Мы начали все сначала. Первым делом мы заново оценили геном, который хотели сконструировать, чтобы абсолютно убедиться, что мы начинаем с точной вирусной последовательности. Мы брали за основу этой последовательности ту, что была в исторической статье 1978 года Фреда Сэнгера и его коллег. Нам повезло, что Клайд Хатчинсон сохранил образец того вируса, который исходно секвенировали, поэтому мы могли пересеквенировать его новейшими методами, чтобы проверить точность работы команды Сэнгера. Мы нашли только три отличия на 5384 пары оснований, и было неизвестно, то ли это ошибки в исходном секвенировании, то ли изменения, произошедшие при новом выращивании образца вируса. В любом случае сиквенс Сэнгера оказался очень точным, что подтвердило успех его команды.
Точность секвенирования всегда была проблемой для геномики. Точность изрядной части ранних сиквенсов ДНК была намного ниже 99 % (одна ошибка на 100 оснований). Лишь немногие лаборатории придерживались «высокого» стандарта, установленного для человеческого генома, – одна ошибка на десять тысяч оснований. Между тем для
Со времен работы Синшаймера мы знали, что геном
Зная, что лишь половина синтезированных «сорокдвамеров» будет правильной длины, мы рассудили, что сильно улучшим точность сборки, предварительно очистив олигонуклеотиды. Гели для секвенирования ДНК разделяют молекулы ДНК разной длины и способны различать молекулы с разницей всего в один нуклеотид. В процессе, который называется гель-электрофорез, отрицательно заряженные молекулы нуклеиновой кислоты двигаются сквозь агарозный гель под действием электрического поля. «Усеченные» олигомеры меньше и в силу этого двигаются быстрее, чем олигомеры правильного размера. Просто разрезав гель бритвенным лезвием, мы могли отделить полосу с молекулами нормальной длины, чтобы использовать их для сборки смысловой и антисмысловой цепочек
Теперь у нас были компоненты для сборки генома фага – очищенные олигомерные цепочки. После этого мы объединили смысловые и антисмысловые олигомеры, которые, благодаря перекрывающейся схеме, сами выстроились в правильном порядке, подобно самособирающимся блокам лего. Тогда мы связали их насовсем с помощью фермента ДНК-лигазы. Вместо того фермента, что был у Корнберга, мы выбрали более мощную лигазу из высокотемпературного организма, которая долго сохраняла активность. Оставив пул олигомеров на восемнадцать часов реагировать при температуре в 55 градусов, мы получили из олигомеров по 42 основания более крупные фрагменты: в среднем по 700 оснований, а некоторые – по две-три тысячи.
Из этих более длинных кусков ДНК мы смонтировали полноразмерную геномную последовательность
В варианте процесса ПЦС мы начали со всех более крупных кусков ДНК с первого этапа сборки (в которых было в среднем по 700 пар оснований). Мы снова расплавили двухцепочечную ДНК до одиночных цепочек. Вместо копирования одинарных цепочек ДНК-полимеразой мы позволили реакционной смеси остыть, чтобы одинарные цепочки слиплись с любыми комплементарными участками. Поскольку последовательности наших фрагментов частично перекрывались на концах, в такой смеси часть цепочек объединялась не со своей парой, а с парой «соседнего» фрагмента, сцепляясь с ним лишь концами – как если совместить только первые фаланги ваших указательных пальцев. Большая часть таких цепочек оставалась одинарной, и ДНК-полимеразы, используя их как матрицу, достраивали к ним комплементарные цепочки. В результате из двух фрагментов получался один, почти вдвое большей длины. Повторяя этот цикл, можно построить кусок ДНК длиной в несколько тысяч пар оснований, причем сделать это относительно быстро. Циклы продолжаются, пока растущие молекулы не перекрывают геном полностью. После этого для размножения полного генома используется обычная ПЦР. Чтобы превратить эти линейные геномы фага в способные заражать кольца, фермент
Далее идет важный тест – проверка, удалось ли нам создать точный синтетический геном, способный к заражению. Чтобы вирус был заразным, синтетическая ДНК должна быть опознана ферментными системами в клетках
Если бы на слое
Чтобы представить контекст наших опытов, надо сказать о еще более отважной попытке создать хотя бы отчасти жизнеспособный вирус путем пошагового процесса, предпринятой годом раньше Экардом Уиммером из Университета штата Нью-Йорк в Стони-Бруке. У его команды получение первого синтетического РНК-вируса путем сборки генома вируса полиомиелита в семь тысяч оснований из небольших синтетических олигомеров ДНК, следуя расшифровке, которую он и его коллеги опубликовали в 1981 году, заняло три года. Синтетическая ДНК была с помощью РНК-транскриптазы переведена в заразную вирусную РНК. Этот первый синтетический РНК-вирус полиомиелита страдал той же самой неточностью синтеза олигомеров, которая подкосила наши собственные опыты, и в результате его активность была сильно снижена{116}. У достижения Уиммера был один негативный аспект: он предпочел опубликовать это скорее как предостережение научному сообществу, чем как обычный научный результат, породив тем самым споры и беспокойство в обществе.
Следуя за работой Уиммера, мы сократили сроки создания вируса с годов до дней. Поскольку эта работа финансировалась МЭ, я связался с Ари Патриносом, чтобы уведомить правительство о нашем успехе. Вскоре поступил официальный ответ, который я приводил в автобиографии «Расшифрованная жизнь».
Прямо на следующий день я обнаружил себя сидящим в ресторане на Пенсильвания-авеню (в нескольких кварталах от Овального кабинета), куда был призван всего за два часа до этого на срочный деловой ланч Ари Патриносом, работавшим в биологическом отделе министерства энергетики, которое спонсировало мои исследования, и сыгравшим в свое время важную роль в совместном представлении первого человеческого генома в Белом доме. Позже к нам присоединились его босс, Рэймонд Ли Орбах, директор Управления науки и техники МЭ; Джон Марбургер III, советник президента по науке и директор Управления науки и технической политики; и Лоуренс Керр, директор по исследованиям, развитию и проблеме биотерроризма Управления внутренней безопасности Белого дома. После того как в октябре 2001 года нескольким политикам были присланы по почте споры сибирской язвы, убившие пять человек, правительство США всерьез занялось подготовкой к отражению будущих биологических терактов{117}.
Я объяснил им, насколько быстро мы создали
Я настаивал на рассмотрении этой проблемы правительством еще десятью годами ранее, когда мою группу, тогда еще в НИЗ, министр здравоохранения попросил секвенировать геном вируса оспы. Это было частью международного соглашения о ликвидации остаточных запасов вируса оспы в Центрах по контролю заболеваний в Атланте и аналогичной организации в Москве[13]. Уничтожать или нет оставшиеся штаммы оспы – было в последние годы одним из самых яростных споров в мировом здравоохранении. Была надежда, что если, прежде чем уничтожить вирус, секвенировать геном, то важная для науки информация сохранится. Секвенирование, подробно описанное в «Расшифрованной жизни», началось в моей лаборатории в НИЗ и закончилось в
Прежде всего мы не знали, позволит ли (и должно ли позволять) правительство публикацию последовательности и ее анализа. Наше беспокойство насчет обнародования таких знаний было понятным: этот вирус убивал людей миллионами. За всю историю человечества до эпидемии ВИЧ вирус натуральной оспы унес больше человеческих жизней, чем все прочие инфекционные агенты, вместе взятые. Предполагается, что он возник около 3000 лет назад в Индии или Египте, после чего оспа появлялась в виде периодических эпидемий, которые прокатывались по континентам, убивая до 30 % зараженных, обезображивая и лишая зрения тех, кто выжил. Считается, что оспа выкосила значительную часть коренного населения обеих Америк, где европейские поселенцы нарочно давали туземцам зараженные одеяла, чтобы распространить инфекцию{118}. Забирая жизни королей, королев, царей и императоров, оспа меняла ход истории{119}.
В конце концов я оказался в Национальном институте здравоохранения в Бетесде у его директора Бернадин Хили (умершей в 2011 году от опухоли мозга) в компании представителей разных федеральных ведомств, в том числе министерства обороны. Эта группа была по понятным причинам встревожена перспективой открытой публикации данных о геноме оспы. Некоторые радикальные предложения включали засекречивание моих исследований и создание периметра безопасности вокруг нового здания моего института. К несчастью, это совещание не выработало хорошо продуманной долгосрочной стратегии. Вместо этого была принята политика, выдержанная в духе холодной войны. В рамках соглашения с СССР (распавшимся в конце 1991 года) в России секвенировали геном возбудителя так называемой «малой оспы»[14], а мы – геном возбудителя типичной формы. Узнав, что русские готовятся опубликовать свои данные о геноме, правительство поторопило меня с завершением работы, чтобы опубликоваться первыми, и все разумные обсуждения на этом закончились.
На сей раз все было иначе: Белый дом президента Буша весьма обдуманно рассматривал возможные последствия нашей работы над синтетическим вирусом. После обширных консультаций и исследований они, к моему удовлетворению, приняли решение об открытой публикации нашего синтетического генома
На пресс-конференции в Вашингтоне, устроенной министерством энергетики для обсуждения статьи, министр Спенсер Абрахам назвал эту работу «совершенно изумительной» и предсказал, что она может привести к созданию генно-инженерных микробов, скроенных для борьбы с загрязнениями или поглощения излишков углекислоты или даже для обеспечения в будущем потребности в топливе. Это было бы настоящей наградой – как для меня, так и для общества. Теперь мы умеем составлять синтетические геномы, и это, я надеюсь, приведет к невероятному прогрессу в проектировании микроорганизмов для многих жизненно важных энергетических и природоохранных целей. Некоторые, к примеру, смогут превращать солнечный свет в горючее, другие – поглощать загрязнители или очищать выхлопные газы от углекислоты.
Мы повторили то, что сделал Корнберг в 1960-х с ДНК-полимеразной копией тогда еще неизвестного генома
Однако уже тогда мы осознали, что если мы преуспеем в способности конструировать текст жизни в компьютере, химическим синтезом переводить его в программу ДНК и заставлять синтетический текст работать для создания нового организма, то это будет означать, что витализм действительно мертв, и заодно – что у нас будет более ясное представление о том, что на самом деле значит слово «жизнь». Слияние цифровых миров – машинного и биологического – откроет замечательные возможности создавать новые виды и направлять будущую эволюцию. Мы достигли важнейшей точки бытия – начала времени, «когда все станет возможным»[15], и можем в самом деле достичь того, что Фрэнсис Бэкон описывал как покорение природы. Но это великое могущество влечет за собой долг объяснить нашу цель – так, чтобы общество в большинстве смогло ее понять – и, что еще важнее, использовать эту мощь ответственно.
Задолго до того, как мы наконец преуспели в создании синтетического генома, я стремился предусмотреть все этические последствия этого достижения для науки и общества. Я был уверен, что кое у кого создание синтетической жизни вызовет тревогу и даже страх. Их будут интересовать последствия для здоровья людей и окружающей среды. В рамках образовательной работы своего института я организовал знаменитую серию семинаров в Национальной академии наук в Вашингтоне, где выступили весьма разнообразные и широко известные докладчики – от Джареда Даймонда до Сиднея Бреннера. Следуя своему интересу к проблемам биоэтики, я также пригласил прочитать одну из лекций очень влиятельную фигуру в здравоохранении и этике – Артура Каплана, работавшего тогда в Центре биоэтики при Университете Пенсильвании.
Как и было принято, после лекции я пригласил Артура Каплана на обед. За столом я сказал что-то в том духе, что, мол, имея дело с широким спектром современных биомедицинских проблем, он должен был к нынешнему моменту слышать всё. Арт ответил, что да, конечно, в основном слышал. А доводилось ли ему сталкиваться с темой создания новых синтетических форм жизни в лаборатории? Он с удивленным видом признал, что определенно никогда не слышал о таком, пока я не спросил. Не будет ли ему интересно рассмотреть эту проблему, если я дам его группе необходимое финансирование? Арт загорелся темой синтетической жизни, и мы тут же договорились, что мой институт даст его отделу средства для независимого анализа последствий наших работ по созданию синтетической клетки.
Каплан со своей командой провел серию рабочих групп и интервью, приглашая самых разных специалистов, религиозных лидеров и знаменитостей. Меня позвали на одну сессию для описания запланированного нами научного подхода и ответов на вопросы. Я очутился среди представителей нескольких крупных религий. Я был очень удивлен и доволен, когда обсуждение пришло к тому, что поскольку они не смогли найти ни в Библии, ни в священных писаниях других религий запрета на создание новых жизненных форм, то это приемлемо.
После этого я не слышал о биоэтическом исследовании Университета Пенсильвании, пока результаты не были опубликованы в
В начале статья обращала внимание на то, как неожиданное объявление о клонировании овечки Долли в феврале 1997 года выявило серьезное отставание принятых понятий об этичности и законности от научного прогресса. (На самом деле Долли была не первым клонированным животным, но первым клонированным из взрослой клетки.) Эта новость стала шоком для биологов – мало кто считал возможным взять взрослую дифференцированную клетку и перевести часы развития назад настолько, чтобы создать эмбриональную клетку, которая может вырасти в новое животное. Овца, которая дала клетку молочной железы для создания Долли, не «восстала из мертвых», как утверждали некоторые{121}. Жить продолжала только ее ДНК-программа.
Как я и надеялся, когда дошло до изучения проблем, возникших при создании минимального генома, инициативой завладела пенсильванская команда. С моей точки зрения, это было особенно важно: это означало, что проблемы поставили ученые, участвующие в основном исследовании и в зарождении самих идей, воплощенных этих достижениях, – а не сердитые или встревоженные люди с улицы, протестующие против того, что их не спросили (пусть даже потом некоторые маргинальные группы и заявят об этом). Авторы указали, что, хотя искушение демонизировать нашу работу может быть непреодолимым, «научное сообщество и публика могут начинать понимать, что стоит на кону, поскольку уже предприняты усилия определить природу занимающейся этим предметом науки и поставить ключевые этические, религиозные и метафизические вопросы так, чтобы их обсуждение могло успевать за наукой. Если этика отстанет от этой линии исследований, то только потому, что мы ей это позволим»{122}.
Далее статья обращалась к широкому кругу проблем – от потенциальной опасности выпуска новых видов для окружающей среды до вопросов патентного права. Однако поскольку реальный синтез таких геномов казался делом очень отдаленного будущего, в большинстве сообщений СМИ был пропущен один из ключевых абзацев, касающийся безопасности: «Знание последовательностей особо опасных патогенов может создать для общественного здравоохранения и безопасности угрозы, способные перевесить выгоды. Это тревожит, поскольку современные способы регулирования почти не обеспечивают надзора за этими технологиями».
Помня о спорах вокруг уничтожения оспы и сомнениях насчет публикации вируса полиомиелита и, возможно, предвидя постоянные будущие заламывания рук в ожидании оживления пандемических штаммов в ходе исследований гриппа{123}, авторы спрашивали, надо ли нам регулировать науку и если да, то в какой мере. Подобные вопросы будут сопровождать каждый следующий шаг науки о синтетических геномах.
Как ни странно для публикации в научном журнале, статья в
Есть серьезный риск, что определение и синтез минимальных геномов будут представлены учеными, описаны прессой или восприняты публикой как доказательство, что жизнь – это всего лишь ДНК или может быть сведена к ней… Это может оказаться угрозой для взгляда на жизнь как на нечто особенное. По крайней мере со времен Аристотеля существовала традиция, рассматривающая жизнь как нечто большее, чем просто физические процессы. На ней основано представление о взаимосвязанности всех живых существ и чувство, что они в каком-то важном смысле есть нечто большее, чем организованная материя.
Чо и др. также уделили много внимания религиозным проблемам, словно подчеркивая свою озабоченность ими: «Удивительно, что крупные западные религиозные сообщества почти не проявляли склонности дать определение жизни или обозначить ее суть». Таким образом эта ответственность возлагалась на науку – несмотря на заключение самих авторов, что как раз «чисто научное определение жизни» и вызвало беспокойство.
Самым, пожалуй, настоятельным вопросом, по мнению пенсильванской команды, было «не будет ли такое исследование недозволенным вмешательством в то, что лучше бы оставить природе». Важный – и для меня обнадеживающий – вывод работы вторил тому, что я слышал прежде на обсуждениях: «Преобладающая [религиозная] точка зрения состоит в том, что, хотя есть причины для осторожности, в намерении ученых создать минимальный геном нет ничего такого, что автоматически запрещалось бы обоснованными религиозными соображениями».
Это не значило, однако, что религиозные соображения не имеют отношения к делу. Один взгляд на нашу работу состоял в том, что она знаменует прогресс человечества. Другой – что это лишь новейший пример научной спеси, неизбежно ведущей к катастрофе, – тема, которую снова и снова рассматривает и разрабатывает популярная литература, от голема, одушевленной глиняной фигуры из иудейских легенд, до монстра из «Франкенштейна» Мэри Шелли, «Острова доктора Моро» Уэллса и воскрешенных динозавров из «Парка юрского периода» Майкла Крайтона.
Именно этот вопрос будет определять одиннадцать лет спустя реакцию прессы на наше объявление о первой синтетической клетке, когда все дружно двинутся по одной мысленной дорожке: «А не играем ли мы в Бога?» Статья пенсильванской группы мудро указывала, что это возражение – средство скорее пресечь дискуссии о моральной ответственности за манипуляции жизнью, чем стимулировать их. Она утверждала, что можно найти баланс между пессимистическим взглядом на нашу работу как очередной пример спеси и оптимистическим – как на равносильную «прогрессу человечества». Авторы добавляли, что «хороший распорядитель» продвигал бы работы по геномике осторожно, рассматривая собственные цели и применение новых знаний в свете чтимых традиций. Они заключали, что нет веских этических причин, по которым команда должна была бы воздержаться от продолжения работы в этой области, пока она продолжает участвовать в публичных обсуждениях – что мы и делаем.
Глава 6. Первый синтетический геном
Нынешние машины для будущего – как древние ящеры для человека.
Стремление манипулировать жизнью в лаборатории прошло долгий путь от зари эпохи рекомбинантной ДНК в 1970-х, когда Пол Берг, Герберт Бойер и Стэнли Коэн начали резать и склеивать ДНК. К концу десятилетия появился лабораторный штамм
Сегодня генная инженерия превратилась в то, что более известно как синтетическая биология. Различие между биологией молекулярной и синтетической стерто, и в большинстве применений реальной разницы нет. «Синтетическая биология» просто звучит привлекательнее – точно так же физиология заместилась «биологией систем», а некоторые вполне традиционные химики предпочли переназвать свою работу нанотехнологией. Но как ни назови, а по всему земному шару множество ученых занимается генной инженерией, сочетая биологию с инженерными подходами.
Последние достижения слишком многочисленны, чтобы приводить их подробный список, но вот всего лишь несколько примеров генно-инженерных открытий. Рабочая лошадка молекулярно-биологических лабораторий,
Наша предполагаемая работа по синтезу генома живой клетки требовала гораздо более глубокого понимания того, какие гены необходимы для жизни. Чтобы ответить на этот вызов, нам нужно было применить разнообразные приемы, как мы уже успешно делали раньше при секвенировании человеческого генома; успех в современной науке всё больше зависит от хорошей командной работы{130}. Чтобы создать синтетическую клетку, мы запустили три большие программы. По опыту нашей работы с
Мы планировали синтезировать самый маленький известный геном, который может создать живую самовоспроизводящуюся клетку,
Итак, нам было нужно разработать новый набор инструментов для надежного синтеза крупных молекул ДНК. Развитие инструментов и технических приемов – основа научного прогресса, но, на мой взгляд, не менее важна тщательность выполнения процедур. Мне часто приходилось описывать лабораторную работу в геномике взятым из информатики «мусор на входе – мусор на выходе»[16]: если не соблюдать предельной тщательности при выполнении каждого шага, конечный результат будет в лучшем случае гораздо слабее, чем мог бы быть. Когда мы в 1990-х секвенировали первые геномы, мы обнаружили, что если наши библиотеки ДНК (содержащие небольшие фрагменты генома) были не высочайшего качества и не представляли собой истинно случайной выборки из всей ДНК в интересующем нас геноме, то шансов, что компьютер сможет использовать последовательности, сгенерированные по тем библиотечным образцам, для реконструкции последовательности генома, было очень мало. То же самое можно сказать об использованной для секвенирования ДНК, чистоте реагентов и воспроизводимости техник. Всё должно быть высшего качества. Моя команда обращала особое внимание на эти фундаментальные требования, и в результате мы оказались действительно способны получать очень высококачественные данные о последовательности ДНК.
Однако, как обсуждалось в 5-й главе, качество секвенирования ДНК, необходимое для чтения генетического текста, намного ниже, чем то, что требуется для написания текста, способного поддерживать жизнь. В первом случае нас устраивала точность не более одной ошибки на 10 000 пар оснований. Может показаться, что это очень мало ошибок, но использование этого стандарта означало бы, что у нас было бы около 60 ошибок в геноме
Эти простые факты часто забывают, фантазируя об оживлении вымерших видов по их секвенированным геномам. Журналистские рассуждения, вдохновленные великими достижениями палеогенетики – геномом неандертальца, прочитанным Сванте Паабо{132}, или секвенированием ДНК шерстистого мамонта в Университете штата Пенсильвания{133}, всегда сворачивают на возбужденные мечтания о воскрешении видов{134}. Я прочел слишком много статей, бодренько обсуждающих восстановление неандертальцев или мамонта с помощью клонирования, хотя сиквенсы ДНК обоих созданий очень фрагментированы, не покрывают всего генома и – в силу глубокой деградированности – гораздо менее точны, чем те, что обычно получают при чтении свежей ДНК.
Тем не менее прочтение неандертальской ДНК было изумительным достижением науки, поведавшим нам многое о нашей собственной эволюции, установив, что скрещивание некоторых предков современных людей с нашими неандертальскими кузенами оставило нам в наследство 3–4 % нашего генома, восходящие к неандертальцам.
Чтобы синтезировать геном
Наш успех с конвертированием цифровой записи генома
Мы нарезали геном микоплазмы на 101 кассету от пяти до семи тысяч пар оснований каждая. Кассеты были вырезаны так, чтобы каждая перекрывалась с соседними на 80–360 пар оснований, так что мы могли их накладывать друг на друга, как конструктор лего. Мы так спроектировали наши кассеты, что последовательности ДНК в зоне перекрываний были комплементарными: если последней буквой в одной кассете была Т, то она стремилась связаться с А в другой. Подобно застежке-молнии, перекрывающиеся участки сцеплялись между собой комплементарными основаниями, образуя спираль.
Наша попытка создать синтетический геном отличалась еще двумя особенностями. Во-первых, геном
Мы хотели поставить подпись в новом геноме (как художники подписывают свои работы), чтобы отличать его от природного. И вот, использовав однобуквенные обозначения аминокислот, мы создали последовательности – «водяные знаки», которые читались как «Институт Вентера» и
TTAAЦTAГЦTAATГTЦГTГЦAATTГГAГTAГAГAAЦAЦAГAAЦГATTAAЦTAГЦTAA[17].
Эти «водяные знаки» были вставлены в пять разных кассет, разнесенных по геному. Нам также нужно было вставить ген устойчивости к антибиотику, что позволило бы нам избирательно убивать клетки, в которых нет нашего синтетического генома, и таким образом отбирать те, где он есть. Мы вставили ген устойчивости к антибиотикам внутрь ключевого гена
Чтобы наша команда могла сосредоточиться на ключевом этапе – сборке 101 кассеты в геном, – я настоял, чтобы мы предложили трем компаниям, занимающимся синтезом ДНК, контракт на изготовление для нас 101 спроектированной кассеты. Несмотря на рекламные объявления, мы нашли только одну компанию, которая могла делать фрагменты в пять – семь тысяч пар оснований. Кроме того, это было дорого: синтез ДНК стоит примерно 1 доллар за каждую пару оснований, так что один сырой материал для нас должен был стоить больше полумиллиона долларов. Принимая на себя такое серьезное финансовое обязательство, мы были полны решимости заставить наших контрагентов работать.
Одной из главных трудностей было – как соединить 101 кассету. Первая идея пришла из наших прежних проектов по синтезу геномов. В результате наших попыток охватить как можно более широкое биологическое разнообразие я узнал о весьма примечательном организме, который мог восстанавливать свой геном после значительных радиационных повреждений. В 1999 году мы опубликовали статью «Полное секвенирование генома устойчивой к радиации бактерии
Действие радиации на белки и ДНК всех видов примерно одинаково и отчасти связано с размером молекул. В начале своей научной карьеры я посвятил некоторое время определению размеров белков, инактивируя их радиацией. Методика в принципе проста. В белках радиация разрывает пептидные связи, которые соединяют составляющие белок аминокислоты; одного попадания в молекулу белка достаточно, чтобы лишить ее активности. Существует обратная зависимость между размером молекулы белка и дозой радиации, нужной для его инактивации путем разрыва пептидных связей (шанс попасть в крупную мишень гораздо выше, чем в мелкую), поэтому чем меньше белок, тем большая доза радиации нужна. Я использовал этот метод для определения размера белков-рецепторов нейромедиаторов и их функциональных комплексов{136}.
Сходным образом радиация поражает и ДНК, разрывая химические связи, соединяющие нуклеотиды между собой. Как и в случае с белками, чем больше геном, тем ниже доза радиации, способная причинить разрушения. Из-за нашего большого генома люди намного чувствительнее к воздействию радиации, чем бактерии. Геном человеческой клетки в тысячу раз больше генома микроба: шесть миллиардов пар оснований против 1–8 миллионов пар у бактерий. Вследствие этого, чтобы разорвать обе цепочки в нашей ДНК, нужна значительно меньшая доза радиации, чем для бактериальной хромосомы. Поэтому мы можем быть уверены, что если нас угораздит попасть под ядерный армагеддон, то мелкие формы жизни его выдержат.
Так как выживает
Мы рассудили, что если бы нам удалось воспроизвести процессы починки ДНК и сборки хромосом вне клеток
Следующим подходом было разработать логичный пошаговый план сборки. Применяя специально предусмотренные перекрывания в последовательностях ДНК соседних кассет, мы собрали «в пробирке» две кассеты, чтобы получить фрагмент побольше. Затем мы клонировали этот более крупный фрагмент в
Наш план первого раунда сборки генома состоял в соединении четырех кассет, каждая размером примерно с геном
Чтобы связать куски вместе, мы добавили в смесь ДНК в пробирке фермент (3’-экзонуклеазу), который откусывает по нуклеотиду с конца ДНК, укорачивая лишь одну из двух цепочек ДНК (так называемую 3’-цепочку – это название связано с тем, как нумеруются атомы углерода в сахарах нуклеотидов ДНК) и оставляя другую цепочку (5’-цепочку) открытой. Управляя экзонуклеазой путем изменений температуры, мы могли гарантировать, что соответствующие одноцепочечные концы кассет найдут друг друга и слипнутся за счет химического притяжения комплементарных оснований на каждой цепочке, а-ля Уотсон и Крик.
Чтобы убедиться, что мы в итоге получим полные двуспиральные цепочки, мы затем добавили ДНК-полимеразу и свободные нуклеотиды, чтобы в любом месте, где 3’-экзонуклеаза откусила от цепочки слишком много, полимераза вставила недостающие основания на место. Кроме того, в смесь был добавлен еще один фермент, ДНК-лигаза, чтобы соединить перекрывающиеся концы. Когда все ферменты закончили свою работу, мы получили все четыре кассеты, сцепленные в куски из 24 000 пар оснований, или цепочки в 24 кб[18]. Чтобы произвести все такие «укрупненные» кассеты по 24 кб, которые вместе составляют полный геном
Так как мы размножали синтетическую ДНК в
Наши векторы-ИБХ были сконструированы так, что на обеих сторонах нашей вставленной синтетической ДНК у них была последовательность из восьми определенных оснований. Эта восьмерка нуклеотидов, не встречающаяся в естественном геноме
Следующим шагом было повторение процесса еще раз, теперь для получения сегментов по 144 000 пар оснований, каждый сегмент – четверть генома. Для этого две кассеты по 72 кб подвергались тому же процессу сборки
Это побудило нашу команду начать поиски других видов, способных устойчиво вмещать столь большие молекулы синтетической ДНК. Мы обратили внимание на
Нашим гуру по части дрожжей был Владимир Носков, научный сотрудник группы синтетической биологии и биоэнергетики в Институте Крейга Вентера в Мэриленде. Носков учился в Санкт-Петербургском государственном университете в России и потом продолжил образование там же, готовя диссертацию по генетике дрожжей. Проведя пять лет в Японии за изучением репликации хромосомальной ДНК и «контрольной точки» клеточного цикла дрожжей, где ДНК проходит контроль и починку, он затем работал в НИЗ в Бетесде. Там, в группе структуры и функции хромосом, Носков придумал несколько новых приемов для технологии манипулирования большими кусками ДНК в дрожжах – трансформационно-ассоциированного рекомбинантного (ТАР) клонирования, более совершенного, чем старый метод искусственных хромосом дрожжей
Дрожжевые клетки, которые примерно в десять раз больше клеток
Мы обнаружили, что с помощью ТАР-клонирования мы можем стабильно растить наши большие конструкции из синтетической ДНК, а используя дрожжевую систему гомологичной рекомбинации – соединять наши перекрывающиеся сегменты-четвертушки в куски в половину генома. Затем эта система позволит нам собрать в дрожжах весь геном
Мы вставили в дрожжевые клетки шесть кусков ДНК: ТАР-клонирующий вектор и пять соответствующих геному
Казалось, мы преуспели в сборке нашего синтетического бактериального генома в дрожжевых клетках, но надо было еще секвенировать ДНК, чтобы проверить точность этого генома и убедиться, что процесс сборки прошел без ошибок. Это звучит просто, но нам пришлось разработать новые методы, чтобы извлечь нашу синтетическую хромосому из дрожжевых клеток, а она, по нашей оценке, составляла около 5 % всей содержащейся в них ДНК. Для очистки нашей синтетической ДНК мы, зная последовательности генома дрожжей и синтетического генома, подобрали рестриктазы, которые порезали на мелкие кусочки только ДНК дрожжей. Затем путем гель-электрофореза мы отделили расщепленные остатки дрожжевой ДНК от невредимой синтетической хромосомы.
Наконец мы могли использовать наш метод дробления для секвенирования синтетического генома. Мы все были очень довольны и вздохнули с облегчением, когда реальная последовательность ДНК точно совпала с той, что была записана у нас в компьютере, включая введенные нами водяные знаки. Мы синтезировали геном
Мы назвали нашу первую синтетическую хромосому
Глава 7. Превращение одного вида в другой
Переход от парадигмы в кризисный период к новой парадигме, от которой может родиться новая традиция нормальной науки, представляет собой процесс далеко не кумулятивный и не такой, который мог бы быть осуществлен посредством более четкой разработки или расширения старой парадигмы. Этот процесс скорее напоминает реконструкцию области на новых основаниях, реконструкцию, которая изменяет некоторые наиболее элементарные теоретические обобщения в данной области, а также многие методы и приложения парадигмы. В течение переходного периода наблюдается большое, но никогда не полное совпадение проблем, которые могут быть решены и с помощью старой парадигмы, и с помощью новой. Однако тем не менее имеется разительное отличие в способах решения. К тому времени, когда переход заканчивается, ученый-профессионал уже изменит свою точку зрения на область исследования, ее методы и цели.
Если бы мне нужно было выбрать одну работу, статью или результат эксперимента, которые повлияли на мое понимание жизни сильнее прочих, то я, без сомнения, выбрал бы из всех остальных вот эту: «Трансплантация генома бактерий: превращение одного вида в другой»{140}. Исследование, которое привело к статье 2007 года в
В известном смысле наши опыты можно считать продолжением процесса, именуемого «пересадкой ядра», который был применен, в частности, командой во главе с Иэном Уилмутом в Институте Рослин возле Эдинбурга, в Шотландии, для создания Долли{141}, клонированной овцы. Ядро из клетки молочной железы взрослой овцы со всей ДНК пересадили в яйцеклетку (предварительно лишенную собственного ядра), успешно вернув пересаженную ДНК в эмбриональное состояние. Последовавшее рождение Долли прогремело в 1997 году в заголовках прессы всего мира, потому что она была создана из взрослой клетки молочной железы (откуда и ее имя – намек на певицу Долли Партон с пышным бюстом). До рождения этого ягненка взять клетку взрослого организма и сделать клон считалось невозможным. Достижение Института Рослин опиралось на многие факторы, от изощренного знания клеточного цикла до технических решений вроде покрытия реконструируемого эмбриона оболочкой из защитного агара{142}. Но Долли была далеко не первым клоном и даже не первой клонированной овцой{143}.
История пересадки ядра на самом деле начинается в 1938 году со знаменитого и очень изобретательного немецкого эмбриолога Ханса Шпемана (1869–1941), который опубликовал результаты первых экспериментов по пересадке ядер{144}. Шпеман был первопроходцем того, что он называл
Шпеман сделал из волоска петлю, чтобы разделить под бинокуляром цитоплазму только что оплодотворенной икринки саламандры, придав эмбриону форму гантели. На одном конце гантели было ядро, содержащее ДНК; на другом – только заключенная в клеточную мембрану цитоплазма, в которой было всё, что содержится в клетке вне ядра. (Нелишне напомнить, что, хотя исходно Шпеман вдохновился работой Августа Вейсмана о наследственности, всё, что было тогда[19] известно, это что тайна наследственности лежит в ядре.) После того как половинка с ядром поделилась четыре раза, став эмбрионом из 16 клеток, Шпеман развязал волосок и позволил одному из шестнадцати ядер пройти в отделенную цитоплазму в другой половине гантели, образуя новую клетку с исходным содержимым яйцеклетки и более зрелым ядром. Вновь затянув волосок, он разделил эмбрион надвое. Тем самым он продемонстрировал, что ядро, пройдя четыре деления, сохраняет способность превращаться в любой тип клеток. Таким способом Шпеман создал клон – генетически идентичную копию, которая была на несколько секунд моложе, чем другая.
Шпеман назвал этот процесс «двойникованием», и оно было отмечено в истории как первое клонирование животного, проведенное в лаборатории с помощью пересадки ядра. Он хотел пойти дальше и предложил «фантастический эксперимент» – проделать то же самое со взрослой клеткой. Но, как и многие до него, он был слишком ошеломлен и восхищен тайнами развития, чтобы поверить, что оно зависит лишь от физики и химии.
В следующем десятилетии задача Шпемана привлекла внимание Роберта Бриггса, исследователя из научно-исследовательского института при госпитале Ланкенау в Филадельфии (позже Институт онкологических исследований, а затем Онкологический центр Фокса Чейза), который изучал клеточное ядро. В 1952 году, работая с Томасом Кингом, он клонировал леопардовых лягушек, пересаживая ядро клетки. Эксперимент Бриггса и Кинга походил на то, что предлагал – и предвосхитил в своих опытах на саламандрах – Шпеман в 1938 году. Они пересадили ядро лягушачьего эмбриона ранней стадии в большую (миллиметровую) яйцеклетку обычной американской леопардовой лягушки. Полученные таким образом эмбрионы благополучно развились в головастиков. Но в ходе дальнейших экспериментов Бриггс и Кинг пришли к выводу, что по мере дифференцировки клеток потенциал развития уменьшается и получить клон из ядра взрослой клетки невозможно. Позже, в 1962 году, работавший в Оксфорде Джон Гёрдон заменил ядро яйцеклетки шпорцевой лягушки (
То, что мы пытались сделать, в некоторых отношениях было намного сложнее, чем эти ранние эксперименты с пересадкой ядер, хотя они были, несомненно, весьма замечательными. Работа Шпемана была немного похожа на попытку перепрограммировать компьютер, ничего не зная о программировании, а просто скачивая что-то из интернета. В отличие от более сложных эукариотных клеток, у бактерии нет ядра – клеточной субструктуры, заключенной в мембрану. В бактериальной клетке геном плавает в густом цитоплазматическом супе вместе с прочими клеточными компонентами. Так что там просто нет клеточной органеллы, которую можно удалить хирургическим путем. С еще более сложной задачей мы столкнулись, когда хотели трансплантировать генетический материал одного вида в клетку другого, в то время как все предыдущие эксперименты с переносом ядра включали работу с одним видом, а то и с одним и тем же животным.
Когда мы начали думать над тем, как перевести синтетическую ДНК в бактерию и заменить ее собственную хромосому, то поняли, что надо разрабатывать новый метод трансплантации генома, поскольку нужно заменить весь геном вида-хозяина на вставленную голую ДНК нового вида без какого-либо смешения (рекомбинации) двух геномов. Отдельные гены молекулярщики уже десятки лет пересаживали привычно и без ограничений – например, вирусные и человеческие гены пересаживались в бактерии и дрожжи и работали там. Но насколько я знаю, никто не пытался пересадить полный геном, такая задача многим могла казаться невозможной.
Такая предвзятость часто ограничивает нашу способность испробовать новый подход или принять новые открытия. Например, микробиологи когда-то думали, что в бактериальных клетках может быть только одна хромосома. Но реальность оказалась намного интереснее – как я обнаружил в середине 1990-х, когда мы{147} секвенировали геном возбудителя холеры, массовой и опасной болезни, которая каждый год{148} поражает пять миллионов человек по всему миру, приводя к ста двадцати тысячам смертей. Разработанные нами алгоритмы для секвенирования дроблением, посредством которых компьютеры подбирали перекрывающиеся куски секвенируемой последовательности, имели специфическую особенность: они собирали геномные тексты только на основе перекрывающихся участков. У компьютеров не было априорного представления о том, сколько хромосом, плазмид или вирусов должно получиться, они только складывали подходящие фрагменты в математически обоснованном порядке. Когда мы собрали секвенированные фрагменты генома холеры, они явственно сложились в две независимые хромосомы – а не в одну, как полагало большинство. Когда мы сравнили эти две хромосомы друг с другом и с другими геномами, то обнаружили, что они очень сильно отличаются между собой.
Сделав такое открытие на холере, мы потом выявили немало видов микробов с несколькими хромосомами. Это поднимало вопрос: как эти виды обзавелись этими множественными хромосомами? Может, клетка просто случайно забрала дополнительную ДНК из лизированной клетки и новая хромосома образовалась, потому что она добавила своему новому дому какие-то важные для выживания способности? Или две древние клетки слились, образовав новый вид? У нас не было на это ответов, но меня эти идеи чрезвычайно привлекали. Большинство мыслило эволюцию видов как идущую за счет постепенного накопления единичных изменений оснований в последовательности ДНК в течение миллионов и миллиардов лет; тот или иной вид адаптируется к окружающей его среде, если случайные изменения предлагают преимущества для выживания. Мне показалось правдоподобным, что некоторые известные нам крупные эволюционные скачки происходили по крайней мере отчасти за счет приобретения дополнительной хромосомы, которая сразу добавила тысячи генов и множество новых признаков.
Теперь мы знаем, что многие продвинутые функции эукариотных клеток возникли в эволюции, когда ранние эукариотные клетки полностью вобрали в себя некоторые виды микробов, которые сначала жили с ними в симбиотических взаимоотношениях. Вероятно, самое важное событие такого рода произошло примерно два миллиарда лет назад, когда эукариотная клетка забрала к себе фотосинтезирующую бактериальную клетку, ставшую в итоге хлоропластом, в котором происходит фотосинтез у всех растений. Второй самый наглядный пример этого процесса, называемого эндосимбиоз, можно найти в «блоках питания» наших клеток – митохондриях, которые, как и хлоропласты, несут свои собственные гены и происходят от симбиотической бактерии, вероятно, сходной с современными риккетсиями[20].
Поскольку было ясно, что трансплантация геномов и целых клеток была существенной частью нашей эволюции, я был уверен, что мы сможем найти способ искусственной пересадки геномов. Для наших начальных экспериментов по трансплантации мы выбрали микоплазмы, потому что, в отличие от большинства бактерий, у них нет клеточной стенки (жесткого упругого наружного слоя), а есть лишь клеточная липидная мембрана, что упрощало внесение ДНК в клетку. Кроме того, мы уже многое знали о микоплазмах, включая последовательности их геномов и результаты работ по нокаутным генам. Я собрал новую трансплантационную команду вокруг двух ученых: Джона Гласса, который провел большую часть своей карьеры в фармацевтической компании
Сначала мы хотели попытаться трансплантировать геном микоплазмы в
В свое время мы выбрали
Будучи геномной лабораторией, мы секвенировали геномы обоих видов, чтобы узнать, насколько они родственны друг другу. Мы нашли, что у
Основываясь на сходстве последовательностей ДНК, мы рассудили, что ключевые белки каждого вида, использующиеся для интерпретации генетических инструкций, будут достаточно биохимически совместимы, чтобы прочитать геном другого вида, и в то же время их можно будет легко отличить друг от друга. Мы также подумали, что геномные последовательности различаются достаточно, чтобы не рекомбинировать.
Когда дошло до выбора, чей геном пересаживать, а кто будет хозяином, мы выбрали
Выбрав из микоплазм донора и реципиента, мы ощутили уверенность, что наша экспериментальная система способна обеспечить наилучшие возможности для попытки трансплантации генома. Дальнейшие шаги требовали множество нудных экспериментов методом проб и ошибок и заводили нас в область неизвестного. Нам надо было разработать новые методы для выделения интактной хромосомы из одного вида и пересадки ее в другой вид, не повредив и не разрезав ДНК. Если мелкие куски ДНК легко поддаются манипуляциям без повреждений, то крупные, особенно целые хромосомы, состоящие из миллионов оснований, очень хрупки и легко повреждаются.
Нам также нужно было определиться с экспериментальным подходом в целом. Следовало ли нам удалить или разрушить геном
Мы придумывали разные способы атаки на хозяйскую хромосому, включая применение радиации, чтобы уничтожить ее ДНК, рассуждая, что на ДНК низкие дозы радиации повлияют намного сильнее, чем на гораздо более мелкие молекулы белков. Мы также рассматривали использование рестриктаз, чтобы они расщепили ДНК в геноме клетки-реципиента. Но нас все время тревожило, что любой их этих подходов может оставить после себя фрагменты ДНК, которые затем могут рекомбинировать с пересаженной хромосомой, и тогда геном в клетке уже не будет чисто синтетическим. После широкого обсуждения Хэм Смит предложил идею попроще: ничего не делать, потому что, когда клетка-реципиент после трансплантации поделится, в одной из дочерних клеток может оказаться только пересаженная хромосома.
Казалось, что шансы невелики, но мы решили провести такой эксперимент. Однако сначала мы должны были ответить на некоторые ключевые вопросы и разработать способ изоляции хромосомы и манипулирования ею без повреждения ДНК. Чтобы защитить ДНК, мы решили изолировать хромосому в маленьких (100 микролитров) блоках агарозы, по консистенции похожих на желатин. Для начала мы поместили бактериальные клетки в жидкую агарозную смесь и вылили ее в формы, которые, охладившись на льду, застыли в маленькие пробки. К плотно упакованным бактериям мы могли добавить ферменты, чтобы вскрыть клетки, содержимое которых, включая хромосомы, вытекло бы в эти пробки. ДНК мы отделяли, промывая пробки протеазой, расщепляющей все белки и оставляющей невредимой ДНК. Потом мы поместили пробки с ДНК поверх геля в установке для электрофореза и включили электрическое поле, чтобы втянуть ДНК в гель. Из-за входящих в ее каркас фосфатных групп ДНК заряжена отрицательно и в электрическом поле будет двигаться в сторону положительного электрода. Варьируя перепад напряжения и плотность геля и применяя разные красители, мы могли установить размер хромосомы, долю белковой примеси, а если ДНК повреждена или порвана – то сделать из нее линейные молекулы, так как линейная ДНК движется через гель быстрее, чем кольцеобразная, а та, в свою очередь, – быстрее, чем сверхспирализованная{150}.
Поэкспериментировав с высвобождением и электрофорезом геномов, мы обрели уверенность, что у нас есть способ изолировать хромосомы, определять, свободны ли они от белков (нам надо было знать, нужны ли какие-то белки для трансплантации), и оценивать, в каком они виде – двухцепочечные, кольцевые или сверхспирализованные. У прокариот и эукариот ДНК по-разному упаковывается, чтобы компактно размещаться в клетках или внутриклеточных структурах. В человеческих клетках ДНК намотана на белки, называемые гистонами, а у бактерий то же самое достигается сверхспирализацией, что, как подсказывает название, означает сворачивание спиралей в спирали. Большинство бактериальных геномов «отрицательно сверхспирализованы», то есть ДНК скручена в направлении, противоположном направлению закручивания двойной спирали. Некоторые предварительные эксперименты подсказали нам, что конформация ДНК имеет значение – в этих суперскрученных хромосомах она лучше всего подходит для пересадки.