Иван Хорбенко
ЗВУКИ В МОРСКИХ ГЛУБИНАХ
БЕЗМОЛВНЫ ЛИ МОРСКИЕ ГЛУБИНЫ?
Люди прошлых веков представляли себе морские глубины как таинственный «мир безмолвия». Они были правы и не правы. Правы в том, что человек в воде слышит меньше звуков, чем на суше. Не правы в том, что в глубине моря, как и в воздухе, проносится много различных звуков, которые не улавливаются ухом человека, но доступны органам слуха многих животных.
Море живет сложной жизнью. Площадь водной поверхности на нашей планете в два с лишним раза больше, чем площадь суши. Количество видов различных животных в море больше, чем на суше. Шум морского прибоя, грохот подводных извержений передаются в морских глубинах на большие расстояния, чем в воздухе.
Но для человека, не вооруженного приборами, этот мир представляется в действительности «миром безмолвия». До начала XX века почти не изучались законы распространения звука в море, незначительно исследовался только поверхностный слой океана (примерно до глубины 10–15 метров) для нужд мореплавания и рыболовства, в то время как в океане имеются впадины глубиной свыше 11 000 метров.
Интерес к изучению морских глубин и особенно слышимости звуков в морских глубинах проявился в связи с усовершенствованием новых грозных кораблей — подводных лодок, главным преимуществом которых была скрытность.
Началось это так. Шла первая мировая война. 22 сентября 1914 г. три крейсера государства, которое в то время считало себя «владычицей морей», находились в дозоре в Северном море. Внезапно у борта одного из крейсеров возник мощный взрыв, и корабль начал тонуть. Два других крейсера поспешили на помощь, но один из них вскоре разделил участь первого. Третьему пришлось спасать команды с двух крейсеров, но вскоре и он пошел ко дну от такого же таинственного взрыва большой силы. Море было чисто, только обломки погибших кораблей да кое-где головы боровшихся за жизнь людей были видны на поверхности. Не сделав ни одного выстрела, все крейсера погибли, а вместе с ними 1135 человек. Гордые английские крейсера стали добычей маленькой немецкой подводной лодки — они были в течение одного часа торпедированы ею.
С этого момента никто не сомневался в могуществе подводных лодок. Начались лихорадочные поиски средств борьбы с ними.
Правда, подводная лодка того времени, имея преимущество в скрытности, была тихоходным, неповоротливым кораблем под водой и почти беспомощным при всплытии на поверхность против надводных кораблей.
Обнаруженная подводная лодка не представляла большой опасности. Надводные корабли уничтожали ее противолодочными минами и снарядами, сбрасывали на нее глубинные бомбы. Если подводная лодка находилась на небольшой глубине, корабли таранили ее своими форштевнями или килями. Но все это делалось еще «на глазок». В подводном положении лодка оставалась неуловимой.
Не помогали также выставляемые на путях возможного прохода подводных лодок (у входа в бухты, в проливах) противолодочные металлические сети, минные заграждения, так как нельзя их расставить по всему океану.
Не хватало в сложной цепи средств и мер борьбы с подводными лодками, называемых
Но и такое средство нашлось. Если подводную лодку нельзя видеть в подводном положении, то ее можно услышать, так как на ней работают механизмы, гребные винты. Стали применять приборы, определяющие направления на подводные шумящие предметы, которые стали называться
Для развития этой науки много сделал французский ученый физик Ланжевен, работавший вместе с русским военным моряком Шиловским.
Развитие гидроакустики привело к тому, что к началу второй мировой войны на кораблях стали устанавливать
Борьба с подводными лодками перестала быть игрой. В свою очередь подводные лодки, оснащенные гидроакустическими станциями, получили «чуткие уши» и «зоркие глаза». Атаки, уклонения, поиск, маневр — все действия подводных лодок и их противника (охотников за подводными лодками) стали зависеть от показаний гидроакустических приборов, обслуживаемых военно-морскими специалистами —
От умелого действия гидроакустика во многом зависит успех боя. Гидроакустик первый обнаруживает противника, по его данным командир корабля принимает решение на бой.
В Великую Отечественную войну советские моряки-гидроакустики проявили смекалку, находчивость и героизм.
Осенью 1943 г. на Северном флоте эскадренные миноносцы сопровождали конвой из Белого моря к Новой Земле. Погода была очень неблагоприятной: волнение моря при силе ветра 7–8 метров в секунду. Шли шестые сутки перехода и борьбы со стихией.
Бессонные ночи, холод, усталость не сломили советских моряков, они готовы были каждую секунду вступить в бой с опасным противником — подводной лодкой. Малейшая оплошность, малейший просчет могли дорого обойтись морякам.
На шестые сутки гидроакустик одного из эскадренных миноносцев обнаружил подводную лодку. Сыграли боевую тревогу, изготовились к бою, началась атака. Тем временем корабли конвоя отвернули от опасного района. Первая атака, за ней вторая, третья, — и подводная лодка противника была уничтожена.
Конец шестых суток застал конвой в нескольких милях, от места назначения. Но вдруг — доклад гидроакустика:
«Прямо по носу — мины!». Конвой меняет курс. Вторая катастрофа предотвращена.
Так мастерство, опыт и выдержка советских гидроакустиков не раз обеспечивали выполнение задания.
В настоящее время подводные лодки — основная ударная сила флота. Это не тихоходные малые корабли только с торпедным вооружением, действующим на несколько километров. Современные атомные подводные лодки имеют большую подводную скорость, могут долго находиться под водой и плавать без пополнения запасов вокруг земного шара.
Кроме торпед, они вооружены ракетами с большим радиусом действия (сотни и тысячи километров) и могут наносить удары по кораблям, побережью и пунктам, расположенным далеко от берега.
Подводная лодка — грозное средство войны, и с ним надо уметь бороться. Самое главное — своевременно обнаружить подводную лодку, находящуюся далеко от побережья в океане, и не дать возможность ей применить свое оружие. Решающая роль в этом принадлежит противолодочной обороне, ведущее место в которой занимает гидроакустика.
Две трети огромной протяженности границ Советского Союза морские и лишь одна треть границ сухопутная. Моряки Военно-Морского Флота зорко стоят на страже морских рубежей нашей Родины. Днем и ночью, в тишь и ненастье, зимой и летом бдительно несут свою почетную и ответственную вахту и наши моряки-гидроакустики.
Но гидроакустика служит не только для военных целей. В мореходстве, изучении морских глубин, строительстве подводных сооружений и в рыболовстве на морских и океанских просторах также нельзя обойтись без гидроакустики.
ЗВУК И СЛУХ
Какие бывают звуки?
Затаите дыхание. Внимательно прислушайтесь. Что вы слышите? Оказывается, вы слышите очень много звуков, о существовании которых и не подозревали.
Человеческое ухо привыкает к постоянным, непрерывно действующим звукам и перестает их замечать.
Часто возникает сомнение, идут ли настольные часы или будильник. Но стоит напрячь внимание, как вдруг вы начинаете слышать звук хода часов, который еще долго будет преследовать ваш слух, пока вы не отвлечетесь и не перестанете его вновь замечать.
Где бы вы ни находились, в любое время суток и года вас окружает многообразный мир звуков: то пронзительно резких, грубых, неожиданных, то осторожных, ласковых, мелодичных, а часто едва уловимых.
Причины возникновения звуков различны. Есть звуки, создаваемые природными явлениями, стихией, и звуки, создаваемые различными механизмами, транспортом, прохожими и т. д. Эти звуки сливаются в общий звук, воспринимаемый ухом как шум. Но есть звуки вполне определенные, например, музыка, пение, разговорная речь одного человека. Если в первых звуках, т. е. шуме, наблюдается беспорядочность, то вторые носят вполне определенный характер.
Следовательно, звуки бывают
Чтобы услышать второстепенные звуки, нужно сосредоточить свое внимание на этих звуках и несколько отвлечься от основного звука, что мы практически делаем редко.
Что такое звук?
Зазвонил звонок. Вы слышите резкий звук. Что происходит? А все объясняется довольно просто. Молоточек звонка ударяет по металлической чашке, которая колеблется.
Окружающий чашку звонка воздух от ее колебаний то сгущается, то разрежается. Сгущения и разрежения воздуха быстро распространяются все дальше и дальше, наконец достигая органа слуха (рис. 1).
Рис. 1.
Таким образом, частицы воздуха под действием колебаний чашки звонка также совершают колебательное движение. В природе можно наблюдать множество примеров колебательного движения. Из них наиболее распространены движение маятника часов, раскачивание качелей (рис. 2), качание груза, подвешенного на спиральной пружине, и т. п.
Рис 2.
Интересный и в то же время простой опыт можно провести на биллиардном столе.
Расположите все шары на столе в одну линию на расстоянии одного — двух сантиметров один от другого. Затем ударьте кием по первому шару и вы увидите, что волновое движение быстро распространилось от первого шара до последнего, при этом все шары, кроме последнего, остались на месте, не считая небольшого передвижения в пределах одного — двух сантиметров (рис. 3).
Рис. 3.
Проще объяснить колебательный характер звука можно на примере образования волн на воде при падении камня.
Бросьте камень в воду и внимательно наблюдайте, что произойдет. В месте падения камня возникает углубление, потом возвышение, а затем неожиданно появляются концентрические круги возвышений и впадин. Это
При этом распространяются волны, а не частицы воды. Для проверки этого вывода бросьте в воду при распространении волн пробку, поплавок или клочок бумаги и вы убедитесь, что брошенный предмет не передвигается, а только поднимается, и опускается (рис. 4), т. е. совершает
Рис. 4.
Этот опыт подтверждает, что частицы воды не передвигаются на большие расстояния, а совершают колебательные движения, передавая свою энергию соседним частицам.
Таким образом, возникновение звука при работе звонка можно сравнить с возникновением волн на поверхности воды. Разница только в том, что роль камня выполняет звонок, а роль воды — окружающий воздух.
Проведенные опыты подтверждают и объясняют колебательные движения. Характер же колебаний бывает разный.
При распространении волн на поверхности воды колебания совершаются поперек действия силы, вызвавшей волну. Поплавок на воде то поднимается, то опускается. Поэтому такие волны называются
В опыте на биллиарде и сила, вызвавшая колебания, и распространение волн направлены в одну сторону. Такие волны называются
Какие же колебания по своему характеру более близки к звуковым? Оказывается, продольные колебания биллиардных шаров больше напоминают звуковые волны.
В самом деле, воздух можно представить состоящим из частиц, которые могут перемещаться под действием каких-либо сил. Если, например, компрессор нагнетает в баллон воздух, то отдельные частицы его сжимаются равномерно. Но если в воздухе заставить колебаться какое-либо тело с большей частотой, то частицы воздуха вокруг тела будут сгущаться или разрежаться одновременно с колебаниями тела. Сгущение и разрежение будут передаваться подобно случаю с биллиардными шарами соседним частицам. При определенном числе сгущений и разрежений воздуха в секунду наше ухо их воспринимает как звук. Сами сгущения и разрежения образуют
Рис. 5.
Если образовать график изменения давления, он будет иметь вид синусоиды.
Количество звуковых волн, наблюдаемых в какой-либо точке пространства в течение одной секунды, называется
Коснитесь вначале тонкой струны гитары, затем толстой и вы услышите различие в тоне (высоте) звучания этих струн. Тонкая струна издаст звук более высокого тона (большей частоты), толстая струна — более низкого тона (меньшей частоты). Частота измеряется в герцах. Если, например, тело колеблется с частотой 200 колебаний в секунду, то говорят, что частота колебаний тела 200 герц.
Второй отличительный признак звуков — их
Если металлическую пластину, зажатую в тиски, слегка оттянуть одним пальцем и отпустить, то она будет колебаться с определенной частотой, имея небольшую амплитуду колебаний (рис. 6,
Третьим отличительным признаком звуков является
Рис. 6.
Одинаковые звуки по высоте тона и по интенсивности могут звучать по-разному. Это объясняется тем, что основной звук сопровождается второстепенными звуками, которые всегда выше по частоте. Второстепенные звуки называются
Звуковые волны можно различать также по их длине, т. е. по расстоянию между сгущениями пли разрежениями воздуха (см. рис. 5). Длина волны — величина, обратная частоте: чем больше частота, тем меньше длина волны и наоборот.
Какие звуки слышит человек?
Затаив дыхание и внимательно прислушавшись вы услышите много других звуков, которых не слышали раньше. Однако есть много таких звуков, которые мы не слышим даже при большом напряжении слуха. Они называются
Человеческое ухо способно воспринимать звуковые колебания с частотой от 16 до 20 000 колебаний в секунду (герц). Дети воспринимают звук большей частоты — до 22 000 герц, старые люди слышат звук с частотой не выше 16 000—18 000 герц. Вне пределов человеческого слуха остаются звуки, частота которых меньше 16 герц (эти звуки называются
Инфразвуки и ультразвуки как раз и относятся к неслышимым звукам.
Ультразвуки издают многие насекомые и некоторые животные. Кроме того, ультразвуки можно создать специальными устройствами, описанию которых в основном и посвящена настоящая книга.
Как было сказано, человеческое ухо различает звуки как по частоте, так и по интенсивности.
Сначала выясним, какова же допустимая разница в количестве колебаний, чтобы ухо человека отличало один звук от другого по частоте, т. е. по тону.
Для звуков с частотой 500 герц достаточно, чтобы разница в количестве колебаний двух звуков равнялась одному колебанию. В этом случае мы сможем отличать звук с частотой, например, 450 герц от звука с частотой 451 герц.
Чем больше частота звука, тем большая разница нужна в числе колебаний двух звуков, чтобы отличить один звук от другого. При частоте звука 2000 герц мы различим звуки, если разница между ними будет равна пяти колебаниям. По мере увеличения частоты эта разница будет увеличиваться.
Мы привели средние цифры, так как несмотря на то что органы слуха у всех людей устроены одинаково, способность различать звуки по тону у людей разная.
Музыканты, как правило, лучше различают звуки по тону. Некоторые опытные музыканты обладают таким природным слухом, что могут различать два тона, отличающиеся один от другого на долю одного колебания.
Еще более удивительны способности человеческого слуха, когда требуется отличить один звук от другого по интенсивности, т. е. по громкости.
Число звуков, различимых по громкости, очень зависит от частоты. Наиболее хорошо воспринимаемые звуки по частоте лучше различаются и по громкости.