Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Озонные дыры и гибель человечества - Юрий Гаврилович Мизун на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Остановимся более подробно на последнем отрезке времени, периоде голоцена, во время которого мы живем, — от начала нынешнего межледниковья, которое началось 10 тысяч лет назад. В это время также происходили значительные изменения климата.

В начале этого периода происходило потепление, которое примерно восемь тысяч лет назад перешло в нечто оптимальное. Напомним, что ученые это состояние климатической системы назвали «климатическим оптимумом». Жаль, что он продолжался всего 25 тысяч лет. В этот благоприятный период средняя температура воздуха была выше современной. Влажность воздуха также была повышенной. Влажно было и в местах, где в настоящее время находится пустыня Сахара, а также в Раджахстане в Индии.

О более высокой температуре в то время говорят находки стволов деревьев, которые тогда росли в Сибири на берегах Северного Ледовитого океана, а также в Гренландии и на острове Эльсмир. В то время березовые леса покрывали половину всей территории Исландии. Сейчас они занимают не более 1 % ее территории. Ледяной покров Северного Ледовитого океана по сравнению с современным сократился в то время примерно на половину. Сахара тогда еще не была Сахарой. В ней найдены останки многих животных, которые могли жить только в водоемах со стоячими и текучими водами. Значит, тогда такие водоемы в Сахаре были. Найдены также в бывшей Сахаре и остатки богатой растительности.

В Европе в то время было теплее, чем сейчас, но ненамного — всего примерно на 2 °C, и то главным образом летом. Судя по тому, что вечнозеленые растения — тисс, падуб и другие, — в это время на север не продвигались, делаем вывод, что зимняя температура была не выше, чем сейчас. Дело в том, что жизнь этих растений контролируется, естественно, самой низкой, то есть зимней температурой. В южном полушарии потепление было значительно меньшим, чем в северном. Опять же — роль океана как стабилизатора, а его в южном полушарии больше.

Но «климатический оптимум» был непродолжительным. Он 5,5 тысячи лет назад сменился похолоданием, после которого наступило новое потепление. Это показано на рис. 17, пик которого отстоит от нас на четыре тысячи лет. Наступившее после этого новое похолодание совпадает по времени с периодом Троянской войны. В это же холодное время путешествовал и Одиссей.

Мы говорили достаточно подробно о том, по каким данным ученые описывают изменения климата в прошлом. Для получения этих данных используются в основном геологические и геофизические методы. Те изменения климата, которые происходили в историческое время, в период развития цивилизации, но еще характеристики климата не измерялись с помощью инструментов, называется историческим. Для получения информации о климате в исторический период используют данные анализа археологических памятников, а также памятников письменности. Когда говорят о современных изменениях климата, то имеют в виду его изменения за тот период, когда проводились инструментальные измерения различных элементов климата — температуры, влажности, ветров, осадков и т. д. и т. п.

Первое историческое похолодание достигло пика около трех тысяч лет назад. После него началось новое потепление, которое продолжалось и в первом тысячелетии нашей эры. Этот период назван климатологами «малым климатическим оптимумом». На этот период приходится эпоха забытых географических открытий (в отличие от Великих географических открытий XV и XVI веков). Забытыми открывателями были ирландские монахи. Они открыли Фарерские острова, Исландию и Индию, Америку. Это стало возможным потому, что потепление улучшило условия мореплавания в Северной Атлантике. Следом за ними эти же открытия повторили норманнские викинги. Они в конце первого тысячелетия н. э. заселили Фарерские острова, а также Исландию. Они также открыли и заселили Гренландию. Более того, в начале второго тысячелетия нашей эры они добрались и до Америки. Тогда были, несомненно, очень теплые условия, что и определило экспансию викингов.


Рис. 17. Изменения температуры в голоцене.

В Гренландии норманнские поселенцы занимались не только охотой и добычей рыбы, но и скотоводством. Мореплавателями они оставались всегда. При этом они очень далеко заплывали на север. Они устанавливали каменные пирамиды, которые служили им ориентирами. Такие пирамиды обнаружены даже на широте 79°, всего в тысяче километров от северного полюса, на берегу пролива Смита, который разделяет Гренландию и остров Элсмир.

Потепление в период раннего средневековья привело к уменьшению влажности в Европе. Об этом свидетельствуют отложения торфяников в Средней Европе. До конца Х века н. э. благоприятные климатические условия были и на Руси. Неурожаи случались редко, не было очень суровых зим и сильных засух. Именно в это благоприятное время был открыт и весьма интенсивно использовался путь «из варяг в греки».

Но уже в первую четверть нашего тысячелетия начинается постепенное похолодание. Священник Ивар Бордемон, который жил в XVI веке, писал о том, что появившийся морской лед отрезал Гренландию от Исландии. В результате поселения норманнов были обречены на вымирание. В последний раз о них упоминалось в 1500 году.

Климатические условия в Исландии также резко ухудшались. В XVI–XVII веках для нее наступили времена тяжелых испытаний. И это не могло не сказаться на населении страны. С начала похолодания до 1800 года оно сократилось вдвое. Голод сделал свое дело. Тяжелой стала жизнь и в Скандинавских странах. Суровые зимы стали повторяться все чаще и чаще, наступали ледники. Неурожаи стали обычным делом.

Похолодание не обошло и равнины Европы, которые настигли суровые зимы. Было все: и падеж скота, и неурожаи, и вымерзание водоемов. Ледники в Альпах и на Кавказе двинулись вперед. Участился сход снежных лавин, а снеговая линия в горах понизилась. Движущиеся ледники вклинивались в леса, перекрывали дороги, которые построили еще римляне. Наступавшими ледниками и снежными лавинами были уничтожены многие поселения.

В то время льды сковывали значительные пространства. В XIV–XVIII веках они несколько раз блокировали побережье Норвегии. Крупные льдины выносило даже к Шотландии. На таких плавучих льдинах эскимосы и достигали Шотландии. Гренландские айсберги достигали берегов Франции. Один из них, согласно историческим хроникам, в 1750 году был вынесен на отмель у острова Бель-Иль. Здесь он таял в течение целого года.

Резкое ухудшение климата происходило и на Руси. В начале второго тысячелетия нашей эры на Руси начался период страшных гроз, великих засух и суровых зим. В летописях сообщается, что в 1143 году в Новгородской земле в течение четырех месяцев не прекращались дожди. В XV веке произошел перелом, и не в лучшую сторону: засухи сменились годами с сильными наводнениями и небывалыми грозами. Десятки тысяч жителей унесли голод и эпидемии. Голод был спутником жизни все эти шесть столетий, с XI по XVII. Известно, что за этот период на Руси в целом и в отдельных районах было 200 голодных лет. Каждый третий или четвертый год был голодным!

Эта эпоха похолодания — малый ледниковый период, — длилась вплоть до XIX века. Только в прошлом веке началось новое потепление. Что касается малого ледникового периода, то он охватывал, несомненно, всю Землю, проявлялся в северном полушарии от Западной Европы до Китая, Японии. Проявлялся он и в Северной Америке. В южном полушарии похолодания тоже были, хотя и меньшие. Из рис. 20 видно, что колебательные изменения климата в голоцене идут на фоне постепенного, но явно выраженного, похолодания.

КЛИМАТ ПОСЛЕДНЕГО ТЫСЯЧЕЛЕТИЯ

Данные об изменениях климата специалисты получают из исторических свидетельств (летописей и т. п.), а также из косвенных наблюдений за такими показателями климата, как годичные кольца деревьев, уровень воды в озерах, состояние горных ледников и т. п. Что касается последних двухсот лет, то за этот период накоплены данные о непрерывных наблюдениях за различными климатическими элементами. Надо сказать, что имеются письменные источники об изменении климата 5000 лет назад в Египте, 4500 лет назад в Китае и 250 лет назад в Южной Европе. Для Северной Европы письменные свидетельства об изменениях климата содержатся за последние 2000 лет. В Японии такие записи начали вестись с 500 года н. э., в Исландии — с 1000 года н. э., в Северной Америке — с 1500 года н. э., в Южной Америке — с 1550 года н. э., в Австралии — с 1800 года н. э. В русских летописях описания изменения климата содержатся начиная с X столетия.

Что касается последнего тысячелетия, то наиболее характерными периодами для него были следующие климатические условия. Примерно VIII–XIV века были сравнительно теплыми. Этот период и был назван малым климатическим оптимумом. Между XIV и XIX веками имел место малый ледниковый период. Во второй половине XIX века началось потепление, которое достигло максимума в 30 — 40-х годах XX века. После этого наступило некоторое похолодание, которое еще продолжается, хотя и с некоторыми колебаниями.

Мы уже говорили о норманнах, которые колонизировали в VIII–XIV веках Гренландию, Исландию и частично Америку. В период потепления климата усилилось экваториальное западное течение. При этом меньше штормило в тропиках. Это позволило полинезийцам плавать в экваториальном поясе. Между народами происходил активный культурный обмен.

Максимум потепления в Европе пришелся на 1200–1250 годы. В отдельных районах это период с 1265 по 1312 год. Необычайно засушливым было время с 1272 по 1291 год. Зато необычайно влажно было между 1313 и 1322 годами. Внутрисезонная изменчивость климата очень увеличилась в 1270–1350 годы.

За последнее тысячелетие средняя температура земной поверхности примерно на полтора градуса была выше, чем до того. Она была несколько выше средней температуры при потеплении в 30 — 40-х годах двадцатого столетия. Количество осадков в период малого климатического оптимума увеличилось. Потепление в этот период не обязательно сопровождается сухостью климата. При этом в ряде районов при более влажном климате в период потепления осадков стало меньше.

При переходе к малому ледниковому периоду (между 1300–1450 годами) средняя температура поверхности Земли резко снизилась на 1,3–1,4 °C. Линия деревьев в горах в Центральной Европе понизилась почти на 200 метров. Вегетационный период роста растений сократился почти на три недели. В это время полярные льды блокировали Исландию и Гренландию. Наиболее холодным был период 1675–1704 годов. Самым холодным был 1695 год. В это время холодные полярные воды преобладали вблизи Исландии и Фарерских островов. Вода в верхнем слое Мирового океана в то время была на полградуса холоднее, чем сейчас. Сильно увеличилась неустойчивость атмосферных процессов. Усилилось образование циклонов, участились наводнения. В 1443–1700 годы зимние температуры были значительно ниже, чем в последующие 250 лет. Но были и исключения. Теплые зимы были в 1665–1686 и 1718–1719 годы.

Как уже говорилось, ледники в Альпах сильно развились и вновь заняли свои прежние места, с которых их согнал малый климатический оптимум. Похолодание и наступление ледников не могло не сказаться на сельском хозяйстве. Так, в некоторых провинциях Китая после сильных морозов в 1654–1676 годы почти вымерзли апельсиновые деревья. В 1782–1787, 1883–1839, 1866–1869 годы в Японии были очень низкие урожаи, характерные для холодной влажной погоды летом.

Малый ледниковый период наиболее ярко проявился в 1550–1700 годы. В Европе наиболее изменчивым был климат в конце XV — начале XVI и в XVI–XVII веках. В горах Европы оледенение достигло максимума к 1600 году. Около 1820 года наблюдалось вторичное усиление оледенения. Ему предшествовало очень сильное похолодание в 1812–1817 годах. Для этого периода было характерно влажное холодное лето и холодная зима.

После весьма изменчивого климата в 1569–1579 годах последовали очень влажные и холодные летние сезоны во второй половине 80-х годов XVI века. В этот период, 13–21 августа 1588 года во время страшного шторма погибла Испанская армада. Четыре из пяти дней были дождливыми.

После 1560 года в Швейцарии наступили очень тяжелые климатические условия. Холодные зимы и весны сменялись холодным и влажным летом. Следствием этого были неурожаи зерна в 1614, 1717, 1731, 1785 годах и неурожаи винограда в 1588, 1628, 1692, 1698 и 1816 годах. С 1680 по 1718 год во Франции был очень холодный климат с катастрофическим выпадением осадков. В 1782–1785 годах в Европе наступили жестокие засухи. Особенно холодными и с избыточным увлажнением были 1812–1821 годы. Очень холодная зима наступила в 1657–1658 годы. При этом средняя температура в районе между Данией и Швецией была примерно на 4 °C ниже, чем за период 1931–1960 годов. В этих условиях проливы к востоку от Ютландского полуострова замерзли.

На Американском континенте в малый ледниковый период также происходили значительные изменения климата. Самые сильные засухи там наблюдались в 1746, 1803, 1824–1825, 1842–1844, 1868–1889, 1891 и 1912 годах.

Как менялся климат в России в последнее тысячелетие?

В первые двести лет второго тысячелетия нашей эры, когда в Европе отмечалось значительное потепление, на территории Руси климат менялся мало. Отмечены за два столетия только четыре особо опасные засухи (в 1022, 1024, 1124 и 1161 годах). Ледовые условия на Руси были в это время весьма благоприятными. Так, в X веке новгородцы вышли на берег Русской Арктики, а в 1132 году они ходили к Карским воротам. Тогда они назывались Железными воротами. Морозы были особенно суровыми в 1230 году. Но с 1232 по 1250 год климат менялся незначительно. Зато после этого последовал период с частыми бурями, сильными дождями, наводнениями, возвратами холодов и жестоких зим. Это было во второй половине XIII столетия. В следующем, XIV столетии непогода усиливалась. Экстремально неблагоприятные климатические явления за сто лет отмечались 40 раз. Половина из них приходится на тридцать лет от 1301 до 1331 года. Все это очень хорошо описано в русских летописях. В них отмечены за это время четыре дождливых периода и паводка в середине лета, два возврата холодов, четыре засухи и одна суровая зима. На это столетие приходится 20 голодных лет. Голод свирепствовал не только на Руси, но и в Европе.

В следующем, XV столетии климат на Руси продолжал ухудшаться. В летописях описаны уже более 50 экстремальных климатических явлений. Они стали причиной десяти голодных годов. Основным бедствием были холодные продолжительные дожди. Они 18 раз за столетие губили озимые и яровые. За эти сто лет наблюдались 15 засух, шесть из которых охватили всю русскую землю. Засуха в 1424 году охватила и Западную Европу.

Шестнадцатое столетие было не лучше. 26 раз наблюдались сильные дожди летом и осенью. 16 раз за сто лет наступили засухи. Четыре из них (1508, 1525, 1533 и 1534 г.г.) нанесли огромный ущерб экономике России. В XVII столетии непогоды продолжались — имели место 24 дождливых года и восемь засух. Каждый четвертый год этого столетия на Руси был голодным. В это время волна похолодания в Арктике распространялась с запада на восток. Во второй половине XVII века увеличивается ледовитость арктических морей и климат становится еще более суровым. Показательно, что в 1696 году недалеко от Архангельска вмерзло в лед 35 кораблей.

Не смягчился климат и в XVIII веке. За сто лет наблюдалось 18 жестоких зим. Особенно суровыми из них были зимы 1709 и 1740 годов. Время от времени (1702, 1709, 1716, 1718, 1765 г.г.) происходили большие наводнения. От них пострадали Москва и ряд других городов России. Засухи повторялись столь же часто (19 засух на столетие). Только в XIX веке началось выравнивание климата. Так, в первой четверти XIX века имели место четыре засухи, но они носили региональный характер. Только одна из них распространялась на обширную территорию. Постепенно увеличивается число мягких зим. Наводнений и дождливых лет также становится существенно меньше. Постепенно улучшаются ледовые условия в Арктике. Все это признаки потепления климата.

Из сказанного выше ясно, что в период похолодания в XI–XVIII веках в России были очень неблагоприятные условия для жизни. Конечно, похолодание коснулось не только России. Исторические хроники Исландии сообщают, что с 975 по 1500 год в стране было 12 голодных лет. За 1600–1804 годы отмечено 34 голодных года.

Все имеющиеся данные говорят за то, что период похолодания климата везде сопровождался увеличением влажности и осадков. Усиливались ветры, а зимы становились холодными. Летом же часто наступали засухи. Все это не могло не влиять на жизнь людей, на их благополучие, здоровье и, в конце концов, на их выживание. Такое положение было характерным практически для всех регионов северного полушария. Социальные явления и исторические события следовало бы также анализировать с учетом условий проживания людей, с учетом климата.

Со второй половины XIX века климат постепенно теплел. Наиболее ярко это проявилось в высоких широтах северного полушария. Потепление достигло максимума в 30 — 40-е годы нашего столетия. Это видно из рис. 21, на котором показано изменение температуры воздуха за последние сто лет. Видно, что на фоне общего потепления климата в отдельные временные отрезки имело место похолодание. После 1940 года происходит незначительное похолодание климата.

Из рис. 18 видно, что при общем потеплении климата имели место похолодания в первом, втором и третьем десятилетии. Эти похолодания были вызваны выбросами в атмосферу вулканической пыли. Специалисты отмечают также связь этого изменения климата с изменением солнечной активности.

Очередное потепление климата привело к резкому уменьшению арктических льдов. Улучшились условия плавания в арктических морях. В период с 1924 по 1945 год площадь льдов в восточном секторе Арктики уменьшалось почти на один миллион квадратных километров. Горные ледники в Альпах с 1866 года начали отступать. Так, ледник Мер-де-Пляс отступил на 1300–1400 м, а ледник Аржантьер — на 1000 м. В Скандинавии, Исландии, на Шпицбергене, в Гренландии, на севере Канады и в Кордильерах Северной Америки происходило то же самое — ледники отступали. На Кавказе с 1890 по 1946 год площадь ледников уменьшилась на 8,5 %. Уменьшились размеры ледников на Алтае, Памире и в Турции. С начала XV века бурно таяли ледники в Экваториальной Африке. В это время граница вечной мерзлоты повсеместно отступила на север. Температура мерзлых пород повысилась примерно на два градуса. Исландия стала освобождаться от льдов. Так, если в малый ледниковый период ее побережье сковывали льды в течение 20 недель, то в 1920–1939 годы этот срок ледовой блокады сократился до двух-трех недель. Реки и озера стали вскрываться раньше, а замерзать позднее. Северные моря стали более теплыми. В них завелась более теплолюбивая рыба. В Баренцевом море, в Атлантике, в Арктическом бассейне и в северной части Тихого океана стали водиться сельдь, треска, скумбрия, морской окунь и другие породы рыб, которых тут раньше не было или было так мало, что об их промысле не могло быть и речи. Морская фауна также изменилась весьма значительно. Раньше стали прилетать птицы.

С потеплением климата изменилась атмосферная циркуляция. В ряде мест уменьшилось количество осадков, увеличилась засушливость климата. Это было характерно для Северной Америки и Советского Союза. Потепление 1930 — 1940-х годов охватило не только северное, но и южное полушарие. Почему в 1940-х годах потепление климата сменилось его похолоданием — остается невыясненным.


Рис. 18. Изменение температуры воздуха для всей Земли за сто лет.

ГЛОБАЛЬНЫЕ ПРИРОДНЫЕ

КЛИМАТИЧЕСКИЕ КАТАСТРОФЫ

За всю свою историю Земля пережила целый ряд глобальных климатических катастроф. Причины их были разные. Разными были и последствия. Нам важно знать об этих катастрофах не только потому, что это история нашей планеты, но и потому, что мы получим представление о том, что может вызвать глобальную катастрофу (экологическую, климатическую) и в чем именно она может проявиться. Важно иметь и представление о том, как Земля восстанавливает свою жизнь после такой глобальной катастрофы.

Природных причин глобальной климатической катастрофы может быть много. Мы рассмотрим только главные из них, тем более что любая из них может повториться. Некоторые из этих природных причин в наше время могут быть вызваны к жизни человеком. Они перестанут быть природными, естественными, а станут антропогенными, обусловленными деятельностью человека. Начнем с рассмотрения сильной запыленности атмосферы и ее влияния на катастрофические изменения климата в глобальном масштабе. «Запыленность» в данном случае сказано очень мягко. Речь идет о тех явлениях, когда в атмосферу выбрасываются за короткое время миллионы тонн пепла и пемзы. Таких катастрофических выбросов за всю историю Земли было не мало. И, естественно, они будут и в будущем. Но для нас они представляют интерес и потому, что дают нам представление, что может произойти, если путем взрыва большого количества ядер-ных бомб мы поднимаем в воздух миллионы тонн земли и пыли (и дыма, который в результате сплошных пожаров, закроет небо в глобальных масштабах). Климатические последствия ядерной войны мы рассмотрим отдельно и достаточно детально (люди должны знать, в какие игры они играют и к чему могут привести эти игры). Здесь же мы, рассматривая влияние вулканических извержений на изменение климата, все время будем помнить, что это только слабое, облегченное в сотни и тысячи раз подобие того, что мы сами сделаем для себя, для всего человечества, если затеем ядерную войну. Актуален ли вопрос сегодня? Он всегда будет актуален. Он будет актуален до тех пор, пока имеются ядерные бомбы, пока хотя бы один человек на Земле знает, как их изготовить. Джинна обратно в бутылку уже не загнать.

То, что запыление атмосферы должно привести к изменению климата, становится понятным из простых логических рассуждений. Солнечная энергия, которая приходит к поверхности Земли в виде света, должна на своем пути через атмосферу преодолеть ее влияние. Часть солнечного света атмосферой поглощается, часть отражается, а также рассеивается и до поверхности Земли не доходит. Чистая атмосфера является более прозрачной для солнечных лучей, чем запыленная. В чистой атмосфере имеются атомы и молекулы, которые поглощают солнечную энергию и затем переизлучают ее обратно в космос. Поэтому и чистая атмосфера (без пыльных примесей и аэрозолей) не является полностью прозрачной. Но когда в атмосферу в результате извержения вулканов или пыльных бурь выбрасываются миллионы тонн пыли и разных аэрозолей, то ее прозрачность падает настолько, что свидетели этого говорят о наступлении мглы. Проанализируем отдельные такие случаи, которые имели место в разное время.

В Исландии в 1783 году произошло извержение вулкана Лаки. Через какое-то время в Европе появился «сухой туман» (мгла). При этом климат существенно изменился: лето было холодным и неурожайным. Тогда Б. Франклин высказал мысль, что именно извержение вулкана было причиной изменения климата. С тех пор ученые прорабатывали эту мысль в деталях. Они доказали, что в результате запыленности земной атмосферы после извержений вулканов солнечное излучение, которое достигает поверхности Земли, может уменьшиться на 10–20 %. Это явление занимает огромные территории и может длиться не только в течение нескольких месяцев, но даже и в течение нескольких лет. В результате Земля недополучает значительное количество солнечной энергии и климатическая система меняется. Очень наглядно это иллюстрируется рис. 19, где показано, как изменялась интенсивность прямого солнечного излучения, которое достигало поверхности Земли, после извержения вулкана Катмай на Аляске в 1912 году. Для лучшей наглядности взята не сама интенсивность, а ее отношение к интенсивности солнечного излучения, которое достигало поверхности Земли в безоблачную погоду до извержения вулкана. Если бы выбросы вулкана не влияли на интенсивность солнечного излучения, которое достигает земной поверхности, то мы имели бы прямую горизонтальную линию, которая начинается у цифры 100(%). Но вы видите, что кривая относительной интенсивности резко падает вниз, и только спустя 4–5 месяцев она очень постепенно начинает выравниваться. В данном случае потребовался почти год для того, чтобы прозрачность атмосферы восстановилась до того значения, которое было бы до извержения вулкана.

Специалисты рассчитали, как должна была измениться средняя температура нижнего слоя атмосферы в результате этого извержения вулкана. Результаты показаны на рис. 20 нижней кривой. Видно, что температура приземного воздуха изменялась бы примерно так же, как и интенсивность прямого солнечного излучения, то есть она уже в первые два месяца после извержения вулкана понизилась на все 5 °C. Для средней температуры это очень много. Скажем, что за последние 100 лет изменения средней приземной температуры не превышали 1 °C. Более того, за последние 500 миллионов лет, то есть в продолжение всего фанерозоя, изменение средней температуры нижнего слоя атмосферы не превышало 5 °C. На самом деле такого изменения температуры не произойдет и при сильных извержениях вулкана. Почему? Потому, что на Земле действует своего рода термос, поддерживающий изменение температуры в определенных пределах. Во всяком случае, он не позволяет температуре (средней температуре) изменяться резко, быстро. Роль этого термоса играет вода в Мировом океане. Запасенное ею тепло и не позволяет средней приземной температуре изменяться быстро. Это и спасает нас от климатических катастроф, которых в противном случае было бы слишком много, чтобы можно было рассчитывать на выживание биосферы и в частности человечества.


Рис. 19. Изменение прямой радиации (%) после извержения вулкана Катмай (Аляска), весна 1912 года.

Специалисты рассчитали, как изменится средняя приземная температура в результате вулканического выброса при учете указанного термоса — вод Мирового океана. Результаты показаны на том же рисунке 20 верхней кривой. Эти изменения также весьма существенны и не могут быть незамеченными, хотя они и составляют только несколько десятых градуса.

Показательным в этом плане является извержение вулкана Эль-Чичон в Мексике в 1982 году, а также ряд других взрывных извержений, которые произошли за последние сто лет, когда уже функционировала мировая сеть метеорологических станций. Так, об извержении в 1883 году вулкана Кракатау в Индонезии известно всем. В результате в атмосферу было выброшено примерно двадцать кубических километров пепла и пемзы. Морские волны, которые породил взрыв, пересекли весь Тихий океан и даже проникли в Атлантический. После извержения во всем мире наблюдались необычайно яркие закаты. Известно, что цветной закат объясняется рассеянием солнечного света на частицах аэрозоля. При этом длина волны излучения меняется — а значит, меняется и цвет света, то есть цветовая гамма заката. Поскольку количество аэрозольных частиц в атмосфере резко возросло, то изменились и закаты. Они стали необычайно яркими. Специалисты считают, что в результате взрывного выброса вулкана Кракатау приземная средняя температура в северном полушарии примерно на полградуса уменьшилась.


Рис. 20. Изменения температуры нижнего слоя атмосферы ΔТ после вулканического извержения.

Когда были проанализированы последствия взрывных извержений вулканов за последние 100 лет, то оказалось, что над сушей средняя приземная температура меняется в среднем на треть градуса, причем максимальное падение температуры наблюдается во второй месяц после извержения. После этого атмосфере требуется несколько месяцев (а то и год) для того, чтобы ее средняя температура восстановилась до нормального уровня.

На северо-западе США 18 мая 1980 года произошло извержение вулкана Сент-Хеленс (Святая Елена). В результате извержения в атмосферу был выброшен большой шлейф пепла. Он быстро распространился над восточной частью штата Вашингтон, а также над соседними штатами Айдахо и Монтана. Измерения на метеорологических станциях позволили установить, что дневная температура (но не средняя!) в местностях под облаком пыли уменьшилась на 8 °C. Причина ясна — уменьшилось солнечное излучение, которое нагревало земную поверхность и нижнюю атмосферу. В то же время ночная температура под облаком повысилась на 4–6 °C. Это тоже понятно — облако заэкранировало Землю и тепло от нее труднее излучалось в сторону космоса. Рассеивание излучения происходило на частицах, из которых состояло облако. Их по оценкам специалистов было около двух миллионов тонн. Размеры их составляли от 1 до 10 мкм (микрометров). Более мелких частиц было значительно меньше. Частицы таких размеров, из которых состояло облако, очень эффективно поглощают и вновь испускают тепловое излучение. Поэтому облако и не давало ночью земной поверхности остывать.

Более мощным было извержение вулкана Тамбора, которое произошло в 1815 году в Индонезии. При этом взрыве в атмосферу поступило 150–180 кубических километров пепла и пемзы. Но об этом извержении имеется меньше фактических данных, поскольку мировой сети наблюдений за погодой еще не было. Однако достоверно известно, что летом 1816 года в Европе и Северной Америке была столь низкая температура, что этот год назвали «годом без лета». В результате был нанесен существенный ущерб природе. Пострадали и люди. Многие тысячи людей в регионах, очень далеких от места взрыва, погибли от голода, поскольку резко снизилась урожайность.

Несмотря на то, что специальных наблюдений за погодой и климатом не велось, ученые находят возможность получить информацию не только об изменении климата, но и о самих извержениях. Для этого изучают слои льда, который оставался нетронутым тысячи лет, то есть крупных ледников, которые сформировались за очень продолжительное время. Причем проводят тщательный химический анализ состава льда. Так определяют в слоях льда соединения серы, которые попали на поверхность льда из атмосферы после взрывов вулканов. Слой за слоем ледник записывал информацию (причем достаточно подробную) об извержениях вулканов, о составе выбросов, а также о времени, когда это происходило.

Таким методом специалисты установили, что в 536 году произошло очень сильное извержение взрывного типа. В исторических записях позднеантичного времени говорится о том, что в этом году в атмосфере образовалась малопрозрачная пелена, которая сохранялась целых два года. Очевидцы писали, что яркость Солнца из-за этой пелены снизилась до яркости Луны. Установлено также, что извержение произошло в тропическом поясе. Об этом можно судить по тому пути, который прошло облако (и оставило свои следы). Специалисты заключают, что аэрозольное облако от извержения этого вулкана было примерно вдвое более плотным, чем то, что было выброшено в атмосферу при взрыве вулкана Тамбора. Не вызывает сомнения, что при этом произошли значительные климатические изменения, но конкретных данных мало. Известно только, что в том году не вызрели фрукты в странах Средиземноморского бассейна и Месопотамии.

Примерно в 1500 году до нашей эры произошло извержение вулкана на острове Санторин в восточной части Средиземного моря. Историки полагают, что вызванная извержением этого вулкана климатическая катастрофа привела, в частности, к гибели высокоразвитой крито-микенской цивилизации, которая до этого времени процветала. В Библии говорится «о тьме египетской».

Можно не сомневаться, что за продолжительные интервалы времени, длящиеся целые геологические эпохи, имели место и намного более мощные извержения вулканов. Последствия таких извержений не могли не быть катастрофическими.

До сих пор мы говорили об отдельных, единичных извержениях вулканов. Это естественно — они более вероятны. Но когда речь идет о длительных интервалах времени (миллионы лет), то надо учитывать и парные или тройные извержения. Вероятность их за такое продолжительное время отнюдь не равна нулю. Кроме того, надо иметь в виду, что в течение геологических периодов вулканическая активность менялась. В определенные интервалы она была значительно выше, чем сейчас. По этим причинам количество аэрозоля, который поступает в атмосферу от взрывных извержений вулканов за одно десятилетие, примерно в 10–20 раз больше того количества аэрозоля, которое поступило в атмосферу от вулкана Кракатау. Земной термос — воды Мирового океана — зависит от количества воды в океане. А это количество за всю историю Земли менялось очень сильно. Когда воды было мало — термос работал плохо и температура уменьшалась очень сильно. Во всяком случае, не менее чем на 5 °C, в результате чего неизбежно должны наступить катастрофические последствия для биосферы.

Специалисты оценили, что если аэрозольное облако будет существовать десяток лет (взрывы идут один за другим), то термос не справляется со своей задачей и наступление глобальной климатической катастрофы в этом случае становится неотвратимым. Конечно, раньше были и другие ситуации, когда извержение вулкана было единичным, но оно было в десять раз мощнее, чем извержение вулкана Кракатау. Ясно, что последствия для климата были не менее трагичными. Специалисты научились определять по количеству аэрозольных частиц то понижение температуры, которое оно вызовет. Так, во время извержения вулкана Эль-Чичон, когда в атмосферу было выброшено несколько миллионов тонн аэрозолей, средняя температура воздуха у поверхности Земли могла понизиться примерно на одну десятую градуса.

Этот вопрос, ввиду его важности, был разработан учеными весьма детально с применением методов математической статистики. Это позволило им сделать вывод, что за достаточно длительные интервалы времени могут возникать мощные аэрозольные слои, в результате чего средняя глобальная температура нижнего слоя атмосферы может понизиться не только на 5, но и на все 10 °C. Это средняя температура. Над сушей она меняется значительно сильнее, чем над водой. Надо ли говорить, что это истинная катастрофа для всего живого. Можно не сомневаться, что Земля пережила такие катастрофы, которые сопровождались вымиранием многочисленных видов животных и растений.

Надо сказать, что пыль в атмосфере образуется не только при извержениях вулканов. Она в большом количестве заносится в атмосферу при пыльных бурях, а также при падении небесных тел на Землю. Так, при падении больших метеоритов образуется дополнительный аэрозольный слой, а точнее, увеличивается, как говорят специалисты, оптическая плотность существующего аэрозольного слоя в атмосфере.

То, что Землю бомбардировали крупные метеориты, хорошо известно. Их размеры могли превышать не только сотни метров, но и достигать километров. Были проведены оценки, которые свидетельствуют о том, что падение одного крупного метеорита на Землю может привести к понижению температуры примерно на 5 — 10 °C. Оно будет продолжаться несколько месяцев, а последствия этого, бесспорно, будут катастрофическими для биосферы. Схема действия метеорита на температуру та же самая: образуются аэрозоли и перекрывают путь солнечному излучению. Может оказаться, что ослабленного этим аэрозолем солнечного излучения будет недостаточно для того, чтобы процесс фотосинтеза протекал успешно. Из-за ослабления солнечного излучения образовавшимся слоем аэрозоля температура воды в Мировом океане может понизиться на 2–3 °C, и это похолодание может затянуться на два года и более. Менее инерционна суша. Поэтому здесь температура понизится значительно сильнее (на несколько десятков градусов). Но она быстрее начнет восстанавливаться. На суше такого восстановления можно ожидать через полгода, а воздух над океаном восстановит свою температуру только спустя два года или более. Было оценено, что в течение первых десяти месяцев после падения астероида средняя глобальная температура может снизиться в среднем на 9 °C.

Столкновение Земли с астероидом — явление не частое. По теории вероятности оно происходит один раз в сто миллионов лет. Речь идет о столкновениях с крупным астероидом, диаметр которого достигает десяти километров. Скорость столкновения оценивается в 20 км/с. При таком мощном ударе о Землю высвобождается энергия, равная в тринитротолуоловом эквиваленте ста миллионам мегатонн. Исследования слоя осадков на границе мелового и третичного периодов показали, что этот слой имеет среднюю толщину порядка 2 см. По этой толщине можно определить полную массу глобальных осаждений. Кстати, частицы этих осаждений оплавлены.

На Земле имеются свидетельства столкновения астероидов с земной поверхностью, которые произошли в прошлом. Таким свидетельством является Карский кратер. Он расположен вблизи реки Кара, которая берет свое начало на Северном Урале и впадает Байдарацкую губу Карского моря. Возраст этого кратера составляет примерно 65 миллионов лет. Это даже не один кратер, а два. Основной — Карский — кратер имеет в поперечнике 60 км, а второй — Усть-Карский, диаметр которого достигает 25 км, уходит на дно Байдарацкой губы.

Около Ростова-на-Дону также имеется кратер (Каменский), который возник примерно в то же самое время. Диаметр этого кратера составляет 11,5 км.

Любопытно, что все три кратера расположены на одной дуге большого круга. Это наводит на мысль, что в космосе двигалась единая система, единое тело, которое в процессе падения разделилось на три части, каждая из которых приземлилась в своем месте. Но поскольку траектория этих трех частей была одной и той же, то они образовали кратеры вдоль одной дуги большого круга.

Надо иметь в виду, что несколько астероидов вызывают при столкновении с Землей больше пыли, чем один астероид, масса которого равна массе этих нескольких астероидов. Поэтому ученые не сомневаются, что при столкновении с Землей описанных трех астероидов в атмосферу поднялось огромное количество пыли, которое вызвало глобальную катастрофу. Как мы уже говорили, в то время образовался глобальный слой твердых осадков толщиной в 2 см, что свидетельствует о мощном глобальном запылении атмосферы.

Конечно, происходили и менее мощные выбросы пыли, когда размеры бомбардирующих Землю астероидов были меньше или значительно меньше. Так, если диаметр астероида составлял 5 км, то и пыли было в 10 раз меньше. Значит, и слой осадков имел толщину только 2 мм. Такой слой, образованный десятки миллионов лет назад, достоверно обнаружить трудно. Оценки показывают, что при столкновении с Землей метеоритом диаметром 2 км в атмосферу выбросится примерно 100 миллиардов тонн пыли. Этого достаточно для того, чтобы так ослабить приходящее к поверхности Земли солнечное излучение, чтобы фотосинтез перестал «работать». Если же фотосинтез прекратится, то произойдет резкое падение средней температуры поверхности Земли.

Мы привели только небольшую часть фактического материала, чтобы проиллюстрировать, что в геологическом прошлом имели место очень существенные кратковременные изменения климата. Специалисты не сомневаются в том, что они оказывали существенное влияние на биосферу Земли. Изменение климата происходило в результате значительного увеличения массы атмосферного аэрозоля. Это вызывало понижение прозрачности атмосферы и значительно уменьшало долю солнечного излучения, которое достигало земной поверхности. Конечно, это ослабление солнечного света было в десятки и сотни раз больше, чем после взрыва вулканов Кракатау или Тамбора. Но как мы убедились, что даже в результате запыления атмосферы после взрывов этих вулканов солнечное излучение, достигающее земной поверхности, было сильно ослаблено. Если выброс пыли был бы в десятки раз больше, то климатическая катастрофа была бы неминуемой. Так, собственно, оно и было в прошлом. И не один раз. Дело в том, что вулканическая активность за всю историю Земли в ее геологическом прошлом была очень неравномерной. Значит, были периоды, когда она была в десятки, а может, и в сотни раз выше, чем в наше время. Значит, при одновременных взрывах нескольких вулканов пыли выбрасывалось намного больше. Это и приводило к образованию в атмосфере мощного слоя аэрозолей, который рассеивал солнечное излучение.

Одновременно Землю бомбардировали и астероиды, что также приводило к дополнительному образованию аэрозолей в атмосфере. Запыление атмосферы происходило и в результате сильных пыльных бурь, которые, без сомнения, разыгрывались на Земле.

Во время пыльных бурь образуются облака пыли, высота которых достигает двух километров и даже больше. Такое облако эффективно рассеивает и поглощает солнечное излучение. За счет поглощенного тепла атмосфера разогревается, поэтому температура уменьшается с высотой не так резко, как обычно. Поэтому воздушные потоки становятся устойчивыми. Чем больше падает температура с высотой, тем неустойчивость воздушного потока увеличивается.

Атмосферный воздух, начиненный частицами пыли, ведет себя не так, как чистый атмосферный воздух, в котором происходят турбулентные (вихревые) движения. Эти движения как будто тормозятся при добавлении частиц пыли. Можно сказать, что энергия вихревого (турбулентного) движения атмосферного воздуха идет на поддержание пыли во взвешенном состоянии. Пыль при этом дольше находится в атмосфере, не осаждаясь на земную поверхность. Но если вихревые движения запыленного воздуха подавляются частицами пыли, то с высотой это способствует увеличению скорости ветра. Такое увеличение происходит очень резко — оно заметно уже на высоте в несколько метров над подстилающей поверхностью. Если при этом поверхность неровная, то увеличивающаяся скорость ветра будет способствовать усилению пылеобразования. Получается, что чем больше пыли в атмосфере, тем более эффективно поднимается новая пыль. Этот процесс постепенно замедляется и даже прекращается тогда, когда пылевое облако становится больше, чем та подстилающая поверхность, которая является источником пыли. Может произойти и другое — облако пыли сносится ветром с того участка, который был донором пыли.

Таким весьма эффективным донором пыли являются пески Сахары. Образовавшиеся там пылевые облака переносятся восточными и северо-восточными пассатами над странами Западной Африки. Далее пассаты выносят сахарские пылевые облака в Атлантику. Их путь прослеживается вплоть до Флориды и даже Мексики. Недаром еще в средние века часть Атлантики у западного побережья Африки в районе островов Зеленого мыса была названа «Морем мрака». Образующиеся пылевые облака занимают площадь до одного миллиона квадратных километров. В одном таком облаке содержится до восьми миллионов тонн пыли.

В период сухого сезона (январь — май) в Западной Африке приносят пыль северо-восточные ветры. Их называют харматан. При таких ветрах в Нигерии солнечное излучение уменьшается на треть, а температура падает на 5–6 °C.

Вопрос о пыльных бурях отнюдь не праздный. Климат зависит одновременно от целого ряда факторов. И изменение какого-либо из них может зацепить всю систему (климатическую систему) так сильно, что все полетит вверх тормашками. Когда говорят об озонных дырах, то тешат себя убаюкиваниями, что оно не может вызвать катастрофических изменений климата. Но это от непонимания. Изменение содержания озона настолько сильно повлияет на климатическую систему, что это трудно и описать. Мало того, что ультрафиолетовое излучение получит доступ к земной поверхности и на определенную глубину к морской и океанической воде. Поднимется уровень Мирового океана. Циркуляция атмосферного газа изменится в корне.

Как изменяется циркуляция атмосферы, можно судить по атмосфере Марса. Там это делают пыльные бури, которые достигают глобальных масштабов. При этом они покрывают всю планету толстой пеленой. Мутная пелена планеты может почти достигать конусообразных вершин, высота которых достигает 15 километров и более. Такова толщина пыльной пелены. Надо помнить, что на Марсе нет водной поверхности (океанов) и вся поверхность планеты способна быть донором пыли. Образование пыли на Марсе связано с количеством тепла, которое планета получает от Солнца. Марс движется вокруг Солнца по очень вытянутой эллиптической орбите. Поэтому он то сильно приближается к Солнцу, то удаляется от него. Количество тепла, которое Марс получает от Солнца, поэтому меняется так же сильно. Глобальные пыльные бури зарождаются и развиваются в то время, когда Марс находится ближе всего к Солнцу, то есть в перигелии. В это время Марс получает в полтора раза больше тепла, чем в афелии, когда он максимально удален от Солнца. В южном полушарии Марса в перигелии конец весны — начало лета. Тогда вначале в южных субтропических и средних широтах начинают образовываться пыльные облака. Процесс развивается быстро, и через несколько дней все эти широты покрываются пыльной пеленой. Спустя примерно неделю это пыльное одеяло дотягивается до обеих полюсов. Напомним, что толщина пыльного марсианского облака достигает 10 км. Может быть и больше. Состав марсианской пыли таков, что она поглощает солнечный свет несколько сильнее, чем силикатная пыль на Земле. Аккумулируя солнечное тепло, пылевое облако повышает температуру атмосферного газа на несколько десятков градусов. Но поскольку тепло в виде солнечных лучей не доходит до поверхности Марса, то она остывает на 10–15 °C. Мы говорили, что пыль изменяет циркуляцию атмосферы. Это наблюдается и в атмосфере Марса. Пока его атмосфера чистая, то в ней действует очень регулярная система циклонов. Но как только образуется пылевая пелена, всякая циклоническая активность там прекращается до тех пор, пока облако пыли не рассеется. А оно может существовать в продолжение месяца и более.

Что касается земной атмосферы, то особые для движения воздуха условия создаются в высоких широтах Арктики. Там в конце зимы — весной формируется устойчивая воздушная масса. Поэтому осадков здесь в этот период мало. Пыль (аэрозоли) из атмосферы вымывают осадки. Но раз их мало, то аэрозоли в продолжение нескольких месяцев висят в воздухе, образуя так называемую арктическую дымку. Слои этого аэрозоля достигают высоты до 5 км. В их составе много сажи. Арктическая дымка существенно влияет на отражение солнечного излучения. Эффективность отражения зависит и от угла падения солнечных лучей на аэрозольный слой. Важен при этом и характер (в смысле отражения солнечных лучей) подстилающей земной поверхности. Поэтому над открытым океаном, воды которого плохо отражают солнечное излучение, общая отражательная способность (альбедо) аэрозольного облака и подстилающей поверхности в этом случае увеличивается на несколько процентов. В то же время надо льдом, который хорошо отражает солнечное излучение, полная отражательная способность может понизиться примерно на десять процентов. В результате этих изменений альбедо температура может меняться в определенных местах на несколько градусов.

Имеется и еще один фактор, который способен сильно изменить климатическую систему и изменить климат в неблагоприятном направлении. Это дым от пожаров. Пожары пылают над землей всегда. Но их то больше, то меньше. Мы говорим о больших пожарах, во время которых в атмосферу поступает много аэрозолей. Мы рассматриваем здесь влияние дыма больших пожаров на климат и потому, что в случае глобального ядерного конфликта пожары обязательно охватят весь земной шар, во всяком случае его сушу. На последствиях этого мы остановимся позднее, а сейчас проанализируем имеющиеся данные о действии дыма обычных пожаров на изменение климата.

Мощным источником аэрозолей являются большие лесные пожары. Они наблюдаются и в наше время, пылали они и в прошлом. Никоновская летопись описывает пожары, которые возникали в засушливое лето 1371 года. Тогда над обширными территориями стояла дымная мгла. В летописи сказано, что Солнце было тусклым и на нем «аки гвозди» были видны пятна, звери бежали из лесов, а осенью хлеб почти не вызрел, дав «тощее зерно». Летом 1915 года огромные лесные пожары охватили Западную Сибирь. Летом 1972 года на Европейской части Советского Союза в лесах и торфяных болотах возникали пожары, а дымная мгла висела в течение нескольких недель. Она простиралась до высоты в 5 км. Обычно эта высота составляет 2–3 км. Дымные облака очень стабильны. Они распространяются на тысячи километров. Так, в августе 1972 года облако дыма, которое образовалось в средней части Европейской части территории Союза, обогнуло Уральский хребет и в две струи шириной в несколько сотен километров достигло озера Балхаш.

Как правило, большие пожары происходят в сухую погоду, в условиях антициклона. В центре антициклона развиваются направленные вниз движения воздуха. Они давят дым к земной поверхности. На периферии антициклона воздух устремляется вверх. Вместе с воздухом дым может подняться до высоты 8 км и даже в стратосферу (25 км).

Очень показательно развитие облака дыма, которое образовалось в результате лесных пожаров в западной части Канады в сентябре 1950 года. Это был огромный пожар, охвативший площадь леса около сорока тысяч квадратных километров. Буквально через два дня после начала наиболее интенсивной фазы пожаров облако дыма покрыло фактически всю Канаду и даже все восточные штаты США к востоку от Миссисипи и ряд других. В полдень в городах пришлось включать уличное освещение, настолько стало темно из-за дымового облака. Облако дыма двигалось в сторону Западной Европы и спустя пять суток достигло ее. Его можно было наблюдать везде: от Испании до Скандинавии. Поднятые в воздух английские специальные высотные самолеты обнаружили частицы дыма даже на высоте 10–12 км. Беспокойство англичан можно понять. Они наблюдали целый ряд очень необычных явлений. На небе были синие Солнце и Луна. Все были встревожены.

Вблизи Вашингтона дым был обнаружен на высоте 2,5–5 км. Слой дыма был хорошо перемешан, а снизу и сверху его граница была четко очерчена. Слой дыма уменьшил солнечное излучение, приходящее к земной поверхности, вдвое. В течение четырех дней температура была ниже обычной примерно на 4 °C.

Надо иметь в виду, что рассеяние и поглощение частицами (аэрозолем) солнечного излучения зависит от размеров частиц. Поэтому вулканическая пыль и дым по-разному влияют на солнечное излучение. Мы видели раньше, что при извержении вулкана Сент-Хеленс облако вулканической пыли приводило к некоторому повышению температуры ночью. Облако дыма такого эффекта не производит, поскольку частицы, из которых состоит дым, более мелкие, чем вулканические.

Приведенные выше данные интересны сами по себе. Но мы помним главную проблему, которой посвящена данная книга — проблему выживания человечества. Поэтому стараемся давать такие сведения, которые позволили бы оценить, что может с нами произойти при определенных критических ситуациях, которые мы создаем себе все в большем и большем количестве.

КРИЗИСЫ В ГЕОЛОГИЧЕСКОЙ ИСТОРИИ



Поделиться книгой:

На главную
Назад