Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Жизнь на скорости света. От двойной спирали к рождению цифровой биологии - Крейг Вентер на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Мы начали все сначала. Первым делом мы заново оценили геном, который хотели сконструировать, чтобы абсолютно убедиться, что мы начинаем с точной вирусной последовательности. Мы брали за основу этой последовательности ту, что была в исторической статье 1978 года Фреда Сэнгера и его коллег. Нам повезло, что Клайд Хатчинсон сохранил образец того вируса, который исходно секвенировали, поэтому мы могли пересеквенировать его новейшими методами, чтобы проверить точность работы команды Сэнгера. Мы нашли только три отличия на 5384 пары оснований, и было неизвестно, то ли это ошибки в исходном секвенировании, то ли изменения, произошедшие при новом выращивании образца вируса. В любом случае сиквенс Сэнгера оказался очень точным, что подтвердило успех его команды.

Точность секвенирования всегда была проблемой для геномики. Точность изрядной части ранних сиквенсов ДНК была намного ниже 99 % (одна ошибка на 100 оснований). Лишь немногие лаборатории придерживались «высокого» стандарта, установленного для человеческого генома, – одна ошибка на десять тысяч оснований. Между тем для написания генетического текста нужна точность на порядки выше, чем текущие стандарты для чтения ДНК. Поскольку оцифрованные последовательности ДНК должны стать основой для конструирования и синтеза генома, сиквенс, на котором она основана, должен быть чрезвычайно точным, чтобы организм с таким геномом мог жить. (Позже мы установили, что одна «опечатка» – выпадение всего одного основания – из 1,1 миллиона букв генетического текста может быть вопросом жизни и смерти, когда речь идет о создании первой синтетической клетки.)

Со времен работы Синшаймера мы знали, что геном phi X 174, чтобы стать заразным, должен быть кольцевым{115}. Чтобы синтезировать работающий кольцевой геном, мы разбили проблему на несколько этапов. Внеся в компьютер последовательность ДНК фага, мы затем разделили геном на перекрывающиеся куски, которые были достаточно малы, чтобы их мог сделать синтезатор ДНК. Чтобы синтезировать фага, мы сделали 259 олигомеров, каждый 42 основания в длину. Перекрываясь, они покрывали весь геном. Смысловая[12] цепочка должна была сформироваться из 130 этих олигомеров, а другие 129 должны были образовать антисмысловую цепочку. Поскольку геном phi X 174 состоит из 5384 пар оснований, в конструкции предусматривались области перекрывания между кусками из 42 оснований (мы их назвали «сорокдвамеры» – от греческого meros, т. е. часть, в данном случае нуклеотид), а также дополнительные последовательности, которые мы добавили к каждому концу генома, чтобы сдублировать место рестрикции (в геноме оно содержится только один раз – там, где фермент рестриктаза PstI может резать ДНК), чтобы создать перекрывающиеся концы, которые свяжутся друг с другом, заставив ДНК закольцеваться.

Зная, что лишь половина синтезированных «сорокдвамеров» будет правильной длины, мы рассудили, что сильно улучшим точность сборки, предварительно очистив олигонуклеотиды. Гели для секвенирования ДНК разделяют молекулы ДНК разной длины и способны различать молекулы с разницей всего в один нуклеотид. В процессе, который называется гель-электрофорез, отрицательно заряженные молекулы нуклеиновой кислоты двигаются сквозь агарозный гель под действием электрического поля. «Усеченные» олигомеры меньше и в силу этого двигаются быстрее, чем олигомеры правильного размера. Просто разрезав гель бритвенным лезвием, мы могли отделить полосу с молекулами нормальной длины, чтобы использовать их для сборки смысловой и антисмысловой цепочек phi X 174.

Теперь у нас были компоненты для сборки генома фага – очищенные олигомерные цепочки. После этого мы объединили смысловые и антисмысловые олигомеры, которые, благодаря перекрывающейся схеме, сами выстроились в правильном порядке, подобно самособирающимся блокам лего. Тогда мы связали их насовсем с помощью фермента ДНК-лигазы. Вместо того фермента, что был у Корнберга, мы выбрали более мощную лигазу из высокотемпературного организма, которая долго сохраняла активность. Оставив пул олигомеров на восемнадцать часов реагировать при температуре в 55 градусов, мы получили из олигомеров по 42 основания более крупные фрагменты: в среднем по 700 оснований, а некоторые – по две-три тысячи.

Из этих более длинных кусков ДНК мы смонтировали полноразмерную геномную последовательность phi X 174 методом полимеразной цикличной сборки (ПЦС). Это вариант полимеразной цепной реакции (ПЦР) – обычного метода размножения ДНК. С помощью ПЦР мы можем приумножить небольшие количества ДНК. При нагреве ДНК денатурируется или «тает»: двойная спираль разделяется на две одноцепочечные молекулы. Дальше термоустойчивая Taq-полимераза, используя эти цепочки как матрицы, делает две новых цепочки ДНК. Это удваивает исходную ДНК, так как каждая из новых молекул содержит одну старую и одну новую цепочки. Затем каждая из этих цепочек может быть использована для создания новых копий и так далее.

В варианте процесса ПЦС мы начали со всех более крупных кусков ДНК с первого этапа сборки (в которых было в среднем по 700 пар оснований). Мы снова расплавили двухцепочечную ДНК до одиночных цепочек. Вместо копирования одинарных цепочек ДНК-полимеразой мы позволили реакционной смеси остыть, чтобы одинарные цепочки слиплись с любыми комплементарными участками. Поскольку последовательности наших фрагментов частично перекрывались на концах, в такой смеси часть цепочек объединялась не со своей парой, а с парой «соседнего» фрагмента, сцепляясь с ним лишь концами – как если совместить только первые фаланги ваших указательных пальцев. Большая часть таких цепочек оставалась одинарной, и ДНК-полимеразы, используя их как матрицу, достраивали к ним комплементарные цепочки. В результате из двух фрагментов получался один, почти вдвое большей длины. Повторяя этот цикл, можно построить кусок ДНК длиной в несколько тысяч пар оснований, причем сделать это относительно быстро. Циклы продолжаются, пока растущие молекулы не перекрывают геном полностью. После этого для размножения полного генома используется обычная ПЦР. Чтобы превратить эти линейные геномы фага в способные заражать кольца, фермент PstI срезает по несколько нуклеотидов одной из цепочек на концах амплифицированных молекул. В результате на концах молекул образуются короткие одноцепочечные «хвосты». Они слипаются друг с другом, замыкая молекулу в кольцо.

Далее идет важный тест – проверка, удалось ли нам создать точный синтетический геном, способный к заражению. Чтобы вирус был заразным, синтетическая ДНК должна быть опознана ферментными системами в клетках E. coli, сначала будучи переписана на мРНК, а потом в вирусные белки посредством механизма синтеза белков E. coli. Чтобы гарантировать нашей синтетической ДНК попадание в целевую бактерию-хозяина E. coli, мы применяли метод электропорации, при котором электрическое поле пробивает маленькие временные дырочки в клеточной стенке E. coli. После заражения синтетическим phi X 174 бактерий помещали на агар (желеподобную смесь агарозы и агаропектина) в чашке Петри и оставляли инкубироваться при 37 градусах от 6 до 18 часов.

Если бы на слое E. coli появилось пятно лизиса – красноречивый четкий круг, – было бы ясно, что новая стратегия сработала. Пятно показало бы, что в бактерии успешно вырабатываются вирусные белки, самособираясь в полноценные копии вируса phi X 174, заставляющие клетки-хозяева лопаться, выпуская вирус и заражая окружающие клетки E. coli. Открыв инкубатор, Хэм позвонил мне, попросив как можно быстрее прийти в лабораторию. Когда он показал мне первую чашку, я был очень доволен: по всей поверхности были явные пятна лизиса. Синтетическая ДНК бактериофага действительно могла заражать, воспроизводиться и затем убивать бактериальные клетки. У Хэма и Клайда от волнения кружились головы. Весь процесс создания синтетического генома и заражения клеток занял у нас две недели.

Чтобы представить контекст наших опытов, надо сказать о еще более отважной попытке создать хотя бы отчасти жизнеспособный вирус путем пошагового процесса, предпринятой годом раньше Экардом Уиммером из Университета штата Нью-Йорк в Стони-Бруке. У его команды получение первого синтетического РНК-вируса путем сборки генома вируса полиомиелита в семь тысяч оснований из небольших синтетических олигомеров ДНК, следуя расшифровке, которую он и его коллеги опубликовали в 1981 году, заняло три года. Синтетическая ДНК была с помощью РНК-транскриптазы переведена в заразную вирусную РНК. Этот первый синтетический РНК-вирус полиомиелита страдал той же самой неточностью синтеза олигомеров, которая подкосила наши собственные опыты, и в результате его активность была сильно снижена{116}. У достижения Уиммера был один негативный аспект: он предпочел опубликовать это скорее как предостережение научному сообществу, чем как обычный научный результат, породив тем самым споры и беспокойство в обществе.

Следуя за работой Уиммера, мы сократили сроки создания вируса с годов до дней. Поскольку эта работа финансировалась МЭ, я связался с Ари Патриносом, чтобы уведомить правительство о нашем успехе. Вскоре поступил официальный ответ, который я приводил в автобиографии «Расшифрованная жизнь».

* * *

Прямо на следующий день я обнаружил себя сидящим в ресторане на Пенсильвания-авеню (в нескольких кварталах от Овального кабинета), куда был призван всего за два часа до этого на срочный деловой ланч Ари Патриносом, работавшим в биологическом отделе министерства энергетики, которое спонсировало мои исследования, и сыгравшим в свое время важную роль в совместном представлении первого человеческого генома в Белом доме. Позже к нам присоединились его босс, Рэймонд Ли Орбах, директор Управления науки и техники МЭ; Джон Марбургер III, советник президента по науке и директор Управления науки и технической политики; и Лоуренс Керр, директор по исследованиям, развитию и проблеме биотерроризма Управления внутренней безопасности Белого дома. После того как в октябре 2001 года нескольким политикам были присланы по почте споры сибирской язвы, убившие пять человек, правительство США всерьез занялось подготовкой к отражению будущих биологических терактов{117}.

Я объяснил им, насколько быстро мы создали phi X 174 нашим методом исправления ошибок и что сейчас мы запросто могли бы сделать это еще быстрее. Керр выглядел понимающим, и вопросы, вытекающие из возможности создавать синтетические вирусы, видимо, прошли весь путь в Белый дом – вплоть до решения о возможных ограничениях публикации наших результатов.

Я настаивал на рассмотрении этой проблемы правительством еще десятью годами ранее, когда мою группу, тогда еще в НИЗ, министр здравоохранения попросил секвенировать геном вируса оспы. Это было частью международного соглашения о ликвидации остаточных запасов вируса оспы в Центрах по контролю заболеваний в Атланте и аналогичной организации в Москве[13]. Уничтожать или нет оставшиеся штаммы оспы – было в последние годы одним из самых яростных споров в мировом здравоохранении. Была надежда, что если, прежде чем уничтожить вирус, секвенировать геном, то важная для науки информация сохранится. Секвенирование, подробно описанное в «Расшифрованной жизни», началось в моей лаборатории в НИЗ и закончилось в TIGR. Анализируя геном, мы имели несколько причин для беспокойства.

Прежде всего мы не знали, позволит ли (и должно ли позволять) правительство публикацию последовательности и ее анализа. Наше беспокойство насчет обнародования таких знаний было понятным: этот вирус убивал людей миллионами. За всю историю человечества до эпидемии ВИЧ вирус натуральной оспы унес больше человеческих жизней, чем все прочие инфекционные агенты, вместе взятые. Предполагается, что он возник около 3000 лет назад в Индии или Египте, после чего оспа появлялась в виде периодических эпидемий, которые прокатывались по континентам, убивая до 30 % зараженных, обезображивая и лишая зрения тех, кто выжил. Считается, что оспа выкосила значительную часть коренного населения обеих Америк, где европейские поселенцы нарочно давали туземцам зараженные одеяла, чтобы распространить инфекцию{118}. Забирая жизни королей, королев, царей и императоров, оспа меняла ход истории{119}.

В конце концов я оказался в Национальном институте здравоохранения в Бетесде у его директора Бернадин Хили (умершей в 2011 году от опухоли мозга) в компании представителей разных федеральных ведомств, в том числе министерства обороны. Эта группа была по понятным причинам встревожена перспективой открытой публикации данных о геноме оспы. Некоторые радикальные предложения включали засекречивание моих исследований и создание периметра безопасности вокруг нового здания моего института. К несчастью, это совещание не выработало хорошо продуманной долгосрочной стратегии. Вместо этого была принята политика, выдержанная в духе холодной войны. В рамках соглашения с СССР (распавшимся в конце 1991 года) в России секвенировали геном возбудителя так называемой «малой оспы»[14], а мы – геном возбудителя типичной формы. Узнав, что русские готовятся опубликовать свои данные о геноме, правительство поторопило меня с завершением работы, чтобы опубликоваться первыми, и все разумные обсуждения на этом закончились.

На сей раз все было иначе: Белый дом президента Буша весьма обдуманно рассматривал возможные последствия нашей работы над синтетическим вирусом. После обширных консультаций и исследований они, к моему удовлетворению, приняли решение об открытой публикации нашего синтетического генома phi X 174 и связанной с этим методики. Нам повезло, что часть финансирования на этом первом этапе наших исследований была государственной, поскольку это гарантировало быстрый ответ от регулирующих органов. Я знал, что без общественного обсуждения и рассмотрения правительством мы могли бы получить предсказуемый рефлекторный ответ, продиктованный скорее атмосферой страха, преобладавшей после теракта 11 сентября и работы Уиммера по вирусу полиомиелита, нежели спокойной объективной логикой и доводами. Работа в конце концов появилась в Proceedings of the National Academy of Sciences 23 декабря 2003 года. Условием публикации (выдвинутым правительством и принятым мною) было создание межведомственного органа под названием Государственный научный консультативный совет по биобезопасности (NSABB), который будет заниматься биотехнологиями двойного назначения.

На пресс-конференции в Вашингтоне, устроенной министерством энергетики для обсуждения статьи, министр Спенсер Абрахам назвал эту работу «совершенно изумительной» и предсказал, что она может привести к созданию генно-инженерных микробов, скроенных для борьбы с загрязнениями или поглощения излишков углекислоты или даже для обеспечения в будущем потребности в топливе. Это было бы настоящей наградой – как для меня, так и для общества. Теперь мы умеем составлять синтетические геномы, и это, я надеюсь, приведет к невероятному прогрессу в проектировании микроорганизмов для многих жизненно важных энергетических и природоохранных целей. Некоторые, к примеру, смогут превращать солнечный свет в горючее, другие – поглощать загрязнители или очищать выхлопные газы от углекислоты.

Мы повторили то, что сделал Корнберг в 1960-х с ДНК-полимеразной копией тогда еще неизвестного генома phi X 174 – только на этот раз используя синтетическую ДНК. Эти опыты подтвердили, что в ДНК содержится необходимая и достаточная информация для формирования вируса: доказано синтезом. Мы поняли, что, имея точные фрагменты ДНК размером тысяч в пять оснований, мы преодолели ключевое ограничение синтеза ДНК и можем делать следующий шаг. Теперь мы были готовы направиться туда, где раньше не бывал никто: создать полный синтетический геном бактерии и попытаться получить первую синтетическую клетку. И мы совершенно не представляли, что это займет у нас целых семь лет.

Однако уже тогда мы осознали, что если мы преуспеем в способности конструировать текст жизни в компьютере, химическим синтезом переводить его в программу ДНК и заставлять синтетический текст работать для создания нового организма, то это будет означать, что витализм действительно мертв, и заодно – что у нас будет более ясное представление о том, что на самом деле значит слово «жизнь». Слияние цифровых миров – машинного и биологического – откроет замечательные возможности создавать новые виды и направлять будущую эволюцию. Мы достигли важнейшей точки бытия – начала времени, «когда все станет возможным»[15], и можем в самом деле достичь того, что Фрэнсис Бэкон описывал как покорение природы. Но это великое могущество влечет за собой долг объяснить нашу цель – так, чтобы общество в большинстве смогло ее понять – и, что еще важнее, использовать эту мощь ответственно.

Задолго до того, как мы наконец преуспели в создании синтетического генома, я стремился предусмотреть все этические последствия этого достижения для науки и общества. Я был уверен, что кое у кого создание синтетической жизни вызовет тревогу и даже страх. Их будут интересовать последствия для здоровья людей и окружающей среды. В рамках образовательной работы своего института я организовал знаменитую серию семинаров в Национальной академии наук в Вашингтоне, где выступили весьма разнообразные и широко известные докладчики – от Джареда Даймонда до Сиднея Бреннера. Следуя своему интересу к проблемам биоэтики, я также пригласил прочитать одну из лекций очень влиятельную фигуру в здравоохранении и этике – Артура Каплана, работавшего тогда в Центре биоэтики при Университете Пенсильвании.

Как и было принято, после лекции я пригласил Артура Каплана на обед. За столом я сказал что-то в том духе, что, мол, имея дело с широким спектром современных биомедицинских проблем, он должен был к нынешнему моменту слышать всё. Арт ответил, что да, конечно, в основном слышал. А доводилось ли ему сталкиваться с темой создания новых синтетических форм жизни в лаборатории? Он с удивленным видом признал, что определенно никогда не слышал о таком, пока я не спросил. Не будет ли ему интересно рассмотреть эту проблему, если я дам его группе необходимое финансирование? Арт загорелся темой синтетической жизни, и мы тут же договорились, что мой институт даст его отделу средства для независимого анализа последствий наших работ по созданию синтетической клетки.

Каплан со своей командой провел серию рабочих групп и интервью, приглашая самых разных специалистов, религиозных лидеров и знаменитостей. Меня позвали на одну сессию для описания запланированного нами научного подхода и ответов на вопросы. Я очутился среди представителей нескольких крупных религий. Я был очень удивлен и доволен, когда обсуждение пришло к тому, что поскольку они не смогли найти ни в Библии, ни в священных писаниях других религий запрета на создание новых жизненных форм, то это приемлемо.

После этого я не слышал о биоэтическом исследовании Университета Пенсильвании, пока результаты не были опубликованы в Science, в статье «Этические аспекты создания минимального генома», где соавторами были Милдред Чо, Дэвид Магнус, Артур Каплан, Дэниэл Макги и группа этических проблем геномики{120}. (Статья вышла в том же выпуске Science от 10 декабря 1999 года, в котором появилась и наша работа «Массированный транспозоновый мутагенез и минимальный геном микоплазмы», описывающая, как мы с помощью транспозонов определяли, какие гены критически важны для жизни.) Авторы приветствовали нашу работу как важный шаг вперед в генетической инженерии, которая «позволит создавать организмы (новые и уже существующие), просто зная последовательность их геномов».

В начале статья обращала внимание на то, как неожиданное объявление о клонировании овечки Долли в феврале 1997 года выявило серьезное отставание принятых понятий об этичности и законности от научного прогресса. (На самом деле Долли была не первым клонированным животным, но первым клонированным из взрослой клетки.) Эта новость стала шоком для биологов – мало кто считал возможным взять взрослую дифференцированную клетку и перевести часы развития назад настолько, чтобы создать эмбриональную клетку, которая может вырасти в новое животное. Овца, которая дала клетку молочной железы для создания Долли, не «восстала из мертвых», как утверждали некоторые{121}. Жить продолжала только ее ДНК-программа.

Как я и надеялся, когда дошло до изучения проблем, возникших при создании минимального генома, инициативой завладела пенсильванская команда. С моей точки зрения, это было особенно важно: это означало, что проблемы поставили ученые, участвующие в основном исследовании и в зарождении самих идей, воплощенных этих достижениях, – а не сердитые или встревоженные люди с улицы, протестующие против того, что их не спросили (пусть даже потом некоторые маргинальные группы и заявят об этом). Авторы указали, что, хотя искушение демонизировать нашу работу может быть непреодолимым, «научное сообщество и публика могут начинать понимать, что стоит на кону, поскольку уже предприняты усилия определить природу занимающейся этим предметом науки и поставить ключевые этические, религиозные и метафизические вопросы так, чтобы их обсуждение могло успевать за наукой. Если этика отстанет от этой линии исследований, то только потому, что мы ей это позволим»{122}.

Далее статья обращалась к широкому кругу проблем – от потенциальной опасности выпуска новых видов для окружающей среды до вопросов патентного права. Однако поскольку реальный синтез таких геномов казался делом очень отдаленного будущего, в большинстве сообщений СМИ был пропущен один из ключевых абзацев, касающийся безопасности: «Знание последовательностей особо опасных патогенов может создать для общественного здравоохранения и безопасности угрозы, способные перевесить выгоды. Это тревожит, поскольку современные способы регулирования почти не обеспечивают надзора за этими технологиями».

Помня о спорах вокруг уничтожения оспы и сомнениях насчет публикации вируса полиомиелита и, возможно, предвидя постоянные будущие заламывания рук в ожидании оживления пандемических штаммов в ходе исследований гриппа{123}, авторы спрашивали, надо ли нам регулировать науку и если да, то в какой мере. Подобные вопросы будут сопровождать каждый следующий шаг науки о синтетических геномах.

Как ни странно для публикации в научном журнале, статья в Science отвела немало места размышлениям о влиянии редукционистской науки на «смысл и происхождение жизни», но не взялась за непростую проблему – что вообще значит это короткое слово «жизнь». Авторы предупреждали:

Есть серьезный риск, что определение и синтез минимальных геномов будут представлены учеными, описаны прессой или восприняты публикой как доказательство, что жизнь – это всего лишь ДНК или может быть сведена к ней… Это может оказаться угрозой для взгляда на жизнь как на нечто особенное. По крайней мере со времен Аристотеля существовала традиция, рассматривающая жизнь как нечто большее, чем просто физические процессы. На ней основано представление о взаимосвязанности всех живых существ и чувство, что они в каком-то важном смысле есть нечто большее, чем организованная материя.

Чо и др. также уделили много внимания религиозным проблемам, словно подчеркивая свою озабоченность ими: «Удивительно, что крупные западные религиозные сообщества почти не проявляли склонности дать определение жизни или обозначить ее суть». Таким образом эта ответственность возлагалась на науку – несмотря на заключение самих авторов, что как раз «чисто научное определение жизни» и вызвало беспокойство.

Самым, пожалуй, настоятельным вопросом, по мнению пенсильванской команды, было «не будет ли такое исследование недозволенным вмешательством в то, что лучше бы оставить природе». Важный – и для меня обнадеживающий – вывод работы вторил тому, что я слышал прежде на обсуждениях: «Преобладающая [религиозная] точка зрения состоит в том, что, хотя есть причины для осторожности, в намерении ученых создать минимальный геном нет ничего такого, что автоматически запрещалось бы обоснованными религиозными соображениями».

Это не значило, однако, что религиозные соображения не имеют отношения к делу. Один взгляд на нашу работу состоял в том, что она знаменует прогресс человечества. Другой – что это лишь новейший пример научной спеси, неизбежно ведущей к катастрофе, – тема, которую снова и снова рассматривает и разрабатывает популярная литература, от голема, одушевленной глиняной фигуры из иудейских легенд, до монстра из «Франкенштейна» Мэри Шелли, «Острова доктора Моро» Уэллса и воскрешенных динозавров из «Парка юрского периода» Майкла Крайтона.

Именно этот вопрос будет определять одиннадцать лет спустя реакцию прессы на наше объявление о первой синтетической клетке, когда все дружно двинутся по одной мысленной дорожке: «А не играем ли мы в Бога?» Статья пенсильванской группы мудро указывала, что это возражение – средство скорее пресечь дискуссии о моральной ответственности за манипуляции жизнью, чем стимулировать их. Она утверждала, что можно найти баланс между пессимистическим взглядом на нашу работу как очередной пример спеси и оптимистическим – как на равносильную «прогрессу человечества». Авторы добавляли, что «хороший распорядитель» продвигал бы работы по геномике осторожно, рассматривая собственные цели и применение новых знаний в свете чтимых традиций. Они заключали, что нет веских этических причин, по которым команда должна была бы воздержаться от продолжения работы в этой области, пока она продолжает участвовать в публичных обсуждениях – что мы и делаем.

Глава 6. Первый синтетический геном

Нынешние машины для будущего – как древние ящеры для человека.

Сэмюел Батлер, 1872{124}

Стремление манипулировать жизнью в лаборатории прошло долгий путь от зари эпохи рекомбинантной ДНК в 1970-х, когда Пол Берг, Герберт Бойер и Стэнли Коэн начали резать и склеивать ДНК. К концу десятилетия появился лабораторный штамм E. coli, генетически измененный таким образом, чтобы производить человеческий инсулин. С тех пор ученые заставили бактерии делать человеческие факторы свертывания крови для лечения гемофилии и гормон роста для лечения карликовости. В сельском хозяйстве ДНК изменяли, чтобы сделать растения устойчивыми к засухе, вредителям, гербицидам и вирусам; чтобы увеличить урожайность и питательную ценность; для производства пластмасс{125}; для снижения использования удобрений. Гены животных меняли, чтобы увеличить выход продуктов, создать модели человеческих болезней, сделать такие лекарства, как антикоагулянты, и получить «очеловеченное» молоко и свиные органы, которые можно пересаживать людям. Генно-модифицированные клетки использовались для производства белков, от антител до эритропоэтина, который повышает производство эритроцитов. Некоторые пациенты испытали на себе генную терапию, в ходе которой в геном некоторых клеток тела добавляется программная «вставка», чтобы лечить генетические нарушения: иммунодефицит, слепоту и врожденное свойство крови – бета-талассемию.

Сегодня генная инженерия превратилась в то, что более известно как синтетическая биология. Различие между биологией молекулярной и синтетической стерто, и в большинстве применений реальной разницы нет. «Синтетическая биология» просто звучит привлекательнее – точно так же физиология заместилась «биологией систем», а некоторые вполне традиционные химики предпочли переназвать свою работу нанотехнологией. Но как ни назови, а по всему земному шару множество ученых занимается генной инженерией, сочетая биологию с инженерными подходами.

Последние достижения слишком многочисленны, чтобы приводить их подробный список, но вот всего лишь несколько примеров генно-инженерных открытий. Рабочая лошадка молекулярно-биологических лабораторий, E. coli, была в 2003 году{126} частично минимизирована (удалено 15 % ее ДНК) Фредериком Блаттнером из Университета Висконсина, пытавшимся сделать ее более надежной основой для промышленного производства. В Гарварде лаборатория Джорджа Чёрча разработала метод, названный MAGE – мультиплексное автоматическое проектирование генома, чтобы заменить кодон в тридцати двух штаммах E. coli, а затем побудить эти частично отредактированные штаммы эволюционировать так, чтобы получить клеточную линию, в которой этот кодон будет заменен{127} во всех 314 позициях. В лаборатории Кристофера Фойгта в МТИ была собрана изощренная генетическая схема – будучи вставлена в бактерию, она может, например, сделать ее чувствительной к четырем разным онкомаркерам и заставить в присутствии всех четырех выпускать убивающий опухоль фактор{128}. Коллега Фойгта Тимоти Лу разработал модули ДНК, которые могут выполнять логические операции. Такие живые вычислительные элементы, способные принимать решения, можно модифицировать для множества применений{129}. По мере совершенствования технологии цели неизбежно становятся всё амбициознее и возникают новые вопросы, которые в свою очередь приведут к дальнейшему развитию технологии.

Наша предполагаемая работа по синтезу генома живой клетки требовала гораздо более глубокого понимания того, какие гены необходимы для жизни. Чтобы ответить на этот вызов, нам нужно было применить разнообразные приемы, как мы уже успешно делали раньше при секвенировании человеческого генома; успех в современной науке всё больше зависит от хорошей командной работы{130}. Чтобы создать синтетическую клетку, мы запустили три большие программы. По опыту нашей работы с phi X 174 мы все решили, что наибольшего сосредоточения усилий требует синтез ДНК, если мы хотим провести его успешно. Поэтому первой командой стала группа синтеза ДНК, которой предстояло синтезировать полную бактериальную хромосому. Эту группу возглавлял Хэм Смит, а входили в нее Дэниел Гибсон, Гвинед Бендерс, Синтия Эндрюс-Фанкох, Евгения Денисова, Холли Баден-Тильсон, Джейшри Завери, Тимоти Стокуэлл, Анушка Браунли, Дэвид Томас, Миккель Элджир (Algire), Чак Мерриман, Ли Янг, Владимир Носков, Джон Гласс и Клайд Хатчинсон III. Я был уверен, что проблемы с химией разрешимы, и больше беспокоился о биологии. Сможем ли мы трансплантировать и установить синтетический геном, если преуспеем в его синтезе, и сможем ли мы лучше понять, какие гены составляют необходимый минимум для жизни? Поэтому вторая и третья команды сосредоточились на биологии. Команду трансплантации генома возглавлял Джон Гласс, в нее входили Кароль Лартиг, Нина Альперович, Ремберт Пайпер и Прашант Пармар. Командой минимального генома руководили Джон Гласс и Клайд Хатчинсон, и она включала Насиру Ассад-Гарсиа, Нину Альперович, Шибу Юсеф, Мэтью Льюиса и Махира Маруфа. Хотя состав всех трех команд частично перекрывался, каждая сосредоточенно занималась своей задачей. Руководителями всего проекта были Хэм, Клайд и я, а когда был учрежден Институт Вентера в Ла-Хойе и Хэм с Клайдом отбыли осваивать запад, роль общего лидера в Роквилле стал играть Джон Гласс.

Мы планировали синтезировать самый маленький известный геном, который может создать живую самовоспроизводящуюся клетку, M. genitalium. Мы думали, что этот синтез будет величайшей задачей и что он может позволить нам еще сильнее редуцировать маленький геном, определив по ходу понимания и препарирования генетических инструкций простой клетки минимальный для жизни набор генов. Для такого синтеза мы разделили геном M. genitalium на сто один сегмент, которые мы называли «кассетами», каждый примерно того же размера, что и геном phi X 174. Мы знали, что можем точно делать куски синтетической ДНК размером от пяти до семи тысяч пар оснований, и нам было нужно найти способ сочетать их так, чтобы реконструировать геном M. genitalium. Геном M. genitalium из 582 970 пар оснований был в двадцать раз больше, чем что-либо синтезированное раньше. До этой работы самыми большими синтетическими конструкциями из ДНК были два маленьких вируса и поликетидный генный кластер из 32 000 пар оснований. (Поликетиды – это кольцеобразные молекулы, которые в природе выделяют бактерии, грибы, растения и морские животные, чтобы убивать хищников; они служат основой для многих лекарств, особенно антибиотиков и противораковых агентов{131}.)

Итак, нам было нужно разработать новый набор инструментов для надежного синтеза крупных молекул ДНК. Развитие инструментов и технических приемов – основа научного прогресса, но, на мой взгляд, не менее важна тщательность выполнения процедур. Мне часто приходилось описывать лабораторную работу в геномике взятым из информатики «мусор на входе – мусор на выходе»[16]: если не соблюдать предельной тщательности при выполнении каждого шага, конечный результат будет в лучшем случае гораздо слабее, чем мог бы быть. Когда мы в 1990-х секвенировали первые геномы, мы обнаружили, что если наши библиотеки ДНК (содержащие небольшие фрагменты генома) были не высочайшего качества и не представляли собой истинно случайной выборки из всей ДНК в интересующем нас геноме, то шансов, что компьютер сможет использовать последовательности, сгенерированные по тем библиотечным образцам, для реконструкции последовательности генома, было очень мало. То же самое можно сказать об использованной для секвенирования ДНК, чистоте реагентов и воспроизводимости техник. Всё должно быть высшего качества. Моя команда обращала особое внимание на эти фундаментальные требования, и в результате мы оказались действительно способны получать очень высококачественные данные о последовательности ДНК.

Однако, как обсуждалось в 5-й главе, качество секвенирования ДНК, необходимое для чтения генетического текста, намного ниже, чем то, что требуется для написания текста, способного поддерживать жизнь. В первом случае нас устраивала точность не более одной ошибки на 10 000 пар оснований. Может показаться, что это очень мало ошибок, но использование этого стандарта означало бы, что у нас было бы около 60 ошибок в геноме M. genitalium и более 300 000 ошибок в человеческом геноме. Ясно, что столь неточные данные вряд ли смогут поддерживать жизнь и явно недостаточны для точного диагноза генных изменений у человека, ассоциированных с той или иной болезнью. Типичный человеческий ген может состоять из тысяч и даже миллионов пар оснований, поэтому данный уровень ошибок может означать множество ошибок секвенирования в одном гене. Чтобы представить, что это значит: всего одна ошибка в гене может вызвать серьезную болезнь, например серповидноклеточную анемию. Иными словами, такой уровень ошибок вряд ли можно считать приемлемым для реконструкции генома и создания живой клетки.

Эти простые факты часто забывают, фантазируя об оживлении вымерших видов по их секвенированным геномам. Журналистские рассуждения, вдохновленные великими достижениями палеогенетики – геномом неандертальца, прочитанным Сванте Паабо{132}, или секвенированием ДНК шерстистого мамонта в Университете штата Пенсильвания{133}, всегда сворачивают на возбужденные мечтания о воскрешении видов{134}. Я прочел слишком много статей, бодренько обсуждающих восстановление неандертальцев или мамонта с помощью клонирования, хотя сиквенсы ДНК обоих созданий очень фрагментированы, не покрывают всего генома и – в силу глубокой деградированности – гораздо менее точны, чем те, что обычно получают при чтении свежей ДНК.

Тем не менее прочтение неандертальской ДНК было изумительным достижением науки, поведавшим нам многое о нашей собственной эволюции, установив, что скрещивание некоторых предков современных людей с нашими неандертальскими кузенами оставило нам в наследство 3–4 % нашего генома, восходящие к неандертальцам.

Чтобы синтезировать геном M. genitalium, нам требовалось чрезвычайно точное секвенирование ДНК. Проведенное нами секвенирование двух первых геномов в 1995 году опиралось на ранние модели секвенаторов ДНК, и хотя ошибок было меньше, чем одна на десять тысяч пар оснований, мы опасались, что такой точности может быть недостаточно для порождения живой клетки. Нам ничего не оставалось, кроме как пересеквенировать геном M. genitalium, используя новейшие технологии. Новый сиквенс показал, что наша исходная версия имела точность до одной ошибки на тридцать тысяч пар оснований, и когда мы скомбинировали старую и новую версии, то получили менее одной ошибки на сто тысяч пар – примерно с полдюжины на весь геном. И вот с этой новой высокоточной последовательности мы приступили к синтезу генома M. genitalium.

Наш успех с конвертированием цифровой записи генома phi X 174 в реальную ДНК придал нам достаточно уверенности, чтобы приняться за значительно больший геном свободно живущего организма. Умея производить с большой точностью отрезки размером с вирусный геном, мы понимали, что можем надеяться на успех, если сумеем разбить бактериальную хромосому на такие фрагменты и найдем надежный способ сшивания их всех вместе.

Мы нарезали геном микоплазмы на 101 кассету от пяти до семи тысяч пар оснований каждая. Кассеты были вырезаны так, чтобы каждая перекрывалась с соседними на 80–360 пар оснований, так что мы могли их накладывать друг на друга, как конструктор лего. Мы так спроектировали наши кассеты, что последовательности ДНК в зоне перекрываний были комплементарными: если последней буквой в одной кассете была Т, то она стремилась связаться с А в другой. Подобно застежке-молнии, перекрывающиеся участки сцеплялись между собой комплементарными основаниями, образуя спираль.

Наша попытка создать синтетический геном отличалась еще двумя особенностями. Во-первых, геном M. genitalium, как и phi X, кольцеобразный, поэтому мы спроектировали кассету № 101 так, чтобы она перекрывалась с кассетой № 1. Во-вторых, мы хотели, чтобы у нас был безотказный способ отличить наше изделие от природного генома M. genitalium. Чтобы исключить непонимание и двусмысленность, нам нужно было иметь возможность всегда проследить синтетический геном и неопровержимо доказать, что новой синтетической клеткой управляет именно он, а не примесь от исходной клетки или генома.

Мы хотели поставить подпись в новом геноме (как художники подписывают свои работы), чтобы отличать его от природного. И вот, использовав однобуквенные обозначения аминокислот, мы создали последовательности – «водяные знаки», которые читались как «Институт Вентера» и Synthetic Genomics, Inc., а также фамилии главных участников проекта. Мы использовали разные кодоны для представления каждой из двадцати букв аминокислотного «алфавита» (в нем представлены не все буквы латинского алфавита, поэтому, например, вместо U мы писали V). Мое имя, закодированное подобным образом, выглядит так:

TTAAЦTAГЦTAATГTЦГTГЦAATTГГAГTAГAГAAЦAЦAГAAЦГATTAAЦTAГЦTAA[17].

Эти «водяные знаки» были вставлены в пять разных кассет, разнесенных по геному. Нам также нужно было вставить ген устойчивости к антибиотику, что позволило бы нам избирательно убивать клетки, в которых нет нашего синтетического генома, и таким образом отбирать те, где он есть. Мы вставили ген устойчивости к антибиотикам внутрь ключевого гена M. genitalium – MG408, который нужен этой бактерии, чтобы прилипать к клеткам млекопитающих. Тем самым мы надежно искалечили этот ген, играющий важную роль в способности микроба вызывать болезнь, гарантировав, что синтетический организм будет безвредным.

Чтобы наша команда могла сосредоточиться на ключевом этапе – сборке 101 кассеты в геном, – я настоял, чтобы мы предложили трем компаниям, занимающимся синтезом ДНК, контракт на изготовление для нас 101 спроектированной кассеты. Несмотря на рекламные объявления, мы нашли только одну компанию, которая могла делать фрагменты в пять – семь тысяч пар оснований. Кроме того, это было дорого: синтез ДНК стоит примерно 1 доллар за каждую пару оснований, так что один сырой материал для нас должен был стоить больше полумиллиона долларов. Принимая на себя такое серьезное финансовое обязательство, мы были полны решимости заставить наших контрагентов работать.

Одной из главных трудностей было – как соединить 101 кассету. Первая идея пришла из наших прежних проектов по синтезу геномов. В результате наших попыток охватить как можно более широкое биологическое разнообразие я узнал о весьма примечательном организме, который мог восстанавливать свой геном после значительных радиационных повреждений. В 1999 году мы опубликовали статью «Полное секвенирование генома устойчивой к радиации бактерии Deinococcus radiodurans R1»{135}, в которой был описан геном необычного организма, способного выдержать до трех миллионов рад ионизирующей радиации. Если учесть, что смертельная доза такой радиации для человека – всего пятьсот рад, то как может Deinococcus переживать такую атаку? И нельзя ли приспособить те же механизмы репарации ДНК для построения синтетического генома?

Действие радиации на белки и ДНК всех видов примерно одинаково и отчасти связано с размером молекул. В начале своей научной карьеры я посвятил некоторое время определению размеров белков, инактивируя их радиацией. Методика в принципе проста. В белках радиация разрывает пептидные связи, которые соединяют составляющие белок аминокислоты; одного попадания в молекулу белка достаточно, чтобы лишить ее активности. Существует обратная зависимость между размером молекулы белка и дозой радиации, нужной для его инактивации путем разрыва пептидных связей (шанс попасть в крупную мишень гораздо выше, чем в мелкую), поэтому чем меньше белок, тем большая доза радиации нужна. Я использовал этот метод для определения размера белков-рецепторов нейромедиаторов и их функциональных комплексов{136}.

Сходным образом радиация поражает и ДНК, разрывая химические связи, соединяющие нуклеотиды между собой. Как и в случае с белками, чем больше геном, тем ниже доза радиации, способная причинить разрушения. Из-за нашего большого генома люди намного чувствительнее к воздействию радиации, чем бактерии. Геном человеческой клетки в тысячу раз больше генома микроба: шесть миллиардов пар оснований против 1–8 миллионов пар у бактерий. Вследствие этого, чтобы разорвать обе цепочки в нашей ДНК, нужна значительно меньшая доза радиации, чем для бактериальной хромосомы. Поэтому мы можем быть уверены, что если нас угораздит попасть под ядерный армагеддон, то мелкие формы жизни его выдержат.

Так как выживает Deinococcus? Подвергаясь миллионам рад радиации, геном Deinococcus разбивается на сотни двухцепочечных обломков ДНК, но эти бактерии могут чинить и заново собирать свои хромосомы и продолжать реплицироваться. Его способность проделывать такое до сих пор полностью не понята, но в нее входят, в частности, множество копий каждой хромосомы, так что, когда его ДНК оказывается разорвана радиацией во множестве случайных мест, получившиеся фрагменты могут сами выстраиваться в нужном порядке, образуя матрицу ДНК. Я часто уподоблял этот процесс тому, который мы использовали в секвенировании дроблением, когда программа на мощном компьютере заново собирает секвенированные перекрывающиеся фрагменты ДНК, восстанавливая геном.

Мы рассудили, что если бы нам удалось воспроизвести процессы починки ДНК и сборки хромосом вне клеток Deinococcus, то мы могли бы использовать это для сборки нашей синтетической хромосомы из больших, размером с вирусный геном, сегментов ДНК. Двое наших сотрудников, Санджай Ваши и Рэйюань Чуан (Sanjay Vashee и Ray-Yuan Chuang), согласились заняться этой работой. Они перебрали весь геном Deinococcus в поисках всех генов, которые могли иметь отношение к делу, затем провели еще два года, клонируя каждый ген, чтобы получать «ремонтные» белки в лаборатории, где их можно было комбинировать так и сяк для повторения сборки и ремонта ДНК. После тяжких трудов мы были вынуждены сдаться. Мы уперлись в тупик и нуждались в новой стратегии.

Следующим подходом было разработать логичный пошаговый план сборки. Применяя специально предусмотренные перекрывания в последовательностях ДНК соседних кассет, мы собрали «в пробирке» две кассеты, чтобы получить фрагмент побольше. Затем мы клонировали этот более крупный фрагмент в E. coli, чтобы при ее размножении множились бы и копии крупного фрагмента. Таким путем мы могли получить достаточно много ДНК для следующего этапа сборки. Нашей конечной целью было не только получить геном M. genitalium, но и разработать продуктивный воспроизводимый процесс сборки, который мы в дальнейшем могли бы приложить к созданию любых синтетических геномов.

Наш план первого раунда сборки генома состоял в соединении четырех кассет, каждая размером примерно с геном phi X 174, чтобы создать кусок в 24 000 пар оснований. Для этого мы внесли равные количества каждой из четырех кассет в микроцентрифужную пробирку с векторной ДНК, позволявшей размножить этот свежесобранный сегмент в E. coli. Вектор, который мы использовали, называется искусственной бактериальной хромосомой (ИБХ). В ней один конец перекрывается с началом кассеты № 1, а другой – с концом кассеты № 4.

Чтобы связать куски вместе, мы добавили в смесь ДНК в пробирке фермент (3’-экзонуклеазу), который откусывает по нуклеотиду с конца ДНК, укорачивая лишь одну из двух цепочек ДНК (так называемую 3’-цепочку – это название связано с тем, как нумеруются атомы углерода в сахарах нуклеотидов ДНК) и оставляя другую цепочку (5’-цепочку) открытой. Управляя экзонуклеазой путем изменений температуры, мы могли гарантировать, что соответствующие одноцепочечные концы кассет найдут друг друга и слипнутся за счет химического притяжения комплементарных оснований на каждой цепочке, а-ля Уотсон и Крик.

Чтобы убедиться, что мы в итоге получим полные двуспиральные цепочки, мы затем добавили ДНК-полимеразу и свободные нуклеотиды, чтобы в любом месте, где 3’-экзонуклеаза откусила от цепочки слишком много, полимераза вставила недостающие основания на место. Кроме того, в смесь был добавлен еще один фермент, ДНК-лигаза, чтобы соединить перекрывающиеся концы. Когда все ферменты закончили свою работу, мы получили все четыре кассеты, сцепленные в куски из 24 000 пар оснований, или цепочки в 24 кб[18]. Чтобы произвести все такие «укрупненные» кассеты по 24 кб, которые вместе составляют полный геном M. genitalium, мы повторили процесс двадцать пять раз.

Так как мы размножали синтетическую ДНК в E. coli, то у нас было достаточно ДНК для секвенирования. После проверки секвенирования всех 25 кассет мы повторили процесс in vitro, на этот раз соединяя три кассеты по 24 кб в кассеты по 72 000 пар оснований, то есть каждая кассета составляла одну восьмую от генома M. genitalium. Чтобы сделать это, нам сначала надо было освободить (с помощью рестриктазы) кассеты по 24 кб от вектора-ИБХ, который использовался, чтобы растить их в E. coli.

Наши векторы-ИБХ были сконструированы так, что на обеих сторонах нашей вставленной синтетической ДНК у них была последовательность из восьми определенных оснований. Эта восьмерка нуклеотидов, не встречающаяся в естественном геноме M. genitalium, распознается особой рестриктазой, называемой NotI. Когда NotI разрезает ДНК ИБХ, синтетический фрагмент в 24 кб освобождается. На этом этапе мы получили синтетическую ДНК, длина которой более чем вдвое превышала предыдущий рекорд для синтетических ДНК-сборок.

Следующим шагом было повторение процесса еще раз, теперь для получения сегментов по 144 000 пар оснований, каждый сегмент – четверть генома. Для этого две кассеты по 72 кб подвергались тому же процессу сборки in vitro. Однако тут мы вступали на неизвестную территорию и доводили нашу методику до предела. На предпоследнем этапе – получении сегментов в половину генома (290 000 пар оснований) путем соединения четырех четвертей в две половинки – мы уперлись в проблему: сегменты по 290 кб оказались слишком большими для размещения их в E. coli.

Это побудило нашу команду начать поиски других видов, способных устойчиво вмещать столь большие молекулы синтетической ДНК. Мы обратили внимание на Bacillus subtilis, которую использовала японская группа для выращивания больших сегментов генома цианобактерий{137}. Но хотя B. subtilis действительно могла вместить большие сегменты по 290 кб, извлечь неповрежденную ДНК из этих клеток оказалось невозможно, так что мы стали искать дальше. Решение пришло из мира более сложных клеток – эукариот. Это был любимый экспериментальный объект ученых всего мира, изучающих биологию эукариот: пивные дрожжи Saccharomyces cerevisiae. Они веками применялись в виноделии и хлебопечении, а в лабораторной практике стали популярны благодаря относительно маленькому геному и ряду особенностей, облегчающих генетические манипуляции. Например, S. cerevisiae используют для так называемой гомологичной рекомбинации: если сегмент ДНК имеет на своих концах последовательности, сходные или идентичные концевым последовательностям какого-то участка в геноме S. cerevisiae, то этот сегмент можно вставить в геном дрожжей вместо «родного».

Нашим гуру по части дрожжей был Владимир Носков, научный сотрудник группы синтетической биологии и биоэнергетики в Институте Крейга Вентера в Мэриленде. Носков учился в Санкт-Петербургском государственном университете в России и потом продолжил образование там же, готовя диссертацию по генетике дрожжей. Проведя пять лет в Японии за изучением репликации хромосомальной ДНК и «контрольной точки» клеточного цикла дрожжей, где ДНК проходит контроль и починку, он затем работал в НИЗ в Бетесде. Там, в группе структуры и функции хромосом, Носков придумал несколько новых приемов для технологии манипулирования большими кусками ДНК в дрожжах – трансформационно-ассоциированного рекомбинантного (ТАР) клонирования, более совершенного, чем старый метод искусственных хромосом дрожжей (YACs).

Дрожжевые клетки, которые примерно в десять раз больше клеток E. coli, защищены толстой клеточной стенкой, препятствующей трансформации ДНК в клетке. Чтобы справиться с этим, ТАР-клонирование использует фермент зимолиазу, расщепляющий большую часть клеточной стенки, в результате чего образуется так называемый сферопласт, в который легче поместить большие куски ДНК{138}. В результате ТАР-клонирования получаются кольцевые искусственные хромосомы. Они стабильны, а кольцевая структура позволяет легко очищать их от нормальных линейных хромосом дрожжей.

Мы обнаружили, что с помощью ТАР-клонирования мы можем стабильно растить наши большие конструкции из синтетической ДНК, а используя дрожжевую систему гомологичной рекомбинации – соединять наши перекрывающиеся сегменты-четвертушки в куски в половину генома. Затем эта система позволит нам собрать в дрожжах весь геном M. genitalium целиком. Таким образом перед нами замаячил конец долгого и трудного восхождения к первому синтетическому геному живого организма.

Мы вставили в дрожжевые клетки шесть кусков ДНК: ТАР-клонирующий вектор и пять соответствующих геному M. genitalium (четыре сегмента по четверти синтетического генома и еще один разделенный надвое сегмент для перекрытия мест ТАР-клонирования). Чтобы этот эксперимент сработал, надо, чтобы дрожжевая клетка приняла все шесть сегментов ДНК и гомологичной рекомбинацией соединила их между собой. Мы проверили размер ДНК в 94 трансформированных дрожжевых клетках и обнаружили, что в семнадцати из них содержится полный синтетический геном M. genitalium.

Казалось, мы преуспели в сборке нашего синтетического бактериального генома в дрожжевых клетках, но надо было еще секвенировать ДНК, чтобы проверить точность этого генома и убедиться, что процесс сборки прошел без ошибок. Это звучит просто, но нам пришлось разработать новые методы, чтобы извлечь нашу синтетическую хромосому из дрожжевых клеток, а она, по нашей оценке, составляла около 5 % всей содержащейся в них ДНК. Для очистки нашей синтетической ДНК мы, зная последовательности генома дрожжей и синтетического генома, подобрали рестриктазы, которые порезали на мелкие кусочки только ДНК дрожжей. Затем путем гель-электрофореза мы отделили расщепленные остатки дрожжевой ДНК от невредимой синтетической хромосомы.

Наконец мы могли использовать наш метод дробления для секвенирования синтетического генома. Мы все были очень довольны и вздохнули с облегчением, когда реальная последовательность ДНК точно совпала с той, что была записана у нас в компьютере, включая введенные нами водяные знаки. Мы синтезировали геном M. genitalium из 582 970 пар оснований и тем самым создали самую большую химически синтезированную молекулу с заранее заданной структурой.

Мы назвали нашу первую синтетическую хромосому M. genitalium JCVI-1.0. Мы описали наши результаты и послали их в Science 15 октября, на следующий день после моего шестьдесят первого дня рождения. Наша статья вышла на сайте 24 января 2008 года, а на бумаге – 29 февраля. Мы праздновали наш успех в создании генома, но знали, что главные задачи еще впереди: теперь надо было найти способ трансплантации первого синтетического генома в клетку, чтобы посмотреть, будет ли он функционировать как нормальная хромосома. В ходе этого клетка-хозяин должна трансформироваться в такую, где все компоненты будут произведены по инструкциям, заложенным в нашу синтетическую ДНК. И снова наши опыты будут строиться на более ранних работах и идеях целого ряда талантливых команд, работавших в течение многих предыдущих десятилетий.

Глава 7. Превращение одного вида в другой

Переход от парадигмы в кризисный период к новой парадигме, от которой может родиться новая традиция нормальной науки, представляет собой процесс далеко не кумулятивный и не такой, который мог бы быть осуществлен посредством более четкой разработки или расширения старой парадигмы. Этот процесс скорее напоминает реконструкцию области на новых основаниях, реконструкцию, которая изменяет некоторые наиболее элементарные теоретические обобщения в данной области, а также многие методы и приложения парадигмы. В течение переходного периода наблюдается большое, но никогда не полное совпадение проблем, которые могут быть решены и с помощью старой парадигмы, и с помощью новой. Однако тем не менее имеется разительное отличие в способах решения. К тому времени, когда переход заканчивается, ученый-профессионал уже изменит свою точку зрения на область исследования, ее методы и цели.

Томас Кун, 1962{139}

Если бы мне нужно было выбрать одну работу, статью или результат эксперимента, которые повлияли на мое понимание жизни сильнее прочих, то я, без сомнения, выбрал бы из всех остальных вот эту: «Трансплантация генома бактерий: превращение одного вида в другой»{140}. Исследование, которое привело к статье 2007 года в Science, не только сформировало мой взгляд на жизнь, но также заложило фундамент для создания первой синтетической клетки. Пересадка генома не только указала путь выполнения потрясающей трансформации, но также помогла доказать, что ДНК – это программный носитель жизни.

В известном смысле наши опыты можно считать продолжением процесса, именуемого «пересадкой ядра», который был применен, в частности, командой во главе с Иэном Уилмутом в Институте Рослин возле Эдинбурга, в Шотландии, для создания Долли{141}, клонированной овцы. Ядро из клетки молочной железы взрослой овцы со всей ДНК пересадили в яйцеклетку (предварительно лишенную собственного ядра), успешно вернув пересаженную ДНК в эмбриональное состояние. Последовавшее рождение Долли прогремело в 1997 году в заголовках прессы всего мира, потому что она была создана из взрослой клетки молочной железы (откуда и ее имя – намек на певицу Долли Партон с пышным бюстом). До рождения этого ягненка взять клетку взрослого организма и сделать клон считалось невозможным. Достижение Института Рослин опиралось на многие факторы, от изощренного знания клеточного цикла до технических решений вроде покрытия реконструируемого эмбриона оболочкой из защитного агара{142}. Но Долли была далеко не первым клоном и даже не первой клонированной овцой{143}.

История пересадки ядра на самом деле начинается в 1938 году со знаменитого и очень изобретательного немецкого эмбриолога Ханса Шпемана (1869–1941), который опубликовал результаты первых экспериментов по пересадке ядер{144}. Шпеман был первопроходцем того, что он называл Entwicklungsmechanik – «механика развития», и был в 1935 году за свои опыты награжден Нобелевской премией. Совместно с Хильде Мангольд (1898–1924) он провел первые опыты по пересадке ядра на тритонах, оказавшихся идеальным экспериментальным объектом из-за своих крупных икринок, с которыми было удобно управляться. В 1938 году Шпеман опубликовал свою итоговую книгу «Эмбриональное развитие и индукция», в которой был описан эксперимент, проведенный при помощи умелого использования микроскопа, пинцета и тонкого волоска, вероятно, вырванного у его дочери Маргретте.

Шпеман сделал из волоска петлю, чтобы разделить под бинокуляром цитоплазму только что оплодотворенной икринки саламандры, придав эмбриону форму гантели. На одном конце гантели было ядро, содержащее ДНК; на другом – только заключенная в клеточную мембрану цитоплазма, в которой было всё, что содержится в клетке вне ядра. (Нелишне напомнить, что, хотя исходно Шпеман вдохновился работой Августа Вейсмана о наследственности, всё, что было тогда[19] известно, это что тайна наследственности лежит в ядре.) После того как половинка с ядром поделилась четыре раза, став эмбрионом из 16 клеток, Шпеман развязал волосок и позволил одному из шестнадцати ядер пройти в отделенную цитоплазму в другой половине гантели, образуя новую клетку с исходным содержимым яйцеклетки и более зрелым ядром. Вновь затянув волосок, он разделил эмбрион надвое. Тем самым он продемонстрировал, что ядро, пройдя четыре деления, сохраняет способность превращаться в любой тип клеток. Таким способом Шпеман создал клон – генетически идентичную копию, которая была на несколько секунд моложе, чем другая.

Шпеман назвал этот процесс «двойникованием», и оно было отмечено в истории как первое клонирование животного, проведенное в лаборатории с помощью пересадки ядра. Он хотел пойти дальше и предложил «фантастический эксперимент» – проделать то же самое со взрослой клеткой. Но, как и многие до него, он был слишком ошеломлен и восхищен тайнами развития, чтобы поверить, что оно зависит лишь от физики и химии.

В следующем десятилетии задача Шпемана привлекла внимание Роберта Бриггса, исследователя из научно-исследовательского института при госпитале Ланкенау в Филадельфии (позже Институт онкологических исследований, а затем Онкологический центр Фокса Чейза), который изучал клеточное ядро. В 1952 году, работая с Томасом Кингом, он клонировал леопардовых лягушек, пересаживая ядро клетки. Эксперимент Бриггса и Кинга походил на то, что предлагал – и предвосхитил в своих опытах на саламандрах – Шпеман в 1938 году. Они пересадили ядро лягушачьего эмбриона ранней стадии в большую (миллиметровую) яйцеклетку обычной американской леопардовой лягушки. Полученные таким образом эмбрионы благополучно развились в головастиков. Но в ходе дальнейших экспериментов Бриггс и Кинг пришли к выводу, что по мере дифференцировки клеток потенциал развития уменьшается и получить клон из ядра взрослой клетки невозможно. Позже, в 1962 году, работавший в Оксфорде Джон Гёрдон заменил ядро яйцеклетки шпорцевой лягушки (Xenopus) на ядро зрелой специализированной клетки из кишечника головастика. Яйцеклетка развилась в клонированного головастика, а в последующих экспериментах удалось получить и взрослых лягушек{145}. Его исследование, научившее нас, что ядро взрослой специализированной клетки можно вернуть в незрелую стадию, было удостоено Нобелевской премии по физиологии и медицине в 2012 году{146}, через пятьдесят лет после его первопроходческих экспериментов.

То, что мы пытались сделать, в некоторых отношениях было намного сложнее, чем эти ранние эксперименты с пересадкой ядер, хотя они были, несомненно, весьма замечательными. Работа Шпемана была немного похожа на попытку перепрограммировать компьютер, ничего не зная о программировании, а просто скачивая что-то из интернета. В отличие от более сложных эукариотных клеток, у бактерии нет ядра – клеточной субструктуры, заключенной в мембрану. В бактериальной клетке геном плавает в густом цитоплазматическом супе вместе с прочими клеточными компонентами. Так что там просто нет клеточной органеллы, которую можно удалить хирургическим путем. С еще более сложной задачей мы столкнулись, когда хотели трансплантировать генетический материал одного вида в клетку другого, в то время как все предыдущие эксперименты с переносом ядра включали работу с одним видом, а то и с одним и тем же животным.

Когда мы начали думать над тем, как перевести синтетическую ДНК в бактерию и заменить ее собственную хромосому, то поняли, что надо разрабатывать новый метод трансплантации генома, поскольку нужно заменить весь геном вида-хозяина на вставленную голую ДНК нового вида без какого-либо смешения (рекомбинации) двух геномов. Отдельные гены молекулярщики уже десятки лет пересаживали привычно и без ограничений – например, вирусные и человеческие гены пересаживались в бактерии и дрожжи и работали там. Но насколько я знаю, никто не пытался пересадить полный геном, такая задача многим могла казаться невозможной.

Такая предвзятость часто ограничивает нашу способность испробовать новый подход или принять новые открытия. Например, микробиологи когда-то думали, что в бактериальных клетках может быть только одна хромосома. Но реальность оказалась намного интереснее – как я обнаружил в середине 1990-х, когда мы{147} секвенировали геном возбудителя холеры, массовой и опасной болезни, которая каждый год{148} поражает пять миллионов человек по всему миру, приводя к ста двадцати тысячам смертей. Разработанные нами алгоритмы для секвенирования дроблением, посредством которых компьютеры подбирали перекрывающиеся куски секвенируемой последовательности, имели специфическую особенность: они собирали геномные тексты только на основе перекрывающихся участков. У компьютеров не было априорного представления о том, сколько хромосом, плазмид или вирусов должно получиться, они только складывали подходящие фрагменты в математически обоснованном порядке. Когда мы собрали секвенированные фрагменты генома холеры, они явственно сложились в две независимые хромосомы – а не в одну, как полагало большинство. Когда мы сравнили эти две хромосомы друг с другом и с другими геномами, то обнаружили, что они очень сильно отличаются между собой.

Сделав такое открытие на холере, мы потом выявили немало видов микробов с несколькими хромосомами. Это поднимало вопрос: как эти виды обзавелись этими множественными хромосомами? Может, клетка просто случайно забрала дополнительную ДНК из лизированной клетки и новая хромосома образовалась, потому что она добавила своему новому дому какие-то важные для выживания способности? Или две древние клетки слились, образовав новый вид? У нас не было на это ответов, но меня эти идеи чрезвычайно привлекали. Большинство мыслило эволюцию видов как идущую за счет постепенного накопления единичных изменений оснований в последовательности ДНК в течение миллионов и миллиардов лет; тот или иной вид адаптируется к окружающей его среде, если случайные изменения предлагают преимущества для выживания. Мне показалось правдоподобным, что некоторые известные нам крупные эволюционные скачки происходили по крайней мере отчасти за счет приобретения дополнительной хромосомы, которая сразу добавила тысячи генов и множество новых признаков.

Теперь мы знаем, что многие продвинутые функции эукариотных клеток возникли в эволюции, когда ранние эукариотные клетки полностью вобрали в себя некоторые виды микробов, которые сначала жили с ними в симбиотических взаимоотношениях. Вероятно, самое важное событие такого рода произошло примерно два миллиарда лет назад, когда эукариотная клетка забрала к себе фотосинтезирующую бактериальную клетку, ставшую в итоге хлоропластом, в котором происходит фотосинтез у всех растений. Второй самый наглядный пример этого процесса, называемого эндосимбиоз, можно найти в «блоках питания» наших клеток – митохондриях, которые, как и хлоропласты, несут свои собственные гены и происходят от симбиотической бактерии, вероятно, сходной с современными риккетсиями[20].

Поскольку было ясно, что трансплантация геномов и целых клеток была существенной частью нашей эволюции, я был уверен, что мы сможем найти способ искусственной пересадки геномов. Для наших начальных экспериментов по трансплантации мы выбрали микоплазмы, потому что, в отличие от большинства бактерий, у них нет клеточной стенки (жесткого упругого наружного слоя), а есть лишь клеточная липидная мембрана, что упрощало внесение ДНК в клетку. Кроме того, мы уже многое знали о микоплазмах, включая последовательности их геномов и результаты работ по нокаутным генам. Я собрал новую трансплантационную команду вокруг двух ученых: Джона Гласса, который провел большую часть своей карьеры в фармацевтической компании Lilly pharmaceuticals, работая с микоплазмой, и примкнул к нам, когда компания закрыла свою антимикробную программу, и нового постдока из Франции Кароль Лартиг, у которой был опыт работы с различными видами микоплазм. Остальными ключевыми членами команды были Нина Альперович и Ремберт Пайпер.

Сначала мы хотели попытаться трансплантировать геном микоплазмы в E. coli, но хотя микоплазмы в своей ДНК используют те же четыре основания, что и все другие виды, у них кодон УГА[21] кодирует триптофан, в то время как у прочих видов УГА – это стоп-кодон, который прекращает процесс синтеза белка. Поскольку E. coli прочла бы УГА как стоп-кодон, то получились бы урезанные белки, несовместимые с созданием жизнеспособной клетки. Нам пришлось для экспериментов с пересадкой использовать другой вид микоплазмы.

В свое время мы выбрали M. genitalium для секвенирования, анализа и последующего синтеза генома, поскольку он у нее чрезвычайно мал, а мы думали, что при создании синтетического генома узким местом будет наша способность воспроизвести его химическим путем. Но теперь бы нам пришлось пожалеть о таком решении по практическим соображениям: в лаборатории M. geni-talium очень медленно растет. В то время как E. coli делится на дочерние клетки каждые двадцать минут, M. geni-talium, чтобы сделать свою копию, требуется двенадцать часов. Это может показаться не слишком большой разницей, но при экспоненциальном росте это разница между получением результатов эксперимента через двадцать четыре часа – и через несколько недель. Поэтому для первых опытов по пересадке генома мы выбрали два разных быстрорастущих вида микоплазмы, M. mycoides и M. capricolum. Оба они – условные патогены коз и, возможно, распространились, когда эти животные были одомашнены, около 10 тысяч лет назад{149}. Как возбудители серьезных болезней домашнего скота эти микробы часто выращиваются в лабораториях. Они все же не так торопливы, как E. coli: M. mycoides делится каждые шестьдесят минут, а M. capricolum – раз в сто минут.

Будучи геномной лабораторией, мы секвенировали геномы обоих видов, чтобы узнать, насколько они родственны друг другу. Мы нашли, что у M. mycoides в геноме 1 083 241 пара оснований, последовательность которых на три четверти (76,4 %) совпадает с несколько меньшим геномом M. capricolum, состоящим из 1 010 023 пар оснований. В соответствующих друг другу участках генома последовательности совпадают на 91,5 %. Оставшаяся четверть (24 %) генома M. mycoides не имеет соответствия в геноме родственного вида – она содержит последовательности, которые в геноме M. capricolum не обнаружены.

Основываясь на сходстве последовательностей ДНК, мы рассудили, что ключевые белки каждого вида, использующиеся для интерпретации генетических инструкций, будут достаточно биохимически совместимы, чтобы прочитать геном другого вида, и в то же время их можно будет легко отличить друг от друга. Мы также подумали, что геномные последовательности различаются достаточно, чтобы не рекомбинировать.

Когда дошло до выбора, чей геном пересаживать, а кто будет хозяином, мы выбрали M. mycoides в качестве донора генома и M. capricolum как реципиента: M. mycoides быстрее растет, геном у нее побольше, и это позволит легче заметить успешную пересадку. Была и еще одна техническая причина для такого решения. В своей предыдущей лаборатории Кароль Лартиг изучала особый участок ДНК – так называемый «ориджин», точку начала репликации. С этим участком связывается комплекс белков ORC, участвующий в репликации ДНК, и отсюда начинается процесс удвоения. Лартиг показала, что белки ORC M. capricolum способны узнать ориджин M. mycoides, а ORC M. mycoides не узнают ориджин M. capricolum. Таким образом, геном M. mycoides сможет удваиваться в M. capricolum – но не наоборот.

Выбрав из микоплазм донора и реципиента, мы ощутили уверенность, что наша экспериментальная система способна обеспечить наилучшие возможности для попытки трансплантации генома. Дальнейшие шаги требовали множество нудных экспериментов методом проб и ошибок и заводили нас в область неизвестного. Нам надо было разработать новые методы для выделения интактной хромосомы из одного вида и пересадки ее в другой вид, не повредив и не разрезав ДНК. Если мелкие куски ДНК легко поддаются манипуляциям без повреждений, то крупные, особенно целые хромосомы, состоящие из миллионов оснований, очень хрупки и легко повреждаются.

Нам также нужно было определиться с экспериментальным подходом в целом. Следовало ли нам удалить или разрушить геном capricolum перед тем, как мы подсадим в клетку новый от клетки mycoides? Этот процесс был бы эквивалентен энуклеации – этапу удаления ядра в эукариотных клетках, что относительно легко, так как можно просто высосать ядро микропипеткой из яйцеклетки-реципиента. Мы не знали, необходимо ли для наших целей разрушить или удалить геном клетки-реципиента прежде, чем добавить в нее новую ДНК. Как и того, что будет, если у нас в итоге в одной и той же клетке окажутся два генома.

Мы придумывали разные способы атаки на хозяйскую хромосому, включая применение радиации, чтобы уничтожить ее ДНК, рассуждая, что на ДНК низкие дозы радиации повлияют намного сильнее, чем на гораздо более мелкие молекулы белков. Мы также рассматривали использование рестриктаз, чтобы они расщепили ДНК в геноме клетки-реципиента. Но нас все время тревожило, что любой их этих подходов может оставить после себя фрагменты ДНК, которые затем могут рекомбинировать с пересаженной хромосомой, и тогда геном в клетке уже не будет чисто синтетическим. После широкого обсуждения Хэм Смит предложил идею попроще: ничего не делать, потому что, когда клетка-реципиент после трансплантации поделится, в одной из дочерних клеток может оказаться только пересаженная хромосома.

Казалось, что шансы невелики, но мы решили провести такой эксперимент. Однако сначала мы должны были ответить на некоторые ключевые вопросы и разработать способ изоляции хромосомы и манипулирования ею без повреждения ДНК. Чтобы защитить ДНК, мы решили изолировать хромосому в маленьких (100 микролитров) блоках агарозы, по консистенции похожих на желатин. Для начала мы поместили бактериальные клетки в жидкую агарозную смесь и вылили ее в формы, которые, охладившись на льду, застыли в маленькие пробки. К плотно упакованным бактериям мы могли добавить ферменты, чтобы вскрыть клетки, содержимое которых, включая хромосомы, вытекло бы в эти пробки. ДНК мы отделяли, промывая пробки протеазой, расщепляющей все белки и оставляющей невредимой ДНК. Потом мы поместили пробки с ДНК поверх геля в установке для электрофореза и включили электрическое поле, чтобы втянуть ДНК в гель. Из-за входящих в ее каркас фосфатных групп ДНК заряжена отрицательно и в электрическом поле будет двигаться в сторону положительного электрода. Варьируя перепад напряжения и плотность геля и применяя разные красители, мы могли установить размер хромосомы, долю белковой примеси, а если ДНК повреждена или порвана – то сделать из нее линейные молекулы, так как линейная ДНК движется через гель быстрее, чем кольцеобразная, а та, в свою очередь, – быстрее, чем сверхспирализованная{150}.

Поэкспериментировав с высвобождением и электрофорезом геномов, мы обрели уверенность, что у нас есть способ изолировать хромосомы, определять, свободны ли они от белков (нам надо было знать, нужны ли какие-то белки для трансплантации), и оценивать, в каком они виде – двухцепочечные, кольцевые или сверхспирализованные. У прокариот и эукариот ДНК по-разному упаковывается, чтобы компактно размещаться в клетках или внутриклеточных структурах. В человеческих клетках ДНК намотана на белки, называемые гистонами, а у бактерий то же самое достигается сверхспирализацией, что, как подсказывает название, означает сворачивание спиралей в спирали. Большинство бактериальных геномов «отрицательно сверхспирализованы», то есть ДНК скручена в направлении, противоположном направлению закручивания двойной спирали. Некоторые предварительные эксперименты подсказали нам, что конформация ДНК имеет значение – в этих суперскрученных хромосомах она лучше всего подходит для пересадки.



Поделиться книгой:

На главную
Назад