Аксиома 3. В каждой партии участвуют два игрока.
Аксиома 4. Для каждых двух игроков имеется не более одной партии, в которой они оба участвуют.
«Так называемые аксиомы математики – это те немногие мыслительные определения, которые необходимы в математике в качестве исходного пункта». Ф. Энгельс
Однако ученики не спешили выводить теоремы из этих аксиом: вдруг опять обнаружится противоречие. Учитель же заверил мальчиков, что, сколько бы теорем они ни выводили из этих аксиом, никогда противоречий не будет. Вот как он убедил их в этом.
Рассмотрим девятиугольник, в котором кроме сторон проведем девять диагоналей, соединяющих вершины через одну (рис. 2). Вершины девятиугольника будем считать «игроками», проведенные отрезки (стороны и диагонали) - «партиями», а концы соответствующего отрезка «игроками», участвующими в некоторой «партии». Мы получаем модель (или схему) интересующего нас турнира. Легко установить, что все четыре аксиомы здесь выполняются. Итак, удается построить модель, в которой выполняются все рассматриваемые аксиомы, причем эта модель построена из «материала» геометрии, т.е. науки, в непротиворечивости которой мы не сомневаемся.
Рис. 2
Предположим теперь, что из рассматриваемых четырех аксиом можно вывести две теоремы, противоречащие друг другу. Тогда доказательства этих двух теорем можно было бы повторить и в построенной модели (ведь в этой модели все четыре аксиомы имеют место). В результате получается, что, рассуждая о правильном девятиугольнике, мы можем получить две противоречащие друг другу теоремы. Но это означало бы, что геометрия - наука противоречивая, чего мы не допускаем. Таким образом, мы должны признать, что двух противоречащих друг другу теорем вывести из рассматриваемых четырех аксиом невозможно.
Вообще, пусть рассматриваются две теории P и Q, причем теория P задается аксиоматически (и в ее непротиворечивости мы заранее не уверены), а Q - это хорошо известная нам теория, в непротиворечивости которой мы не сомневаемся. Если из «материала» теории Q удается построить модель, в которой выполняются все аксиомы теории P, то этим непротиворечивость теории P будем считать установленной.
Именно с помощью построения моделей в современной математике установлена непротиворечивость геометрии в предположении непротиворечивости теории действительных чисел. Далее, установлена непротиворечивость теории действительных чисел – в предположении непротиворечивости теории рациональных чисел; наконец, установлена непротиворечивость теории рациональных чисел – в предположении непротиворечивости теории натуральных чисел.
АЛГЕБРА
Алгебра - часть математики, которая изучает общие свойства действий над различными величинами и решение уравнений, связанных с этими действиями. Решим задачу: «Возрасты трех братьев 30, 20 и 6 лет. Через сколько лет возраст старшего будет равен сумме возрастов обоих младших братьев?» Обозначив искомое число лет через
Еще более сложные задачи умели решать с начала II тысячелетия до н.э. в Древнем Вавилоне: в математических текстах, выполненных клинописью на глиняных пластинках, есть квадратные и биквадратные уравнения, системы уравнений с двумя неизвестными и даже простейшие кубические уравнения. При этом вавилоняне также не использовали букв, а приводили решения «типовых» задач, из которых решения аналогичных задач получались заменой числовых данных. В числовой же форме приводились и некоторые правила тождественных преобразований. Если при решении уравнения надо было извлекать квадратный корень из числа
Первые общие утверждения о тождественных преобразованиях встречаются у древнегреческих математиков, начиная с VI в. до н.э. Среди математиков Древней Греции было принято выражать все алгебраические утверждения в геометрической форме. Вместо сложения чисел говорили о сложении отрезков, произведение двух чисел истолковывали как площадь прямоугольника, а произведение трех чисел – как объем прямоугольного параллелепипеда. Алгебраические формулы принимали вид соотношений между площадями и объемами. Например, говорили, что площадь квадрата, построенного на сумме двух отрезков, равна сумме площадей квадратов, построенных на этих отрезках, увеличенной на удвоенную площадь прямоугольника, построенного на этих отрезках. С того времени и идут термины «квадрат числа» (т.е. произведение величины на самое себя), «куб числа», «среднее геометрическое». Геометрическую форму приняло у греков и решение квадратных уравнений – они искали стороны прямоугольника по заданным периметру и площади.
Большинство задач решалось в Древней Греции путем построений циркулем и линейкой (см. Геометрические построения). Но не все задачи поддавались такому решению. Например, «не решались» задачи удвоения куба, трисекции угла, задачи построения правильного семиугольника (см. Классические задачи древности). Они приводили к кубическим уравнениям вида x3 = 2, 4x3 - 3x = a и x3 + x2 - 2x - 1 = 0 соответственно. Для решений этих задач был разработан новый метод, связанный с отысканием точек пересечения конических сечений (эллипса, параболы и гиперболы).
Геометрический подход к алгебраическим проблемам сковывал дальнейшее развитие науки, так как, например, нельзя было складывать величины разных размерностей (длины и площади или площади и объемы), нельзя было говорить о произведении более чем трех множителей и т.д. Отказ от геометрической трактовки наметился у Диофанта Александрийского, жившего в III в. В его книге «Арифметика» появляются зачатки буквенной символики и специальные обозначения для степеней неизвестного вплоть до 6-й. Были у него и обозначения для степеней с отрицательными показателями, обозначения для отрицательных чисел, а также знак равенства (особого знака для сложения еще не было), краткая запись правил умножения положительных и отрицательных чисел. На дальнейшее развитие алгебры сильное влияние оказали разобранные Диофантом задачи, приводящие к сложным системам алгебраических уравнений, в том числе к системам, где число уравнений было меньше числа неизвестных. Для таких уравнений Диофант искал лишь положительные рациональные решения (см. Диофантовы уравнения).
С VI в. центр математических исследований перемещается в Индию и Китай, страны Ближнего Востока и Средней Азии. Китайские ученые разработали метод последовательного исключения неизвестных (см. Неизвестных исключение) для решения систем линейных уравнений, дали новые методы приближенного решения уравнений высших степеней. Индийские математики использовали отрицательные числа и усовершенствовали буквенную символику. Однако лишь в трудах ученых Ближнего Востока и Средней Азии алгебра оформилась в самостоятельную ветвь математики, трактующую вопросы, связанные с решением уравнений. В IX в. узбекский математик и астроном Мухаммед ал-Хорезми написал трактат «Китаб аль-джебр валь-мука-бала», где дал общие правила для решения уравнений первой степени. Слово «аль-джебр» (восстановление), от которого новая наука алгебра получила свое название, означало перенос отрицательных членов уравнения из одной его части в другую с изменением знака. Ученые Востока изучали и решение кубических уравнений, хотя не сумели получить общей формулы для их корней.
В Западной Европе изучение алгебры началось в XIII в. Одним из крупных математиков этого времени был итальянец Леонардо Пизанский (Фибоначчи) (ок. 1170 – после 1228). Его «Книга абака» (1202) - трактат, который содержал сведения об арифметике и алгебре до квадратных уравнений включительно (см. Числа Фибоначчи). Первым крупным самостоятельным достижением западноевропейских ученых было открытие в XVI в. формулы для решения кубического уравнения. Это было заслугой итальянских алгебраистов С. дель Ферро, Н. Тарталья и Дж. Кардано. Ученик последнего – Л. Феррари решил и уравнение 4-й степени (см. Алгебраическое уравнение). Изучение некоторых вопросов, связанных с корнями кубических уравнений, привело итальянского алгебраиста Р. Бомбелли к открытию комплексных чисел.
Отсутствие удобной и хорошо развитой символики сковывало дальнейшее развитие алгебры: самые сложные формулы приходилось излагать в словесной форме. В конце XVI в. французский математик Ф. Виет ввел буквенные обозначения не только для неизвестных, но и для произвольных постоянных. Символика Виета была усовершенствована многими учеными. Окончательный вид ей придал в начале XVII в. французский философ и математик Р. Декарт, который ввел (употребляемые и поныне) обозначения для показателей степеней.
Постепенно расширялся запас чисел, с которыми можно было производить действия. Завоевывали права гражданства отрицательные числа, потом – комплексные, ученые стали свободно применять иррациональные числа (см. Число). При этом оказалось, что, несмотря на такое расширение запаса чисел, ранее установленные правила алгебраических преобразований сохраняют свою силу. Наконец, Декарту удалось освободить алгебру от несвойственной ей геометрической формы.
Все это позволило рассматривать вопросы решения уравнений в самом общем виде, применять уравнения к решению геометрических задач. Например, задача об отыскании точки пересечения двух линий свелась к решению системы уравнений, которым удовлетворяли точки этих линий. Такой метод решения геометрических задач получил название аналитической геометрии.
Развитие буквенной символики позволило установить общие утверждения, касающиеся алгебраических уравнений: теорему Безу о делимости многочлена P(x) на двучлен x-a, где a - корень этого многочлена; соотношения Виета между корнями уравнения и его коэффициентами; правила, позволяющие оценивать число действительных корней уравнения; общие методы исключения неизвестных из систем уравнений и т.д.
Особенно далеко было продвинуто в XVIII в. решение систем линейных уравнений – для них были получены формулы, позволяющие выразить решения через коэффициенты и свободные члены. Дальнейшее изучение таких систем уравнений привело к созданию теории матриц и определителей. В конце XVIII в. было доказано, что любое алгебраическое уравнение с комплексными коэффициентами имеет хотя бы один комплексный корень. Это утверждение носит название основной теоремы алгебры.
В течение двух с половиной столетий внимание алгебраистов было приковано к задаче о выводе формулы для решения общего уравнения 5-й степени. Надо было выразить корни этого уравнения через его коэффициенты с помощью арифметических операций и извлечений корней (решить уравнение в радикалах). Лишь в начале XIX в. итальянец П. Руффини и норвежец Н. Абель независимо друг от друга доказали, что такой формулы не существует. Эти исследования были завершены французским математиком Э. Галуа, методы которого позволяют для каждого данного уравнения определить, решается ли оно в радикалах.
Один из крупнейших математиков – К. Гаусс выяснил, при каких условиях можно построить циркулем и линейкой правильный ; до сих пор известны лишь пять таких чисел: 3, 5, 17, 257, 65 537). Тем самым молодой студент (Гауссу было в то время лишь 19 лет) решил задачу, которой безуспешно занимались ученые более двух тысячелетий.
В начале XIX в. были решены основные задачи, стоявшие перед алгеброй в первом тысячелетии ее развития. Она получила самостоятельное обоснование, не опирающееся на геометрические понятия, и, более того, алгебраические методы стали применяться для решения геометрических задач. Были разработаны правила буквенного исчисления для рациональных и иррациональных выражений, выяснен вопрос о разрешимости уравнений в радикалах и построена строгая теория комплексных чисел. Поверхностному наблюдателю могло показаться, что теперь математики будут решать новые и новые классы алгебраических уравнений, доказывать новые алгебраические тождества и т.д. Однако развитие алгебры пошло иным путем: из науки о буквенном исчислении и уравнениях она превратилась в общую науку об операциях и их свойствах.
«Алгебра есть не что иное, как математический язык, приспособленный для обозначения отношений между количествами». И. Ньютон
После создания теории комплексных чисел возник вопрос о существовании «гиперкомплексных чисел» - чисел с несколькими «мнимыми единицами». Такую систему чисел, имевших вид a + bi + cj + dk, где i2 = j2 = k2 = -1, построил в 1843 г. ирландский математик У. Гамильтон, который назвал их «кватернионами». Правила действий над кватернионами напоминают правила обычной алгебры, однако их умножение не обладает свойством коммутативности (переместительности): например, ij = k, a ji = -k..
С операциями, свойства которых лишь отчасти напоминают свойства арифметических операций, математики XIX в. столкнулись и в других вопросах. В 1858 г. английский математик А. Кэли ввел общую операцию умножения матриц и изучил ее свойства. Оказалось, что к умножению матриц сводятся и многие изучавшиеся ранее операции. Английский логик Дж. Буль в середине XIX в. начал изучать операции над высказываниями, позволявшие из двух данных высказываний построить третье, а в конце XIX в. немецкий математик Г. Кантор ввел операции над множествами: объединение, пересечение и т.д. Оказалось, что как операции над высказываниями, так и операции над множествами обладают свойствами коммутативности (переместительности), ассоциативности (сочетательности) и дистрибутивности (распределительности), но некоторые их свойства не похожи на свойства операций над числами.
Таким образом, в течение XIX в. в математике возникли разные виды алгебр: обычных чисел, комплексных чисел, кватернионов, матриц, высказываний, множеств и т.д. Каждая из них имела свои правила, свои тождества, свои методы решения уравнений. При этом для некоторых видов алгебр правила были очень похожими. Например, правила алгебры рациональных чисел не отличаются от правил алгебры действительных чисел. Именно поэтому формулы, которые в VI классе устанавливают для рациональных значений букв, оказываются верными и для любых действительных (и даже любых комплексных) значений тех же букв. Одинаковыми оказались и правила в алгебре высказываний и в алгебре множеств. Все это привело к созданию абстрактного понятия композиции, т.е. операции, которая каждой паре
Изучение свойств композиций разного вида привело к мысли, что основная задача алгебры - изучение свойств операций, рассматриваемых независимо от объектов, к которым они применяются. Иными словами, алгебра стала рассматриваться как общая наука о свойствах законов композиции, свойствах операций. При этом два множества, в каждом из которых заданы композиции, стали считаться тождественными с точки зрения алгебры (или, как говорят, «изоморфными»), если между этими множествами можно установить взаимно-однозначное соответствие, переводящее один закон композиции в другой. Если два множества с композициями изоморфны, то, изучая одно из них, мы узнаем алгебраические свойства другого.
Поскольку совокупность различных множеств с заданными в них законами композиции необозрима, были выделены типы таких множеств, которые хотя и не изоморфны друг другу, но обладают общими свойствами композиции. Например, изучив свойства операций сложения и умножения в множествах рациональных, действительных и комплексных чисел, математики создали общее понятие поля – множества, где определены эти две операции, причем выполняются их обычные свойства. Исследование операции умножения матриц привело к выделению понятия группы, которое является сейчас одним из важнейших не только в алгебре, но и во всей математике.
В наши дни алгебра – одна из важнейших частей математики, находящая приложения как в сугубо теоретических отраслях науки, так и во многих практических вопросах.
АЛГЕБРАИЧЕСКОЕ УРАВНЕНИЕ
Алгебраические уравнения – уравнения вида
P(x1, ..., xn) = O,
где P - многочлен от переменных x1, ..., xn. Эти переменные называют неизвестными. Упорядоченный набор чисел (a1, ..., an) удовлетворяет этому уравнению, если при замене x1 на a1, x2 на a2 и т.д. получается верное числовое равенство (например, упорядоченная тройка чисел (3, 4, 5) удовлетворяет уравнению x2 + y2 = z2, поскольку 32 + 42 = 52). Число, удовлетворяющее алгебраическому уравнению с одним неизвестным, называют корнем этого уравнения. Множество всех наборов чисел, удовлетворяющих данному уравнению, есть множество решений этого уравнения. Два алгебраических уравнения, имеющих одно и то же множество решений, называются равносильными. Степень многочлена P называется степенью уравнения P(x1, ..., xn) = O. Например, Зx — 5у + z = c - уравнение первой степени, x2 + y2 = z2 - второй степени, а x4 - Зx3 + 1 = 0 - четвертой степени. Уравнения первой степени называют также линейными (см. Линейные уравнения).
x2 + y2 = 10, x2 - y2 = 8 таково: {(3; 1), (3; -1), (-3; 1), (-3; -1)}.
НИЛЬС ГЕНРИХ АБЕЛЬ
(1802-1829)
В Королевском парке в Осло стоит скульптура сказочного юноши, попирающего двух поверженных чудовищ: по цоколю идет надпись "ABEL".
Что же символизируют чудовища? Первое из них, несомненно – алгебраические уравнения 5-й степени. Еще в последних классах школы Абелю показалось, что он нашел формулу для их решения, подобную тем, которые существуют для уравнений степени, не превышающей четырех. Никто в провинциальной Норвегии не смог проверить доказательство. Абель сам нашел у себя ошибку, он уже знал, что не существует выражения для корней в радикалах. Тогда Абель не знал, что итальянский математик П. Руффини опубликовал доказательство этого утверждения, содержащее, однако, пробелы.
К тому времени Абель был уже студентом университета в Осло (тогда Христиании). Он был совершенно лишен средств к существованию, и первое время стипендию ему выплачивали профессора из собственных средств. Затем он получил государственную стипендию, которая позволила ему провести два года за границей. В Норвегии были люди, которые понимали, сколь одарен Абель, но не было таких, кто мог бы понять его работы. Будучи в Германии. Абель так и не решился посетить К. Гаусса.
Во Франции Абель с интересом собирает математические новости, пользуется каждой возможностью увидеть П. Лапласа или А. Лежандра, С. Пуассона или О. Коши, но серьезных научных контактов с великими математиками установить не удалось. Представленный в академию «Мемуар об одном очень общем классе трансцендентных функций» не был рассмотрен, рукопись Абеля была обнаружена через сто лет. (В скульптуре эту работу олицетворяло второе поверженное чудовище.) Речь шла о рассмотрении некоторого класса замечательных функций, получивших название эллиптических и сыгравших принципиальную роль в дальнейшем развитии математического анализа. Абель не знал, что 30 лет назад в этих вопросах далеко продвинулся Гаусс, но ничего не опубликовал.
В 1827 г. Абель возвращается на родину, и там выясняется, что для него нет работы. Он получает временную работу вместо профессора, уехавшего в длительную экспедицию в Сибирь. Долги становятся его вечным уделом, но работоспособность Абеля не уменьшается. Он продолжает развивать теорию эллиптических функций, близок к пониманию того, какие уравнения решаются в радикалах. Неожиданно появляется соперник К. Г. Якоби, который был на два года моложе Абеля. Якоби публикует замечательные результаты в области, которую Абель считал своей собственностью. И Абель работает еще интенсивнее и наконец сообщает: «Я нокаутировал Якоби».
К работам Абеля пришло признание, математики стали проявлять заботу о его судьбе. Французские академики-математики обращаются с посланием к шведскому королю, правившему Норвегией, с просьбой принять участие в судьбе Абеля. Тем временем у Абеля быстро прогрессирует туберкулез, и 6 апреля 1829 г. его не стало.
------------------------------------------
Алгебраические уравнения 1-й степени с одним неизвестным решали уже в Древнем Египте и Древнем Вавилоне. Вавилонские писцы умели решать и квадратные уравнения, а также простейшие системы линейных уравнений и уравнений 2-й степени. С помощью особых таблиц они решали и некоторые уравнения 3-й степени, например x3 + x = a. В Древней Греции квадратные уравнения решали с помощью геометрических построений. Греческий математик Диофант (III в.) разработал методы решения алгебраических уравнений и систем таких уравнений со многими неизвестными в рациональных числах. Например, он решил в рациональных числах уравнение x4 - y4 + z4 = n2, систему уравнений y3 + x2 = u2, z2 + x2 = v3 и т.д. (см. Диофантовы уравнения).
ЭВАРИСТ ГАЛУА
(1811-1832)
Он прожил двадцать лет, всего пять лет из них занимался математикой. Математические работы, обессмертившие его имя, занимают чуть более 60 страниц.
В 15 лет Галуа открыл для себя математику и с тех пор, по словам одного из преподавателей, «был одержим демоном математики». Юноша отличался страстностью, неукротимым темпераментом, что постоянно приводило его к конфликтам с окружающими, да и с самим собой.
Галуа не задержался на элементарной математике и мгновенно оказался на уровне современной науки. Ему было 17 лет, когда его учитель Ришар констатировал: «Галуа работает только в высших областях математики». Ему было неполных 18 лет, когда была опубликована его первая работа. И в те же годы Галуа два раза подряд не удается сдать экзамены в Политехническую школу, самое престижное учебное заведение того времени. В 1830 г. он был принят в привилегированную Высшую нормальную школу, готовившую преподавателей. За год учебы в этой школе Галуа написал несколько работ; одна из них, посвященная теории чисел, представляла исключительный интерес.
Бурные июльские дни 1830 г. застали Галуа в стенах Нормальной школы. Его все более захватывает новая страсть – политика. Галуа присоединяется к набиравшей силы республиканской партии - Обществу друзей народа, - недовольной политикой Луи-Филиппа. Возникает конфликт с директором школы, всеми силами противодействовавшим росту политических интересов у учащихся, и в январе 1831 г. Галуа исключают из школы. В январе 1831 г. Галуа передал в Парижскую академию наук рукопись своего исследования о решении уравнений в радикалах. Однако академия отвергла работу Галуа – слишком новы были изложенные там идеи. В это время Галуа находился в тюрьме. После освобождения уже в июле он вновь оказывается в тюрьме Сент-Пелажи после попытки организовать манифестацию 14 июля (в годовщину взятия Бастилии), на сей раз Галуа приговорен к 9 месяцам тюрьмы. За месяц до окончания срока заключения заболевшего Галуа переводят в больницу. В тюрьме он встретил свое двадцатилетие.
29 апреля он выходит на свободу, но ему было суждено прожить еще лишь только один месяц. 30 мая он был тяжело ранен на дуэли. На следующий день он умер. В день перед дуэлью Галуа написал своему другу Огюсту Шевалье письмо: «Публично обратись к Якоби или Гауссу с просьбой дать мнение не об истинности, а о значении тех теорем, развернутого доказательства которых я не даю, и тогда, надеюсь, кто-нибудь сочтет полезным разобраться во всей этой путанице». Работы Галуа содержали окончательное решение проблемы о разрешимости алгебраических уравнений в радикалах, то, что сегодня называется теорией Галуа и составляет одну из самых глубоких глав алгебры. Другое направление в его исследованиях связано с так называемыми абелевыми интегралами и сыграло важную роль в математическом анализе XIX в. Работы Галуа были опубликованы лишь в 1846 г. Ж. Лиувиллем, а признание к ним пришло еще позже, когда с 70-х гг. понятие группы постепенно становится одним из основных математических объектов.
------------------------------------------
Некоторые геометрические задачи: удвоение куба, трисекция угла (см. Классические задачи древности), построение правильного семиугольника – приводят к решению кубических уравнений. По ходу решения требовалось отыскать точки пересечения конических сечений (эллипсов, парабол и гипербол). Пользуясь геометрическими методами, математики средневекового Востока исследовали решения кубических уравнений. Однако им не удалось вывести формулу для их решения. Первым крупным открытием западноевропейской математики была полученная в XVI в. формула для решения кубического уравнения. Поскольку в то время отрицательные числа еще не получили распространения, пришлось отдельно разбирать такие типы уравнений, как x3 + px = q, x3 + q = px и т. д. Итальянский математик С. дель-Ферро (1465-1526) решил уравнение x3 + px = q и сообщил решение своему зятю и ученику А.-М. Фиоре, который вызвал на математический турнир замечательного математика-самоучку Н. Тарталью (1499- 1557). За несколько дней до турнира Тарталья нашел общий метод решения кубических уравнений и победил, быстро решив все предложенные ему 30 задач. Однако найденная Тартальей формула для решения уравнения x3 + px + q = 0
была опубликована не им, а итальянским же ученым Дж. Кардано (1501-1576), который узнал ее от Тартальи. В это же время Л. Феррари (1522-1565), ученик Кардано, нашел решение уравнения 4-й степени.
Создание алгебраической символики и обобщение понятия числа вплоть до комплексных чисел позволили в XVII-XVIII вв. исследовать общие свойства алгебраических уравнений высших степеней, а также общие свойства многочленов от одного и нескольких переменных.
Одной из самых важных задач теории алгебраических уравнений в XVII-XVIII вв. было отыскание формулы для решения уравнения 5-й степени. После бесплодных поисков многих поколений алгебраистов усилиями французского ученого XVIII в. Ж. Лагранжа (1736-1813), итальянского ученого П. Руффини (1765-1822) и норвежского математика Н. Абеля в конце XVIII – начале XIX в. было доказано, что не существует формулы, с помощью которой можно выразить корни любого уравнения 5-й степени через коэффициенты уравнения, используя лишь арифметические операции и извлечение корней. Эти исследования были завершены работами Э. Галуа, теория которого позволяет для любого уравнения определить, выражаются ли его корни в радикалах. Еще до этого К.Ф. Гаусс решил проблему выражения в квадратных радикалах корней уравнения или произведение различных простых чисел такого вида.
Наряду с поисками формул для решения конкретных уравнений был исследован вопрос о существовании корней у любого алгебраического уравнения. В XVIII в. французский философ и математик Ж. Д'Аламбер доказал, что любое алгебраическое уравнение ненулевой степени с комплексными коэффициентами имеет хотя бы один комплексный корень. В доказательстве Д'Аламбера были пропуски, восполненные потом Гауссом. Из этой теоремы следовало, что любой многочлен n-й степени от x разлагается в произведение n линейных множителей.
В настоящее время теория систем алгебраических уравнений превратилась в самостоятельную область математики, называемую алгебраической геометрией. В ней изучаются линии, поверхности и многообразия высших размерностей, задаваемые системами таких уравнений.
АЛГОРИТМ
Алгоритм - точное предписание, определяющее процесс перехода от исходных данных к искомому результату.
Предписание считается алгоритмом, если оно обладает тремя следующими свойствами:
определенностью, т.е. общепонятностью и точностью, не оставляющими место произволу;
массовостью, т.е. возможностью исходить из меняющихся в известных пределах значений исходных данных;
результативностью, т.е. направленностью на получение искомого результата.
Перечисленных свойств вполне достаточно, чтобы можно было определить, является данное конкретное предписание алгоритмом или нет.
Совершенно очевидно, что хорошо известное предписание: «Пойди туда, не знаю куда, принеси то, не знаю что» - алгоритмом не является.
Примерами алгоритмов нематематического характера могут служить различные рецепты из поваренной книги. Рассмотрим алгоритм приготовления бутерброда.
Исходные данные: хлеб (белый, черный), продукт (колбаса, ветчина, сыр, масло).
Искомый результат: бутерброд (ломтик продукта, наложенный на ломтик хлеба).
Предписание:
а) отрезать ломтик продукта;
б) отрезать ломтик хлеба;
Можно легко убедиться, что это предписание обладает всеми тремя свойствами алгоритма:
определенностью (всем понятно, что значит отрезать ломтик, положить один ломтик на другой и как все это сделать);