представить заявку за минуту до истечения срока.


Рис. 3.2. Не наблюдая вариации обеих переменных, нельзя обнаружить корреляцию

И тем не менее широко распространена ситуация, когда анализируются только факторы, ведущие к определенному исходу. Только представьте, насколько часто победителей спрашивают, как именно они добились успеха, а потом стараются этот успех воспроизвести, выполняя в точности те же действия. Подобный подход полон недостатков по многим причинам, включая то, что люди просто не слишком хорошо умеют определять существенные факторы, недооценивают роль случайностей и переоценивают свои способности[115]. В результате мы не только путаем факторы, которые по чистой случайности сопутствуют желаемому эффекту, с теми, которые действительно его обеспечивают, но и видим иллюзорные корреляции там, где их нет.

К примеру, многие интересуются, действительно ли музыкальное образование соотносится с профессиональными успехами в других областях. Даже если мы обнаружим, что многие успешные люди (как бы мы ни определяли успех) играют на музыкальных инструментах, эти ничего не скажет о существовании корреляции – не говоря уже о причинно-следственной связи. Если напрямую спросить, верят ли они, что музыка помогает развивать и другие способности, многие, безусловно, отметят некую взаимосвязь. Но с гораздо меньшей вероятностью они сделают это, если интересоваться конкретно умением играть в шахматы, быстро бегать или тем, сколько кофе вы выпиваете каждый день.

Для целей этой книги важнее всего следующее: беседы с победителями бесполезны, поскольку можно сделать то же самое, но не преуспеть. Возможно, все кандидаты оформляют заявки на грант шрифтом Times New Roman (а значит, те, кто не получил гранты, порекомендуют использовать другой шрифт), а может, успешные кандидаты получили грант, несмотря на избыточное количество иллюстраций в документах. Не зная совокупности положительных и отрицательных примеров, мы не сможем даже предположить наличие корреляции.

Корреляции: измерение и интерпретация

Скажем, мы исследуем студенческий пул, чтобы выяснить, сколько чашек кофе молодые люди выпивают перед финальным экзаменом, а потом регистрируем полученные баллы. Гипотетические данные этого примера представлены на рис. 3.3 (а). Корреляция очень сильна и равна почти 1 (0,963, если быть точными), поэтому точки на графике тесно окружают некую невидимую линию. Если взять обратное отношение (0 чашек кофе соответствуют 92 экзаменационным баллам, а 10 чашек – 10 баллам), чтобы сформировать отрицательную ассоциацию, абсолютное значение окажется тем же, а единственное, что изменится, – знак коэффициента корреляции. Тогда показатель измерения будет равен почти –1 (–0,963), а кривая станет отраженным по горизонтали вариантом положительно коррелирующих данных, как показано на рис. 3.3 (б).




Рис. 3.3. Корреляции между потреблением кофе и экзаменационными баллами

С другой стороны, если бы каждое из этих отношений стало слабее и имела место повышенная вариация результатов экзамена для каждого уровня потребления кофе, наблюдалась бы дисперсия точек, и корреляция была бы слабее. Это продемонстрировано на рис. 3.3 (в), где точки на графике по-прежнему имеют в основном линейную форму, но отклоняются от центра гораздо дальше.

Как и ранее, инверсия отношения (потребление кофе коррелирует с худшими оценками) формирует кривую на рис. 3.3 (г), где единственным отличием оказывается нисходящий уклон.

Заметим, что, если отношение слабое, гораздо труднее перейти от значения потребления кофе до экзаменационных баллов и обратно. Это четко видно, если в первых примерах выбор значения одной из переменных сильно ограничивает вероятные значения другой. Но если мы попытаемся предсказать экзаменационные баллы для 4 чашек кофе с более слабой корреляцией, прогноз будет гораздо менее точен, поскольку мы наблюдали более широкий диапазон баллов для такого уровня потребления кофе. Предел для этой возрастающей вариации – пара переменных, которые абсолютно не соотносятся (имеют нулевой коэффициент корреляции), как показано на рис. 3.3 (д), при этом нельзя вообще ничего сказать о результатах экзаменов на основе выпитого кофе.

Или мы захотели узнать, насколько сильна корреляция между тем, где человек живет, и его умением водить машину. Мера, о которой мы говорили до сих пор, применяется для неквантованных[116] данных, таких как цены на акции, а не дискретных, таких как местонахождение или киножанр. Если у нас всего две переменные, каждая из которых принимает только два значения, лучше взять упрощенный вариант коэффициента корреляции Пирсона – так называемый фи-коэффициент[117].

Например, можно проверить соотношение между местом, где люди живут, и их умением водить машину. Местом жительства может быть либо город, либо пригород / сельская местность, а факт вождения может либо иметь место (да), либо нет. Как и ранее, проверяем, как эти условия варьируются. Здесь вариация означает частоту, с которой они наблюдаются совместно (а не то, как значения увеличиваются или уменьшаются).

В табл. 3.1 показано, какой вид могут принимать данные. Фи-коэффициент для них составляет 0,81. Мы изначально смотрим, сосредоточено ли большинство измерений вдоль диагональной линии на таблице. Если значения в основном находятся в группах вождение/не-город и не-вождение/город, можно говорить о положительной корреляции.

Если аккумулируются вдоль другой диагонали, корреляция имеет такую же силу, но другой знак.

Таблица 3.1. Различные комбинации местонахождения и вождения


Однако на основе этих измерений не каждая сильная корреляция будет иметь высокое значение. Применение коэффициента Пирсона предполагает, что это отношение линейно, а значит, если одна переменная (например, рост), увеличивается, другая (например, возраст) также увеличивается, причем с одинаковым темпом. Это не всегда справедливо, поскольку могут встречаться и более сложные, нелинейные отношения. К примеру, если из-за нехватки кофе человек становится вялым (и не способен показать хорошие результаты на экзамене), а избыток кофе его возбуждает (и тоже плохо влияет на результаты), то график, выстроенный на основе некоторых данных, может иметь вид, как на рис. 3.4. Здесь видно повышение балла в диапазоне от 0 до 5 чашек кофе, потом еще одно медленное падение. Хотя корреляция Пирсона для этого примера нулевая, данные показывают четкий паттерн.


Рис. 3.4. Нелинейное отношение (r = 0,000)

Подобный тип отношений показывает неоднозначные результаты при многих методах причинных умозаключений. В последующих главах мы вернемся к этому. Его важно иметь в виду, поскольку он встречается в таких прикладных науках, как биомедицина (например, и недостаток, и передозировка витаминов могут иметь последствия для здоровья) и финансы (например, кривая Лаффера, которая показывает зависимость между доходами государства и динамикой налоговых ставок).

Аналогично, если вес детей всегда увеличивается с возрастом, но экспоненциально (дети растут, и их вес растет все сильнее), корреляция Пирсона будет ниже ожидаемой, так как она работает в линейных зависимостях. Это одна из опасностей, подстерегающая тех, кто бросает данные в «черный ящик» и просто принимает любые полученные результаты, не проводя дальнейших исследований. Поступив так, когда корреляция недооценивается или даже кажется равной нулю, мы упускаем потенциально интересные зависимости.

Это одна из причин, почему нельзя интерпретировать нулевую корреляцию (пирсоновскую или любую другую) как вообще незначимую (существуют и другие причины, например ошибки в измерениях или первичные данные, искажающие результаты). Еще одна важная причина заключается в том, что данные могут не быть репрезентативными с точки зрения исходного распределения. Если бы нам разрешили взглянуть на статистику смертей от гриппа, но предоставили только данные о количестве больных, поступивших в лечебные учреждения, и вызовов скорой помощи, мы наблюдали бы гораздо более высокий процент летальных исходов, чем в масштабах всего населения. Это происходит потому, что люди оказываются в стационаре, как правило, с более тяжелыми случаями или дополнительными заболеваниями (и с высокими шансами смерти от гриппа). Итак, мы снова сравниваем не все исходы, а только статистику для больных или обратившихся к врачам на фоне симптоматики гриппа.

Чтобы проиллюстрировать эту проблему в ограниченном диапазоне, возьмем, к примеру, две переменные: общий экзаменационный балл и часы, потраченные на подготовку. Однако вместо данных по всему спектру оценок за экзамен мы имеем только сведения о лицах, получивших общий балл за письменный и устный тест по математике выше 1400. На рис. 3.5 эта область показана серым цветом.


Рис. 3.5. Закрашенная область представляет ограниченный диапазон данных

Согласно этим гипотетическим показателям, студенты с высокими баллами представляют собой комбинацию как лиц с природной одаренностью (которые преуспевают, особо не утруждаясь), так и тех, кто получил лучшие оценки за счет интенсивных занятий. Если воспользоваться только данными из закрашенной области, мы не обнаружим никакой корреляции между переменными; но если применить информацию по всему спектру экзаменационных показателей, созависимость будет сильной (корреляция Пирсона оценки и упорных занятий для закрашенной области равна 0, а для всего набора данных – 0,85).

Оборотная сторона медали – это корреляции, которые мы порой находим между несвязанными переменными, опираясь только на следствия (то есть принимая во внимание только случаи, когда это следствие имеет место). К примеру, получение высокого экзаменационного балла и участие во множестве факультативных мероприятий обеспечивают прием в престижный университет. Значит, данные, взятые только в вузах, покажут корреляцию между высоким баллом и многочисленными факультативами, так как здесь эти показатели чаще всего в наличии.

Подобная тенденция отбора данных довольно типична. Возьмем, к примеру, сайты, опрашивающие посетителей насчет их политических взглядов. В интернете не получится отобрать участников опроса случайно в масштабах всего населения, а данные источников с сильным политическим уклоном искажены еще сильнее. Если посетители конкретной страницы активно поддерживают действующего президента, то результаты по ним, возможно, покажут, что рейтинг главы государства растет каждый раз, когда он произносит важную речь. Однако это показывает лишь то, что есть корреляция одобрения президента и произнесения им речей перед сторонниками (поскольку на вопросы отвечают представители всего населения). Мы рассмотрим и эту, и другие формы трендов (например, смещение по выживаемости) в главе 7 и увидим, как они влияют на результаты анализа экспериментальных данных.

* * *

Важно помнить, что, помимо математических причин, по которым можно распознать ложные корреляции, есть еще наблюдение за данными, позволяющее найти ложные паттерны. Некоторые из когнитивных смещений, заставляющие нас видеть соотношение несвязанных факторов, также сходны с ошибкой отбора. К примеру, предвзятость подтверждения заставляет искать доказательства в пользу определенного убеждения. Иными словами, если вы верите, что лекарство вызывает некий побочный эффект, вы приметесь читать в интернете отзывы тех, кто уже принимал его и наблюдал это действие. Но таким образом вы игнорируете весь набор данных, не поддерживающих вашу гипотезу, вместо того чтобы искать свидетельства, которые, возможно, заставят ее переоценить. Предвзятость подтверждения также может заставить вас отказаться от свидетельств, противоречащих вашей гипотезе; вы можете предположить, что источник сведений ненадежен или что исследование основывалось на ошибочных экспериментальных методах.

Помимо предвзятости с точки зрения доказательств, может случиться ошибка интерпретации аргументов. Если в ходе «неслепого» тестирования нового лекарства доктор помнит, что пациент принимает это средство и считает, что оно ему помогает, то может начать искать признаки его эффективности. Поскольку многие параметры субъективны (например, подвижность или усталость), это может привести к отклонениям в оценке данных индикаторов и логическим заключениям о наличии несуществующих кореляций[118]. Этот пример взят из реального исследования, где доктора, выведенные из слепого метода, сделали вывод об эффективности препарата (мы подробнее обсудим ситуацию в главе 7). Таким образом, интерпретация данных может различаться в зависимости от убеждений, что приводит к отличиям в результатах[119].

Есть и специфическая форма предвзятости подтверждения – иллюзорная корреляция. Она означает поиск соотношения там, где его нет. Возможная взаимосвязь симптомов артрита и погоды настолько широко разрекламирована, что считается доказанной. Однако знание о ней может привести к тому, что пациенты будут говорить о корреляции просто из ожидания ее увидеть. Когда ученые попытались проанализировать эту проблему, взяв за основу обращения пациентов, клинические анализы и объективные показатели, то не обнаружили абсолютно никакой связи (а другие выяснили, что истинным виновником могла быть сырость, хотя и этот вывод не окончателен)[120]. А когда студентам колледжей показали данные из анкет пациентов, где отмечались одновременно болевые симптомы и атмосферное давление, те не только увидели корреляции там, где их не было, но и представили разные интерпретации одних и тех же последовательностей как положительно или отрицательно соотносящихся.

Это подобно ошибке отбора, поскольку одной из причин выявления неверной корреляции может быть концентрация на одном сегменте информации. Если вы прогнозируете отрицательное соотношение переменных, легко сосредоточите внимание на небольших сегментах целого, подтверждающих ваш прогноз. И такой случай относится к предвзятости подтверждения: можно сфокусировать внимание на определенных данных, повинуясь сформированным убеждениям. В случае с артритом и погодой люди, возможно, придают слишком большое значение определенным фактам (отбрасывая проявившиеся симптомы при хорошей погоде и придавая особое значение таким же при плохой) или видят доказательства там, где их нет (по-разному отмечают заболевание в зависимости от погоды и от ожидаемой связи того и другого).

Как пользоваться корреляциями

Скажем, мы действительно обнаружили соотношение между сроком представления заявки на грант и его получением. Действительно, чем раньше подана заявка, тем выше она будет оценена, поэтому коэффициент корреляции здесь и вправду будет равен единице. Значит, можно безошибочно предсказать, что некто получит грант, если подаст заявку за неделю, да?

Именно на это рассчитывают многие ретейлеры, пытаясь выявить индикаторы, которые спрогнозируют поведение покупателей. Реклама компании Target не сходила с газетных полос, когда ее представители заявили, что «узнали» о беременности девочки-подростка раньше, чем ее семья[121]. Разумеется, в Target на самом деле понятия не имели об этом; просто воспользовались огромным пулом сведений, собранных от других покупателей (и из других источников), чтобы выяснить, какие факторы коррелируют с разными стадиями беременности. На основе приличного объема наблюдений компания смогла, например, выяснить, что покупка либо лосьона, либо ватных шариков сама по себе не значимый факт, но беременные женщины часто выбирают оба эти предмета вместе с определенными витаминными добавками. Имея достаточно данных о покупательных паттернах и соответствующих сроках (это можно выяснить из записей о рождениях или спрогнозировать на основе информации о приобретении тестов на беременность), компания может определить вероятность беременности покупательницы и даже оценить, на каком она сроке. Даже если просто знать, что девушка приобрела два теста один за другим, это позволит сделать вывод, что первый оказался положительным.

Корреляции используют, например, Amazon, Netflix и LinkedIn, предлагая дополнительные товары, фильмы, которые могут вам понравиться, или потенциальные контакты.

Netflix, к примеру, может найти людей, которым нравятся те же фильмы, что и вам, и предложить вам киноленты, на которые эти люди дали хорошие отзывы. Именно это позволило ученым повторно идентифицировать людей в деидентифицированном наборе данных Netflix, воспользовавшись информацией из другого источника – IMDb[122], [123]. Алгоритмы вообще-то сложнее, чем те, о которых мы рассказали, но основная идея именно такова. Правда, эти компании не обязательно волнуют причины, по которым вы совершаете некие действия. Netflix может порекомендовать достаточно фильмов, которые вам понравятся, не потрудившись выяснить, что после напряженного дня вы смотрите только сериалы.

Есть, однако, немало примеров, когда предсказания, основанные на корреляциях, не оправдываются – даже если не уточнять, соответствуют ли соотношения причинным зависимостям. Одна из опасностей в том, что для любой корреляции между двумя переменными можно с большой вероятностью придумать ситуацию, когда такая взаимосвязь возникнет, а это ведет к ложной вере в результат.

Известен пример из области анализа данных, когда сведения о продажах в бакалейном магазине помогли выяснить, что люди часто покупают пиво и подгузники одновременно. Так возник миф, что мужчины, которые накануне выходных запасаются подгузниками, обязательно купят хоть немного пива в качестве награды за поход в магазин. Но, вернувшись в 2002 году к истокам этого случая, Дэниел Пауэр обнаружил, что изначальная корреляция ничего не говорила о гендерной принадлежности покупателей или в какой день недели совершались покупки. К тому же никогда не предпринимались попытки использовать ее для повышения прибыли – передвинув товары на полке магазина ближе друг к другу. Купленными товарами могли с тем же успехом оказаться попкорн и бумажные салфетки (для вечера перед телевизором) или яйца и таблетки от головной боли (для лечения похмелья).



Поделиться книгой:

На главную
Назад