Идеи носятся в воздухе. Вот например, долгие годы на русском языке практически не было научно-популярных книжек о лженауке. Лакуну отчасти заполнили переводные «Мир, полный демонов» Карла Сагана и «Псевдонаука и паранормальные явления» Джонатана Смита, но все равно остро не хватало текста, написанного русскоязычным автором с учетом российских реалий. Конечно, существовало множество статей и записей в блогах, но они не охватывали ряд важных тем, которые слишком сложно объяснять в таком формате, и к тому же привлекали гораздо меньше внимания общественности, чем полноценная бумажная книжка. Такая ситуация сохранялась лет двадцать, но вот только сейчас мы с Александром Панчиным умудрились практически одновременно написать книги практически на одну и ту же тему. Его «Сумма биотехнологии» великолепно описывает как методики создания генетически модифицированных организмов, так и циркулирующие вокруг них популярные заблуждения. Если вы ее уже читали, то эту главу можно спокойно пролистывать. Если пока не читали, то можно начинать с моего изложения, более короткого и простого.
В случае с созданием ГМО идея тоже носилась в воздухе. Потребность улучшать живые организмы, которыми мы питаемся, присутствовала всегда, но только по мере накопления теоретических знаний и лабораторных методик начался настоящий шквал открытий. Решить, кто именно был автором самого первого осознанно спроектированного генетически модифицированного организма, сложно хотя бы потому, что мы упираемся в вопрос определений того, что такое «осознанно» и что такое «генетически модифицированный» — не стоит ли, вообще говоря, начинать отсчет с одомашнивания первых растений и животных примерно за 10 тысяч лет до нашей эры? Или с формализации принципов искусственного отбора в XIX веке? Или по крайней мере с радиационного мутагенеза, уже прямого вмешательства в геном, в начале XX века? А как насчет Фредерика Гриффита, который еще в 1928 году смешал безобидный, но живой штамм пневмококка с опасным, но убитым и обнаружил [2], что бактерии способны захватывать наследственную информацию из окружающей среды и использовать ее, превращаясь в патогенных?
Если мы сосредоточимся на экспериментах, лучше отвечающих современному пониманию того, что такое генетическая модификация, то отсчет — условно! — стоит вести с 1970 года, когда Мортон Мандель и Акико Хига выяснили, как заставлять бактерии захватывать из внешней среды любую ДНК, даже если они не хотят этого делать, — путем химической стимуляции, например, с помощью обычного хлорида кальция [3]. Эта методика существенно упростила эксперименты, и в 1972 году в лаборатории Стэнли Нормана Коэна были получены первые бактерии с заданными свойствами. Кишечной палочке
Пчелы против меда
Технология генетической модификации выросла из фундаментальных исследований и далеко не сразу начала коммерциализироваться. И именно это обстоятельство, вследствие открытости и непредвзятости научного сообщества, поспособствовало раннему зарождению опасений. Слышали ли вы когда-нибудь, чтобы производители мобильных телефонов или газированных напитков проводили научные конференции, посвященные тому, что мобильные телефоны или газированные напитки могут быть опасны? А создатели ГМО с этого начали. Уже в феврале 1975 года Пол Берг, создатель первых рекомбинантных плазмид, проводит в Калифорнии знаменитую Асиломарскую конференцию [8], в ходе которой биологи договариваются о мерах предосторожности, связанных с созданием трансгенных организмов. Например, исследователи постулируют, что при работе с бактериями необходимо выбирать виды, которые плохо выживают в естественной среде обитания, использовать генетические конструкции, способные заражать только этих бактерий, и при этом соблюдать в лабораториях такие же жесткие правила безопасности, как при работе с патогенными микроорганизмами. В дальнейшем рекомендации многократно дополнялись и уточнялись в зависимости от того, о каких именно задачах шла речь, но общий принцип — серьезная проверка безопасности любых модифицированных организмов — сохранился и по сей день. Если бы исследователи договорились обо всем этом тайно или вообще пренебрегли бы такими жесткими мерами контроля (как им, кстати, и предлагал поступить Джеймс Уотсон, первооткрыватель ДНК [9]), скорее всего, никто бы и не догадался, что надо бояться ГМО. Насколько мне известно, широкая общественность никогда не выступала против селекции, по крайней мере на уровне демонстраций или борьбы с экспериментальными посадками. А между тем на самом-то деле при традиционной селекции сельскохозяйственных культур используются намного более жуткие методики, чем при создании ГМО.
Мы обычно представляем себе селекцию примерно так, как описано в книжке «Приключения Незнайки и его друзей» Николая Носова. Какой-то самоотверженный исследователь пробует сок от всех кислых арбузов, выбирает наименее кислый, сажает его семечки; когда они вырастают, переходит к следующей итерации и так до тех пор, пока сок арбузов не станет сладким. Этот подход возможен, но занимает адски много времени, потому что приходится ждать, пока в арбузе случайным образом, вследствие ошибок при копировании ДНК, произойдут именно такие мутации, которые скажутся на его вкусе. С начала XX века так уже никто не делает. Селекцию, с помощью которой получена пища из нашего холодильника, лучше описывает книжка Владимира Дудинцева «Белые одежды» — с той оговоркой, что там как раз сторонники Лысенко с селекцией борются (примерно на том же уровне научной обоснованности, на котором сейчас ведется борьба с ГМО). Для того чтобы получить сладкий арбуз, морозоустойчивую картошку или плодовитую пшеницу, нужно, чтобы исследователям было из чего выбрать. Для этого на семена (или просто на клетки в культуре) воздействуют радиационным излучением или ядовитыми веществами [10]. Получаются тысячи причудливых мутантов, из которых селекционеры затем выбирают того, кто обладает нужными признаками. Какие еще новые свойства появились у такого растения — никто особенно не проверяет, потому что селекции общественность не боится. Из-за этого иногда оказывается, что в растении, например, повысилось содержание токсичных алкалоидов, и приходится постфактум запрещать продажу этого сорта [11].
Генетическая модификация — это следующая, более совершенная ступень развития технологий улучшения сельскохозяйственных культур. От индуцированного мутагенеза она отличается тем, что исследователи меняют не много неизвестных генов, а один конкретный, они знают, что именно они делают и зачем (а потом еще и проверяют, что получилось). Разница в точности подхода — примерно как между бензопилой и маникюрными ножницами.
Интересно, что риторика противников ГМО, по-видимому, практически не изменилась за последние сорок лет. Основной аргумент: «Давайте не будем ничего делать, пока не убедимся, что это полностью безопасно». Мне удалось найти публицистическую статью Стэнли Коэна, создателя первых трансгенных бактерий, написанную в 1977 году [12]. По-моему, она по-прежнему удивительно актуальна:
Сегодня, как и в прошлом, существуют люди, которым хотелось бы думать, что сохранение статус-кво дает свободу от рисков. Тем не менее даже статус-кво сопряжен с неизвестными рисками, а также с большой коллекцией известных опасностей. Человечеству продолжают угрожать древние и новые болезни, недоедание, загрязнение окружающей среды. Методы работы с рекомбинантной ДНК позволяют нам обоснованно ожидать частичного решения некоторых из этих проблем. Таким образом, мы должны спросить себя, готовы ли мы допустить, чтобы озабоченность опасностями, о существовании которых нам неизвестно, ограничивала нашу способность бороться с опасностями, которые действительно существуют.
Язык жизни
Генетическая модификация возможна благодаря тому, что мы все произошли от общего предка. В ходе эволюции под действием отбора или просто случайно у нас менялись гены, отвечающие за внутреннюю организацию клетки, число этих клеток в организме, существование и степень сложности нервной системы, форму и количество лапок и так далее. Но самое важное осталось неизменным: все живые существа на Земле по-прежнему используют один и тот же генетический код.
Если не зарываться в детали, то основной смысл наших генов — определять аминокислотную последовательность белков, а следовательно, задавать их структуру и функции. При этом ДНК состоит всего из четырех букв-нуклеотидов (A, G, T, C); аминокислот же у нас двадцать. В связи с этим строение каждой аминокислоты закодировано не в одном нуклеотиде, а в последовательности из трех. Если в ДНК написано «ACT GTA CGC», то на этом основании будет построена последовательность из трех аминокислот: треонин — валин — аргинин. И последовательность будет именно такой независимо от того, чья клетка читает гены[34]. Принадлежит ли эта клетка мыши, человеку, бактерии
Из этого следует, что инструкции можно переносить из одного организма в другой без поправки на межвидовые барьеры[35] — и таким образом получать существ, которые вырабатывают нужные нам белки и, соответственно, обладают нужными признаками. Например, чтобы создать знаменитый золотой рис с повышенным содержанием бета-каротина, понадобилось внести в обычный рис три новых гена, кодирующих ферменты фитоенсинтазу, фитоендесатуразу и ликопинциклазу [13]. Первоначально были использованы два гена из нарциссов и один из бактерии
На самом деле все эти «ген нарцисса» и «ген кукурузы» — это, скорее, популяризаторская фишка. В подавляющем большинстве случаев совершенно все равно, из кого именно брать ген, потому что гены, кодирующие важные ферменты, у самых разных организмов могут быть очень похожи. Чьи гены были в генном банке, те и используют; при желании можно вообще синтезировать сферический ген в вакууме, не принадлежащий вообще никому, просто это дорого стоит.
Так вот, семена улучшенного золотого риса содержат в среднем 25 микрограммов бета-каротина на грамм сухой массы. Бета-каротин еще должен превратиться в организме в ретинол («истинный витамин А»), и этот процесс в принципе происходит не очень эффективно, независимо от того, едите ли вы трансгенный рис или органическую морковку. Поэтому, чтобы на 100% удовлетворить суточную потребность в витамине А с помощью одного только золотого риса, необходимо каждый день варить и съедать 150 граммов этой крупы. Кажется, что это много, учитывая, как сильно рис разбухает при варке. Но, во-первых, метод в принципе ориентирован на беднейших людей, которые не покупают своим детям никаких фруктов и овощей, а кормят их одним рисом. Во-вторых, даже частичное удовлетворение потребности в витамине А позволяет предотвратить развитие слепоты, вызванной его отсутствием в пище (по оценке ВОЗ, ее жертвами становятся не менее 250 000 детей ежегодно [15]).
Золотой рис был создан еще в 2005 году, но его до сих пор не выращивают в промышленных масштабах. Отчасти это связано с жесткими испытаниями, которым подвергаются все генетически модифицированные продукты: пока химический состав золотого риса вдоль и поперек исследовали в лаборатории, пока убеждались в отсутствии аллергенов, пока кормили добровольцев, прошло несколько лет. Теперь золотой рис выращивают на экспериментальных полях в тех странах, где предполагается его использовать, чтобы выбрать самые урожайные линии. К сожалению, процесс внедрения золотого риса сталкивается с огромным сопротивлением общественности — например, в 2013 году экспериментальную делянку на Филиппинах просто вытоптали подчистую. В самом деле, слепота привычна и понятна, а вот современные биотехнологии — это таинственная и непостижимая опасность, от которой нужно во что бы то ни стало защитить наших детей.
Современные биотехнологии действительно трудно постичь — очень уж много накоплено информации. Молекулярные биологи располагают сегодня огромным количеством высокоточных методик, позволяющих определять последовательности ДНК, размножать молекулы ДНК в пробирке, разрезать их в заданных местах и соединять в новые конструкции, доставлять ДНК в клетки. Пытаться описать их все — задача прекрасная и невыполнимая (в рамках одной главы), поэтому я упомяну только о двух механизмах, которые мы позаимствовали у бактерий и поставили себе на службу.
Бактерия
Как добиться такого результата? У
Генетики берут эту готовую конструкцию, выкидывают из нее все те гены, которые нужны бактерии, и вставляют те, которые нужны людям. Несчастная обманутая бактерия проделывает всю ту же самую работу, но модифицированная клетка растения уже не начинает бурно делиться и не производит опины — зато обладает теми свойствами, которые нужны нам. Потом из удачно модифицированной клетки, благодаря способности растений к вегетативному размножению, можно будет вырастить целый организм. Именно с помощью такого подхода получена, например, устойчивая к засухе кукуруза MON87460, которую интенсивно выращивают по обе стороны Атлантического океана. В нее был введен бактериальный ген
Главный недостаток агробактериальной трансформации (и других методик генной инженерии первого поколения) — это невозможность контролировать, в какое именно место в ДНК растения встроится новая конструкция. Вообще-то это не такая большая проблема: мы ведь получаем не единственное растение, а несколько. Если она где-то встроится так, чтобы это повлияло на остальные свойства растения, — исследователи это заметят. Если будут сомневаться — расшифруют ДНК, чтобы установить место локализации точно. Тем не менее, действительно, методы генной инженерии нового поколения направлены на то, чтобы встраивать новую ДНК не куда попало, а в заранее заданное место. Есть несколько способов делать это в пробирке, но главный писк моды сейчас — система CRISPR/Cas9, позволяющая вставлять гены в заданное место прямо в живой клетке. Эта методика может не только упростить и удешевить получение новых генетически модифицированных животных и растений, но и привести к серьезным прорывам в медицине. Я уже упоминала ее в связи с вырезанием из человеческих клеток ДНК вируса иммунодефицита человека. Другая перспективная сфера применения — генная терапия, исправление ДНК человека для излечения наследственных заболеваний. Конечно, исследования и клинические испытания в этой области проводились и до появления CRISPR/Cas9, в том числе вполне успешные, но она вполне может в обозримом будущем привести к переходу медицины на качественно новый уровень. И да, систему CRISPR/ Cas9 исследователи тоже позаимствовали у бактерий. Зачем она им? Не поверите, это их приобретенный иммунитет.
Мы все знаем со школьной скамьи, что приобретенные признаки не наследуются. Это, в общем, правильный принцип. Он остается верным и в том случае, если обретение нового признака привело к изменению генов — но не во всем организме, а в каких-то отдельных его клетках, не участвующих в размножении. Если вы переболели краснухой и у вас сформировался к ней иммунитет, то геном тех B-лимфоцитов, которые с ней боролись, изменился, пока они подстраивались под выработку оптимальных антител против данного вируса. Но у вашего ребенка все равно не будет иммунитета к краснухе, если только не пытаться клонировать его из соответствующей клетки иммунной памяти (честное слово, это плохая идея). Если почвенная агробактерия изменила клетки корня растения, чтобы они бурно размножались и вырабатывали опсины, потомки этого растения, выращенные из семян, все равно не будут этого делать: где корень, а где семена?
Но вот если генетически изменилась та самая клетка, из которой получится потомство, — это совсем другое дело. Приобретенные признаки наследуются, когда генные инженеры используют способность растений к вегетативному размножению и выращивают целый организм из модифицированной ими клетки корня. А в природе приобретенные признаки сплошь и рядом наследуются у одноклеточных существ. Все, что повлияло на геном бактерии, передается ее потомкам. Благодаря этому она может позволить себе завести самый настоящий приобретенный иммунитет, что едва ли имело бы смысл без его передачи по наследству (много ли вирусов успеет встретить бактерия за 20 минут своей жизни от деления до деления?).
Когда бактерия все-таки встречается с атакующим ее вирусом, она берет из его ДНК кусочек и встраивает в свой собственный геном — на память. Не куда попало, а между определенными генетическими последовательностями, которые называются CRISPR.
Затем этот кусочек ДНК вируса используется как фоторобот. Бактерия строит по нему РНК-зонд, который плавает по ее клетке и ищет другие такие же фрагменты вирусной ДНК. Как только находит — в дело вступает белок-ножницы Cas9, разрезающий нежелательную ДНК и таким образом блокирующий дальнейшее размножение вирусов.
Что означало открытие этой системы для генных инженеров? Счастье, радость и торжество. У них появился комплекс из РНК-зонда и белка Cas9, способный узнавать конкретные нуклеотидные последовательности, и разрезать их в определенной точке, и делать это прямо в живой клетке. Что будет, если такую систему запустить в клетку высшего организма, настроив на распознавание его генов? Сам комплекс CRISPR/Cas9 просто разрежет обе цепи ДНК, и всё. Казалось бы, ничего хорошего.
Но дальше в игру вступают наши собственные механизмы починки генов. Чтобы правильно залатать разрез, они будут сравнивать испорченную ДНК с таким же участком на второй хромосоме (мы получаем хромосомы с одними и теми же генами от папы и от мамы). Если мы разрезали плохую, мутантную версию гена, а на второй хромосоме все в порядке — получается, что клетка сама починит ген, воспользовавшись образцом. Если нам нужно что-то новое — можно подсунуть клетке дополнительный фрагмент ДНК, который она сможет принять за вторую хромосому и использовать как образец.
Это еще не предел возможного. Систему можно настроить таким образом, чтобы клетка не просто починила себе одну хромосому, но и потом использовала ее как образец для починки второй. Исследователи, описавшие этот феномен, назвали его «мутагенная цепная реакция» [18]. Правда, они скорее ломали гены, чем чинили, — в экспериментальных целях, для наглядности.
У дрозофил есть ген
Обычно так и есть. Но весной 2015 года биологи Валентино Ганц и Итан Бьер добились того, чтобы измененная хромосома («желтая») передавала свою мутацию другой хромосоме в той же клетке («коричневой»). В результате при скрещивании желтых мух с коричневыми среди родившихся девочек 243 были полностью желтыми (еще 11 обладали мозаичной окраской, и 6 все-таки были коричневыми, потому что система не сработала).
Это вопиющее нарушение законов Менделя было достигнуто с помощью системы CRISPR/Cas9. Гены, которые кодируют саму эту систему, исследователи встроили прямо внутрь гена
Этот метод — мутагенная цепная реакция — обладает огромным потенциалом. Он позволяет быстро и эффективно — несопоставимо эффективнее, чем при селекции, — избавляться от нежелательных генов. Например, от генов, вызывающих какие-нибудь тяжелые болезни. Например, у человека.
Но об экспериментах на человеческих клетках и эмбрионах я писать пока не буду, просто потому, что к моменту выхода книжки неизбежно все изменится. Причем все может измениться и в сторону абсолютного запрета, и в сторону первых впечатляющих успехов, а может произойти и то и другое одновременно. Пока что с эмбрионами (искусственно полученными триплоидными, заведомо неспособными вырасти в людей) успел поэкспериментировать один коллектив китайских ученых — их пробовали избавить от бета-талассемии, наследственного заболевания крови [19]. Получилось так себе: из 86 эмбрионов, которым была введена генетическая конструкция, только 71 продолжил развиваться, и только у 4 из них ген был отредактирован правильно. Так что ярые противники генетического улучшения человеческих эмбрионов пока что могут выдохнуть: до этого еще очень далеко.
Ловкость рук и немного мошенничества
Возвращаемся к более традиционным ГМО. Настало время разобраться, за что же их все-таки не любят. Критических текстов и передач довольно много, но аргументы в них удивительным образом повторяются из года в год одни и те же, причем явно рассчитанные на то, что человек поверит на слово и не полезет ничего перепроверять.
Пуштаи кормил крыс ГМ-картошкой и находил у них изменения в слизистой оболочке кишечника (исследователи, комментирующие его работу, отмечали, что едва ли крысам в принципе полезно питаться одной только картошкой [20]; впрочем, вызвавший сомнения сорт, естественно, не выпустили на рынок).
У немецкого фермера Глокнера умерли коровы, которых кормили ГМ-кукурузой (последующее расследование Института Роберта Коха показало, что они отравились грибковыми токсинами [21]).
Соя с геном бразильского ореха оказалась аллергенной (это выяснили на раннем этапе ее проверки, обнаружив, что экстракт таких растений может взаимодействовать в пробирке с антителами из сыворотки крови людей-аллергиков [22]; разработка нового сорта сразу была прекращена).
То, что в скобках, — это как было на самом деле. То, что вне скобок, — это та версия мифа, которая используется для пропаганды. В общей сложности страшилок такого рода насчитывается штук десять, их довольно подробно разбирает в своей книжке Александр Панчин, а я остановлюсь только на двух самых популярных — про умирающих крысят Ирины Ермаковой и больных раком пожилых крыс Жиля-Эрика Сералини.
Ирина Ермакова — доктор биологических наук. В соответствии с информацией с ее официального сайта [23], ее кандидатская диссертация была посвящена произвольной и непроизвольной памяти человека при воздействии световых стимулов, а докторская — трансплантации нервной ткани. В 2005 году Ермакова решила заняться исследованиями ГМО и их воздействия на здоровье крыс. В 2010 году Ермакова покинула (формально — по собственному желанию) Институт высшей нервной деятельности и нейрофизиологии РАН и с тех пор, судя по доступной информации, не работает в каких-либо научных структурах. Вскоре после ее увольнения директор института Павел Балабан дал мне (для украинской передачи «Скептик») следующий комментарий по этому поводу:
С И.В. Ермаковой дело обстоит очень просто. Она грамотный специалист в области поведения животных. В какой-то момент она решила посмотреть, как ГМ-продукты влияют на поведение. Поэтому она решила самостоятельно разводить крыс, да еще и в нескольких поколениях, абсолютно не будучи специалистом в разведении линейных животных. Питание и разведение животных не является тематикой нашего института и не могло войти в планы (и никогда не входило). Ее опыты поставлены с таким количеством нарушений и неточностей, протоколы отсутствуют, количество и качество съеденного не учитывалось, и т. д., и т. п., что специалисты Института питания РАМН просто не могли обсуждать их всерьез. Проверка ее данных профессионалами (на сегодняшний день) показала отсутствие смертельного влияния ГМО, однако эксперименты, проведенные непрофессионалами и в том же стиле (недавние опыты на хомячках), показывают что-то сходное.
Стоит внимательнее посмотреть на научные публикации Ермаковой по теме ГМО. Это не так просто — собственно публикаций в рецензируемых журналах у нее практически нет. Есть выступления на конференциях (которые не подразумевают сколько-нибудь серьезного предварительного рецензирования), есть статьи в журналах, мимикрирующих под научные (лучший из них называется «Вестник Академии тринитаризма»). Есть, впрочем, описание [24] кормления 30 крыс, поделенных на четыре группы, в журнале «Современные проблемы науки и образования. Биологические науки», который даже входит в список ВАК[37], а еще есть предмет особенной гордости Ирины Ермаковой — то, что она называет «публикация в журнале
Публикация в
Все эти эксперименты проводились, собственно, для того, чтобы посмотреть, как крысы, которых кормят ГМ-соей, будут размножаться. Результаты получились, с точки зрения Ермаковой, потрясающие: в контрольной группе погибли 6 крысят из 74 рожденных (8,1%), а в группе, получавшей ГМ-сою, — 33 крысенка из 64 рожденных (51,6%). Экспертов, однако, заинтересовала не столько эта внушительная разница, сколько смертность в контрольной группе. Ермакова использовала крыс линии
Этот краткий пересказ общения Ирины Ермаковой с научным сообществом, по-моему, прекрасно демонстрирует: ее исследования не публикуют не потому, что злые люди душат правду, а потому, что публикация в рецензируемом журнале должна отвечать минимальным стандартам качества — как минимум необходимо, чтобы она позволяла понять, что же конкретно делали экспериментаторы, кого кормили и чем. По текстам Ермаковой этого понять не получается, что, впрочем, не мешает ей давать сотни интервью о том, что, в соответствии с ее революционными исследованиями на нескольких крысах, ГМО чудовищно опасны.
Нельзя сказать, что научные журналы никогда не публикуют некачественные исследования. В 2012 году у противников ГМО появился новый прекрасный аргумент: статья Жиля-Эрика Сералини и его соавторов в журнале
Сералини взял для своего исследования 200 крыс — звучит намного приличнее, чем у Ермаковой, правда? Но он разбил их на 20 групп по 10 животных. Две контрольные группы — 10 самцов и 10 самок — получали немодифицированную кукурузу. Еще шесть групп ели генетически модифицированную кукурузу — она составляла 11, 22 или 33% от рациона животных. Еще шесть групп ели ГМ-кукурузу, которую к тому же в ходе выращивания поливали глифосатом — это такой гербицид, хорошо известный под коммерческим названием «Раундап». И еще шесть групп ели обычную пищу, но получали воду с добавлением глифосата в разных дозах. Через два года наблюдений Сералини усыпил всех, кто еще не умер от старости (крысы примерно столько и живут). У каждого мертвого животного он смотрел анатомические изменения в мозге, кишечнике, сердце, почках, печени, легких, селезенке, гонадах и еще в 27 органах. В главе «Результаты» он сообщает, что в некоторых группах, получающих ГМ-кукурузу, к концу эксперимента умерли 70% самцов и 50% самок. Что в экспериментальных группах у самцов было в два раза больше опухолей кожи, чем в контрольной группе, где такая опухоль была одна. Что от опухолей молочной железы страдало больше самок в экспериментальных группах, чем в контрольных (где с этими опухолями столкнулись только 50%).
Вы уже почувствовали подвох? Если нет, то следите за руками. Давайте сейчас возьмем 10 групп по 10 человеческих мужчин и зададим им какое-нибудь различие, например, заставим каждую группу носить одежду своего цвета. Потом будем наблюдать за ними до 2070 года, а после их смерти сравним нарушения, скажем, в 30 органах. Наша задача — доказать, что носить зеленые футболки человеку безопасно, а вот серые, желтые, красные и еще шести других цветов — вредно. Доказательство будем считать удавшимся, если к 2070 году в какой-нибудь одной группе, помимо зеленых, от старости умрет целых 5 мужчин из 10, а в группе тех, кто носит зеленые футболки, — только 3 мужчины из 10. Я не издеваюсь. Сами почитайте. Там именно это и написано. Отдельно умиляет то обстоятельство, что в группе самцов, получавших больше всего генномодифицированной кукурузы, на момент прекращения эксперимента оставалось в живых больше крыс, чем в контрольной; в принципе это тянет на заголовок «ГМ-кукуруза продлевает жизнь!».
Интересна история освещения этой работы. К моменту ее выхода в свет Сералини подошел во всеоружии: он заранее распространил текст статьи среди журналистов, причем поставил им жесткий запрет на консультации с какими бы то ни было исследователями. Сразу после выхода статьи он провел огромную пресс-конференцию, на которой анонсировал популярную книжку и фильм о своих экспериментах. Он также показал журналистам фотографии крыс с огромными опухолями, как бы вызванными кормлением ГМ-кукурузой. Эти прекрасные картинки до сих пор появляются в каждой телепередаче о вреде ГМО, но Сералини оставил за скобками одно важное обстоятельство: он в принципе работал с линией крыс
В общем, разумеется, сразу же после выхода публикации Сералини на журнал
Знание против страха
Итак, у Ермаковой и Сералини мало крыс и много странных методических искажений. Что может противопоставить им научное сообщество? Какие существуют нормальные исследования о том, насколько ГМО безопасны и зачем они вообще сегодня нужны?
Написав последнее предложение, я зависла на полдня — из-за богатства выбора. То ли пересказывать вам длинные мануалы о многочисленных правилах проверки безопасности новых генетически модифицированных продуктов [30], [31]. То ли конспектировать отчет Еврокомиссии [32] обо всех проведенных за десять лет исследованиях выращиваемых сортов с точки зрения их экологической и пищевой безопасности. То ли вообще залезть в экономику и рассказать, как использование генетически модифицированных растений снижает потребность в пестицидах и приводит к увеличению заработка фермеров [33]. Но это все какие-то специфические вещи, вряд ли они интересуют всех читателей. Наверное, лучше просто закончить главу парой примеров исследований безопасности, чтобы мы могли их потом пересказывать таксисту в пробке или бабушке за семейным ужином (а зачем еще, вы думаете, нужен научпоп?).
Первая история будет про исследования ГМО на многих поколениях. Я вот в прошлой главке вскользь сослалась на статью Ирины Ермаковой в российском журнале и перешла к более интересной публикации в
Разумные люди, определявшие стадию цикла (и получавшие во всех группах и во всех поколениях от 84 до 100% беременных животных), — это токсикологи из нескольких правительственных организаций Южной Кореи. Еще в 2005 году, до того как Ирина Ермакова стала звездой, они закончили длительное исследование генетически модифицированной картошки с геном
Справедливости ради нужно отметить, что скандальная известность Ирины Ермаковой, по-видимому, привела к увеличению числа исследований, в которых животных кормят на протяжении длительного времени и/или многих поколений, — ну, раз уж общественность волнуется. Например, в 2012 году вышел обзор [35], анализирующий результаты 12 исследований, в которых животных кормили различными ГМ-культурами длительное время (до двух лет), и еще 12 исследований на нескольких поколениях (от двух до пяти). В основном, конечно, участвовали крысы и мыши, но есть и экзотика: в одной работе генномодифицированной соей 7 месяцев кормили лосося, в другой генномодифицированный рис 26 недель ели макаки. Среди животных, поучаствовавших в исследованиях нескольких поколений, есть куры, овцы, свиньи, коровы, козы и даже перепелки. Собственно, никто не заводит коров в лаборатории специально, просто сельскохозяйственных животных в принципе уже давно кормят генетически модифицированными культурами, и достаточно было просто начать внимательно контролировать состав съеденного, чтобы потом посмотреть, есть ли какая-то разница между группой, получающей ГМ-корм, и группой, которая ради такого случая его не получает. Результаты везде примерно одни и те же: отличий либо нет вообще, либо они укладываются в рамки случайной погрешности.
Аргумент о том, что исследований безопасности ГМО проведено недостаточно, противники ГМО эксплуатируют с семидесятых годов. В те времена он еще имел смысл, но последние лет пятнадцать прогрессивная общественность окончательно перестала понимать: а «достаточно» — это сколько? Вот, например, в 2014 году сотрудники Университета Калифорнии в Дэвисе провели совершенно титаническую работу, собрав в кучу всю доступную американскую статистику о кормлении сельскохозяйственных животных с 1983 до 2011 года и все исследования, посвященные их здоровью и его влиянию на наше здоровье [36]. При этом данные до 1996 года позволили оценить, как себя чувствовали животные до внедрения ГМ-кормов, а данные последних лет (из подборки были исключены «органические» фермы) относятся к животным, которые питаются преимущественно ГМ-кормом. С учетом всякой мелочи типа бройлеров получилось, что в распоряжении исследователей оказались данные, характеризующие 100 миллиардов животных. Сто. Миллиардов. Животных. И никто не пострадал. И в их мясе, молоке и яйцах никаких следов ГМО никто не обнаружил. Но мы по-прежнему боимся ГМО. И, собственно, именно поэтому около 70% этих прекрасных, современных, проверенных растений уходит на корм скоту. Именно поэтому политики принимают законы, практически блокирующие развитие биотехнологий, и встречают полнейшее одобрение общественности. И наконец, именно поэтому у нас до сих пор нет обогащенных белком и витамином B12 овощей для вегетарианцев, красного мяса со всякими там омега-3-ненасыщенными жирными кислотами для невегетарианцев, безникотиновых табачных листьев для бросающих курить, идентичного человеческому козьего молока для детей на искусственном вскармливании и миллиона других прекрасных вещей — придумайте, что нужно именно вам, и знайте, что технически это почти наверняка возможно.
Глава 6
«Кто видел птицу с зубами?»
Осенью 2013 года израильское русскоязычное телевидение решило снять передачу, призванную продемонстрировать мой никуда не годный моральный облик. Видеозапись сопровождалась следующим анонсом: «Участница сохнутовской программы для студентов диаспоры взорвала русскоязычную блогосферу своей защитой теории Дарвина. Надо ли нам оплачивать импорт критиков Израиля на наши же деньги?»
Насколько я помню, вначале там вообще было написано «врагов Израиля», а потом поправили на более нейтральный вариант, но скриншотов у меня не сохранилось. В любом случае я так и не поняла, при чем тут Израиль.
История началась на полгода раньше, когда мне сносило крышу от несчастной любви и пребывание всего лишь в 13 остановках метро от ее объекта казалось чрезмерно утомительным. Я пришла в Израильский культурный центр и сказала: «Здравствуйте, мне очень нужно куда-нибудь уехать из Москвы. У вас есть какая-нибудь учебная программа, более или менее связанная с биологией и чтобы начиналась как можно скорее?» — «Да, вот в Ариэльском университете через полтора месяца». — «О’кей, запишите меня туда, пожалуйста»[41].
Мой индивидуальный учебный курс действительно отчасти был связан с биологией, точнее даже с
Очевидно, что я не могла не лезть: я тогда утратила бы моральное право на свою профессию. Я попыталась выступить на лекции. Попыталась прочитать свою отдельную лекцию (на которую почти никто не пришел, потому что это было добровольно). Вступила с преподавателем и студентами в длинную переписку с обильным цитированием источников. Поднимала вопрос на общих собраниях курса. Написала ректору университета. Ничего не работало, кто лектор — тот и прав. В конце концов, уже перед самым окончанием своей добровольной ссылки, упомянула об этом в ЖЖ. И тут внезапно
В принципе, такой финал можно рассматривать как победу сил разума — но победу, мягко говоря, неполную. Я неслучайно в самом начале процитировала анонс телепередачи — он хорошо отражает внутреннюю логику этого холивара. Огромное количество моих противников в этой дискуссии вообще не отделяло критику израильского лектора от критики Израиля в целом (отчасти потому, что я, со своей стороны, не проводила границы между критикой лектора и критикой университета в целом) — соответственно, у них сработал сильнейший сигнал «наших бьют!!!», который абсолютно затмил всю содержательную сторону обсуждения. Я проявила себя как не очень хороший популяризатор — в том смысле, что с моей защитой теории эволюции были безусловно согласны все те, кто и без меня считает, что креационизму не место в университетских аудиториях, но я едва ли перетянула тогда на свою сторону сколько-нибудь существенную часть людей, которые проблемами эволюции прежде не интересовались, а некоторых, возможно, даже отвратила от науки (раз уж науку защищают такие вредные и невоспитанные девицы, как я).
С тех пор я обдумываю, как именно, собственно говоря, надо популяризовать эволюционную биологию, чтобы не вызывать негативных эмоций у тех, кому она изначально не очень понятна и не очень интересна. Глава, которую я сейчас пишу, отражает некий промежуточный этап моей собственной рефлексии. Извините, что я использую вас для того, чтобы об вас думать, но не все же мне вещать с умным видом, словно я гуру из одноименной песни Майка Науменко.
Это глава не про эволюцию как таковую. Если человек обладает собственным, уже присущим ему стремлением ознакомиться с недавними достижениями эволюционной биологии, то на русском языке уже издано множество великолепных научно-популярных книг об этом, и было бы бессмысленно пытаться их повторять. Есть Александр Марков с его «Рождением сложности», «Эволюцией человека» и рассчитанной на чуть более подготовленного читателя книгой «Эволюция: классические идеи в свете новых открытий» (а еще он создал сайт
В то же время эта глава не совсем про креационизм или полемику с его сторонниками. Мне кажется, что если человек всерьез убежден в необходимости привлечения Бога даже для объяснения вещей, которые отлично работают и без такой гипотезы, то это, вероятно, означает, что Бог в принципе занимает центральное место в мировоззрении этого человека. В таком случае можно приводить сколь угодно много сколь угодно стройных научных аргументов, но все они будут далеко проигрывать по значимости той изначальной убежденности, которая уже существует в голове, и будут заведомо пролетать мимо ушей. Это как у Довлатова, помните? «В разговоре с женщиной есть один болезненный момент. Ты приводишь факты, доводы, аргументы. Ты взываешь к логике и здравому смыслу. И неожиданно обнаруживаешь, что ей противен сам звук твоего голоса».
Меня больше всего интересуют люди, которые находятся посередине нормального распределения. Они не сторонники и не противники эволюции, они что-то такое слышали про нее в школе, но никогда прицельно ею не интересовались. Это самая благодарная аудитория для любого человека, жаждущего распространять мемы, — в том случае, если он найдет способ делать это хорошо. Они с интересом выслушают рассказ зоолога о меритерии, двоюродном дедушке современных слонов, обладателе крупной и подвижной верхней губы, еще не слившейся с носом в полноценный хобот, и о современных слонятах, у которых в ходе эмбрионального развития верхняя губа тоже сначала развивается обособленно, но затем образует вместе с носом единый орган [2]. Они с не меньшим интересом выслушают рассказ креациониста о том, что хобот слона — это божье чудо, которое никак не могло возникнуть постепенно, потому что маленький хобот никому не может понадобиться (биолог бы на этом месте поинтересовался, почему от наличия маленького хобота не страдает тапир).
Публикация ВЦИОМ с замечательным заголовком «Дарвинисты среди нас» [3] показала в общем предсказуемую картину: в России живет 35% сторонников теории эволюции, 44% креационистов, первый вариант больше распространен среди атеистов, людей с высшим образованием и жителей крупных городов, второй — наоборот, среди верующих, людей со средним образованием и жителей сельской местности. Но поразительно в этом опросе другое: таблица с сочетаниями ответов. В ней есть, например, 18% людей, которые назвали себя неверующими и одновременно сообщили, что человек был создан Богом. А еще есть 17% людей, назвавших себя сторонниками теории эволюции, однако согласных с утверждением
Эволюция контринтуитивна
Чарльз Дарвин не был первым и тем более не был последним исследователем эволюции. Но именно Дарвин первым предложил механизм, который смог объяснить процессы видообразования без привлечения каких бы то ни было непроверяемых абстрактных сущностей типа «стремления к совершенству». Несмотря на все последующие многочисленные дополнения и уточнения, базовый принцип эволюции остался неизменным и простым, как апельсин. Если какое-то случайно возникшее изменение повышает шансы выжить и оставить потомство, то в следующем поколении оно будет встречаться чаще, ровно потому, что его обладатели чаще выживали и оставляли потомство. Когда мы умножаем это явление на большое количество времени, большое количество особей и большое разнообразие условий среды, выясняется, что его достаточно, чтобы объяснить, почему мы все стали такими сложными и такими приспособленными к своим местам обитания.
Но из этого объяснения следует одна вещь, которую трудно воспринять: у эволюции
Мы склонны приписывать всему смысл и цель. Это базовая черта человеческой психологии, и поэтому, кстати, она сильнее проявляется у детей, чем у взрослых [4], [5], [6]. Когнитивный психолог Маргарет Эванс, например, демонстрировала американским школьникам и их родителям фотографии малайского медведя, гаттерии, человека, камня, кристалла, куклы и игрушечного стула и просила объяснить, откуда взялся на Земле самый первый такой объект, или же оценить степень своего согласия с готовыми ответами: «сделано Богом», «сделано человеком», «произошло от другого подобного существа, существовавшего прежде», «само как-то вдруг оказалось на Земле». Выяснилось, что в 5–7 лет дети одинаково склонны объяснять появление живых существ с помощью Бога или с помощью спонтанного появления из ниоткуда, в 8–10 лет становятся убежденными креационистами, и только в более старшем возрасте постепенно возрастает популярность эволюционных трактовок (эти результаты относятся к детям из обычных школ; дети, опрашиваемые в христианских школах, в 11 лет убеждены в божественном сотворении еще сильнее, чем в 9).
Не могу не отметить, что в ряде случаев уверенность в совершенстве строения животных связана с недостаточно хорошим знанием анатомии. Структур, устроенных не наилучшим возможным образом, а кое-как сшитых на живую нитку из подручных материалов, у любого живого существа можно найти множество. Самый яркий пример, пожалуй, — это возвратный гортанный нерв. Это ответвление блуждающего нерва, и расходятся они около кровеносного сосуда, выходящего из сердца. У наших рыбообразных предков (как и у современных рыб) возвратный гортанный нерв служил для иннервации одной из пар жаберных дуг. Жабры находятся рядом с сердцем, и было совершенно неважно, с какой стороны от кровеносного сосуда будет проходить нерв. Но сухопутным существам жабры не нужны, и те структуры, из которых они образовывались, теперь используются в ходе эмбриогенеза для строительства каких-нибудь других полезных вещей — к примеру, слуховых косточек или мышц гортани. Как раз для управления мышцами гортани, помогающими нам глотать, дышать и разговаривать, и служит возвратный гортанный нерв. Но это не отменяет того, что он по-прежнему спускается от мозга вниз, в тело, проходит под дугой аорты — и только после этого возвращается обратно. У жирафа он вынужден проходить вниз и вверх четыре метра.
Если ввести название этого нерва в любой системе поиска по научным статьям, то в основном найдутся публикации хирургов, обсуждающих, как бы его не повредить во время операций на щитовидной железе (которая находится ниже, чем гортань, так что смысла в присутствии там этого нерва нет никакого — просто темное наследие биологической эволюции).
Еще одна проблема в понимании эволюции связана с тем, что нам очень сложно представить себе
Думать о действительно больших числах умеют только палеонтологи. У них представления о масштабах отличаются от общечеловеческих, поэтому они, например, иногда говорят, что во время кембрийского взрыва останки множества новых типов животных появились в палеонтологической летописи мгновенно. И действительно, наиболее интенсивное увеличение разнообразия находок происходило тогда в течение совсем небольшого промежутка времени. Всего-то от 542 до 521 миллионов лет назад [10]. Причем нельзя даже сказать, что новые типы животных именно тогда появились — появились-то они раньше [11], просто начали массово обзаводиться твердыми раковинами, панцирями, шипами, скелетами и другими структурами, повышающими шансы на посмертную славу. Почему многие животные стали обзаводиться твердыми структурами именно в эти 20 миллионов лет — вопрос, конечно, интересный[44], но все-таки далеко не такой захватывающий, как его антинаучная версия про то, что сначала никаких животных не было, а потом они вдруг все одновременно и мгновенно каааак появились!
Я вот вам сказала, что эволюционные линии человека и шимпанзе разделились 7 миллионов лет назад. Это более или менее общепринятое мнение, но иногда в научных источниках встречаются и радикальные оценки: «более 9 миллионов» или даже «менее 5 миллионов лет назад» [13], [14]. Этот разброс в основном вызван тем, что разные группы авторов при анализе накопленных генетических и палеонтологических данных обращают внимание на разные аспекты и отличаются друг от друга в выборе критериев того, в какой момент переставать считать «человеческих» и «шимпанзиных» предков двумя подвидами одного вида и начинать считать, что они уже разделились на две обособленных линии[45]. В большинстве случаев эволюция —
Вторая волна культурного взаимодействия неандертальцев и сапиенсов началась около 40 тысяч лет назад, когда мы пришли завоевывать неандертальскую Европу. В этот период мы друг другу, по всей видимости, уже не нравились и скрещиваний было немного (в противном случае примесь неандертальских генов у европейцев была бы заметно выше, чем у жителей других регионов, а это не подтверждается данными генетического анализа). Тем не менее с биологической точки зрения в межвидовых скрещиваниях по-прежнему не было ничего невозможного, и даже существуют единичные находки останков людей, произошедших от таких союзов [16].
Я сейчас подавила порыв продолжать рассказывать удивительные истории про неандертальцев[47] и возвращаюсь к тем аспектам эволюции, которые нам бывает сложно осознать. Еще одна проблема, как мне кажется, связана с тем, что
История с органами зрения иллюстрирует и еще одну проблему с пониманием эволюции: мы не привыкли к мысли, что