Данная ошибка не настолько страшна, потому что у нас достаточно здравого смысла, чтобы обнаружить странность и отнести ее к несовершенству машинного перевода — вместо того, чтобы впадать в панику и повышать уровень ядерной боеготовности до DEFCON 2. Но что если бы это решение принималось алгоритмами ИИ, а не людьми? Как насчет секретных служб, опирающихся на компьютерный сбор и анализ высказываний на тему терроризма? Их сотрудники не показывают каждый твит человеку для двойной проверки — это замедлило бы процесс и снизило его эффективность. Но алгоритмы могут сделать тревожный вывод, что огромное число россиян обсуждают в социальных сетях ядерные технологии.
Машинам всегда будет трудно понимать новые технические термины и сленг: так же как у шахматного компьютера, у них нет ни интуиции, ни здравого смысла. Они должны сымитировать их. У них есть только оценочная функция, которая генерирует значение, отражающее уровень достоверности. Система машинного обучения настолько хороша, насколько хороши заложенные в нее данные, — точно так же, как дебютная книга шахматной программы настолько сильна, насколько сильны внесенные в нее партии. Поскольку количество переходит в качество, программа постепенно уменьшает число ошибок, сохраняя хорошие примеры и отбрасывая плохие со скоростью миллиард примеров в секунду, но аномалии наподобие «чувствительных ядерных технологий» все равно неизбежны!
Машинное обучение спасло ИИ от жалкого существования, поскольку работало и приносило прибыль. Компании IBM, Google и многие другие использовали его для создания продуктов, имевших практическое применение. Но можно ли назвать это ИИ? И так ли уж это важно? Теоретики ИИ, которые хотели понять и даже воспроизвести работу человеческого разума, в очередной раз были разочарованы. Американский информатик и когнитивист Дуглас Хофштадтер, написавший потрясающую книгу «Гёдель, Эшер, Бах: Эта бесконечная гирлянда» (1979), остался верен своему стремлению постичь человеческий разум. Но ИИ-сообщество, требовавшее немедленных результатов, продаваемых продуктов и все больше данных, забыло Хофштадтера и его работы,
В опубликованной в The Atlantic в 2013 году статье Джеймса Сомерса, посвященной Дугласу Хофштадтеру, последний с грустью размышляет о том, стоит ли выполнять задачу, если ее решение ничего не дает. «Итак, мы создали машину Deep Blue, которая сильно играет в шахматы. Ну и что из этого? — вопрошает он. — Улучшает ли она наше понимание того, как люди играют в шахматы? Нет. Позволяет ли она понять, как Каспаров анализирует ситуацию на доске, как выбирает ходы? Нет». По мнению Хофштадтера, системы, не пытающиеся ответить на такие вопросы, не имеют права называться искусственным интеллектом, какие бы впечатляющие результаты они ни показывали. Ученый дистанцировался от такого рода исследований почти сразу же, как только занялся ими. «Как человеку, понимающему суть ИИ, мне претило участвовать в этом обмане, — сказал он. — Я не желал выдавать поведение изощренной программы за интеллект, прекрасно зная, что оно не имеет ничего общего с интеллектом. Не знаю, почему все больше людей попадаются на этот крючок»{46}.
Не хочу быть циничным, но одним из объяснений может быть нынешняя рыночная капитализация Google, превышающая $500 млрд. Другой причиной, на которую указывают в той же статье некоторые эксперты, в том числе Дейв Ферруччи, один из создателей Watson, и Питер Норвиг из Google, может быть то, что люди предпочитают браться за задачи, которые они могут решить. Создать человеческий интеллект невероятно сложно, тогда как машинное обучение дает вполне неплохие результаты. Но как долго это будет продолжаться? Закон убывающей отдачи уже дает о себе знать. Достижения эффективности в 90 % зачастую достаточно для того, чтобы сделать машину полезной, но гораздо сложнее повысить этот уровень до 95 %, не говоря уже о 99,99 %, необходимых для того, чтобы мы доверили машине перевести любовное письмо или отвезти наших детей в школу.
Метод машинного обучения в конечном счете мог бы сработать и в шахматах, и в этом направлении был предпринят ряд попыток. Например, система AlphaGo компании Google использует его вместе с базой данных, содержащей около 30 млн ходов. Как и было предсказано, в игре го для победы над сильнейшими игроками одних только правил и грубой силы оказалось недостаточно. Напротив, к 1989 году Deep Thought ясно показала, что такие экспериментальные подходы вовсе необязательны для того, чтобы достичь высокого уровня игры в шахматы и бросить вызов лучшим игрокам мира. Единственное, что необходимо, — это скорость и еще больше скорости, и ее обеспечили специализированные микропроцессоры, разработанные Сюй Фэнсюном в Университете Карнеги — Меллона. После победы Deep Thought над гроссмейстерами Бентом Ларсеном и Тони Майлсом я решил, что для меня это может быть интересным новым вызовом, и принял его.
Мой первый матч из двух партий с Deep Thought состоялся 22 октября 1989 года в Нью-Йорке, хотя из нас двоих лично присутствовал там только я. Как уже повелось, сама машина находилась за сотни миль оттуда, а все ходы за нее делал оператор на обычной шахматной доске с обычными часами. Незадолго до этого в том же месяце IBM наняла команду Deep Thought, а в итоге инвестировала в этот проект миллионы долларов и собственных технологий, изменив его название на Deep Blue. Но этот миниматч спонсировался софтверной компанией AGS Computers из Нью-Джерси, чей президент был заядлым шахматистом и годом раньше оплатил матч между HiTech и Денкером.
Одна из трудностей игры против компьютеров состоит в том, что те часто и быстро меняют свою игру. Как правило, гроссмейстеры готовятся к бою, тщательно изучая манеру игры своего соперника, анализируя его последние партии и выискивая слабые места. В основном подготовка ориентирована на дебюты, которые обычно строятся на устоявшихся цепочках ходов и носят экзотические названия типа «сицилианская защита» или «индийская защита». Мы стремимся найти в этих дебютах новые идеи и новые сильные ходы («новинки»), чтобы удивить соперника. Особенно полезно постараться обнаружить слабое место в одной из любимых позиций будущего оппонента, ведь он, скорее всего, попытается создать ее на доске.
Более подробно о том, как компьютеры справляются с дебютами, я расскажу в главе о Deep Blue. Здесь же замечу только, что они используют так называемую дебютную книгу — базу данных, которая включает миллионы дебютных позиций, отобранных из реальных партий гроссмейстеров. Эти книги создавались годами и постоянно дополняются и улучшаются, чтобы дать машинам возможность играть более гибко, но основной принцип их применения остается неизменным: машины более-менее слепо следуют книге, пока она не «закончится», после чего начинают думать сами. Я фактически делаю то же самое: вспоминаю проторенные дебютные линии, пока те не иссякнут в памяти, а затем отправляюсь в свободное плавание.
Без ложной скромности могу сказать, что я был самым подготовленным игроком в истории шахмат. Еще с юности мне нравилось изучать дебюты и выискивать возможные усиления, добавляя их в свой арсенал. Захватывающая тактическая борьба в стадии миттельшпиля требует наивысшего напряжения, но и, чтобы найти новую идею в хорошо известной системе (что всегда меня увлекало), необходимы огромное упорство и изобретательность. В поисках слабого места у своих соперников я тщательно изучал применяемые ими дебюты и сохранил множество файлов с анализами и новинками. Даже сильные противники подчас не решались применять против меня свои любимые дебюты, опасаясь мощной новинки. Когда в 2005 году я ушел из профессиональных шахмат, некоторые шутили, что я должен выставить на аукцион свой ноутбук, полный важных шахматных знаний.
Мне было смешно слушать легенды о том, что якобы на меня работала целая команда гроссмейстеров и они, закованные в кандалы в подвале, круглыми сутками придумывали для меня новинки. На самом деле всю огромную базу данных собрали я и мои тренеры Юрий Дохоян и Александр Шакаров, который работал со мной с 1976 года и сохранил эту создававшуюся десятилетиями бесценную интеллектуальную собственность. Мне не нравилось, когда критики неодобрительно говорили, что я «выиграл партию дома» — то есть получил преимущество благодаря хорошей дебютной подготовке. Наивысшей похвалой для меня было признание моей блистательной игры непосредственно за доской, но я не вижу ничего постыдного в том, чтобы подготовиться к партии лучше соперника. Возможно, такой скептицизм чуть более оправдан сегодня, когда все профессиональные игроки используют для подготовки суперсильные шахматные машины. Конечно, даже при использовании машины подготовка требует от шахматиста немалого труда, но, когда потрясающая новая идея исходит от кремниевого, а не от человеческого мозга, суть шахмат немного выхолащивается.
Игра с шахматной машиной во многом обессмысливает дебютную подготовку. Даже если вы изучите все партии, сыгранные этой машиной по сей день, программисты могут загрузить новую дебютную книгу или изменить несколько настроек — и компьютер начнет применять дебюты, которых никогда не играл раньше. И справится превосходно, ведь, в отличие от нас, у него нет проблем с памятью! В то же время компьютер уязвим для новинок ничуть не меньше, чем люди, поскольку умеет делать только те ходы, которые есть в его базе данных. Не исключены забавные ляпы. На одном чемпионате среди шахматных программ компьютер зевнул фигуру, но соперник ее не взял, поскольку у обоих в дебютных книгах был один и тот же изъян. В наши дни все дебютные книги тщательно проверены и доработаны, дабы гарантировать, что машина не окажется в проигрышной позиции прежде, чем начнет думать самостоятельно.
Если вы полагаете, что книга с гигабайтами дебютных ходов дает машине несправедливое преимущество перед человеком, я с вами полностью согласен. Мне всегда казалось странным, что компьютер по сути пропускает целый этап партии, не пытаясь самостоятельно развить фигуры или создать пешечную структуру. Дебютная стадия предполагает сочетание мастерства, креативности и долгосрочного стратегического планирования, в чем машины традиционно слабы. Но благодаря дебютной книге компьютер просто пропускает этот сложный этап и переходит к миттельшпилю, где в полную силу проявляет свое тактическое мастерство.
К сожалению, хорошей альтернативы дебютной книге не существует, по крайней мере без внесения каких-либо изменений в правила. Шахматные дебюты разрабатывались эмпирическим путем на протяжении десятилетий, и игроки их изучают и запоминают. Даже слабый игрок способен запомнить достаточно много дебютов, чтобы выйти на игровую позицию, фактически не задумываясь (это плохая привычка, которую я критикую как тренер: она чревата тем, что по окончании дебютной стадии игрок может не понять возникшую на доске ситуацию). Дебюты являются важной частью шахмат, и их простое удаление из шахматной программы дало бы людям несправедливое преимущество. Это тоже привело бы к очень странной игре, когда машины, всецело полагаясь на свои алгоритмы, каждый раз стремились бы делать одинаково прямолинейные, развивающие ходы. В этом легко убедиться, если отключить дебютную книгу в своей любимой шахматной программе. Такой шаг дает сильному игроку неплохой шанс контролировать течение партии с самого начала, хотя, конечно, одолеть сегодняшнюю программу почти невозможно.
Дебюты не единственное, что может меняться у вашего компьютерного соперника от партии к партии. Например, программисты могут легко изменить несколько параметров, чтобы сделать игру машины более агрессивной. В одной шахматной программе может скрываться шесть различных «личностей», поэтому на протяжении матча из шести партий вы можете каждый раз сталкиваться с совершенно новым соперником. В партиях между двумя компьютерами это не имеет значения, но опытные шахматисты, как правило, изучают игровую манеру своих противников, что для меня всегда было важнейшим компонентом игры.
Наконец, компьютеры постоянно усиливаются. Версия Deep Thought, с которой я играл в 1989 году, уже была значительно усовершенствована по сравнению с той, что годом раньше победила Ларсена в Лонг-Бич. Параллельное аппаратное обеспечение компьютера позволяло добавлять шахматные микропроцессоры и вычислительную мощность. У него было шесть процессоров, а скорость перебора превышала 2 млн позиций в секунду, что намного превосходило данный показатель у всех предыдущих машин. Вот что команда Deep Thought написала в 1989 году о взаимосвязи глубины поиска и шахматной силы:
«Прогресс шахматных машин, основанных на грубой силе{47}, еще в конце 1970-х годов предельно четко показал: скорость поиска и шахматная сила машины тесно взаимосвязаны. Партии между самотестирующимися компьютерами показали, что каждый раз, когда глубина поиска увеличивается на один дополнительный полуход, рейтинг машины повышается примерно на 200–250 пунктов. Поскольку каждый дополнительный полуход увеличивает дерево поиска в пять-шесть раз, даже двукратное повышение скорости позволяет повысить рейтинг примерно на 80–100 пунктов. Рейтинги, полученные машинами в партиях с людьми, указывают на то, что взаимосвязь сохраняется, возможно, вплоть до гроссмейстерского уровня, на котором в настоящее время играет Deep Thought. Именно из-за этой связи мы начали наш проект».
Другими словами, быстрее значит глубже, а глубже значит сильнее, и это было все, что имело значение. Если обозначить рейтинг шахматных машин по оси y, а количество просмотренных позиций в расчете на ход — по оси x, вы получите идеальную диагональ, отражающую восходящее направление развития шахматных машин. В 1970 году программа Chess 3.0 имела рейтинг 1400 пунктов; в 1978-м версия Chess 4.9 достигла рейтинга 2000; в 1983-м машина Belle преодолела отметку 2200; в 1987 году HiTech набрала 2400; а в 1989-м Deep Thought вышла на гроссмейстерский уровень 2500. Микропроцессоры становились все меньше и быстрее, поиск углублялся, а рейтинг повышался.
Эта удручающая тенденция, существовавшая на фоне проблем в инженерно-технической области, в очередной раз объясняет, почему многие были разочарованы тем фактом, что компьютерные шахматы оторвались от своих корней — искусственного интеллекта. Несмотря на впечатляющий рост рейтинга, в 1990 году специалист по машинному интеллекту и международный мастер по шахматам Дэнни Копек посетовал: «Из-за приоритетности соревновательного аспекта мы мало знаем о том, как программа в конечном итоге выбирает тот или иной ход. Это во многом раскрывает причину того, что компьютерные шахматы развиваются прежде всего как вид спорта (ориентированный на результат), а не как область науки (ориентированная на решение проблемы)»{48}.
Однако 22 октября 1989 года меня заботила не столько мощь искусственного интеллекта Deep Thought, сколько его шахматная сила. Я пытался догадаться, какие улучшения могли быть внесены в программу по сравнению с предыдущей версией, победившей в показательной партии сильного английского гроссмейстера Тони Майлса. Незадолго до этого я побил многолетний рейтинговый рекорд Бобби Фишера в 2785 пунктов и был уверен в своих силах. За день до матча я смог просмотреть несколько предыдущих партий Deep Thought, хотя, как я уже говорил, стиль игры машины мог существенно измениться за пару последних месяцев и даже суток. Тексты этих партий мне предоставил Мюррей Кэмпбелл из команды Deep Thought, что было с его стороны благородным жестом, свидетельствовавшим о дружественном и исследовательском духе матча. И, надо отметить, жестом справедливости. В конце концов, машина имела возможность проанализировать все мои партии, а я не мог обновить свой процессор накануне матча.
Проанализировав партии Deep Thought, я нашел, что машина сильна и полностью оправдывает свой рейтинг 2500, соответствующий минимальному гроссмейстерскому уровню. Я был, бесспорно, сильнее, но, по моим оценкам, в матче из десяти партий машина вполне могла бы добиться одной-двух ничьих и даже одержать одну-две победы. Перед началом игры в Нью-Йоркской академии искусств, где проходил матч, собралась оживленная толпа, и я был счастлив от сознания того, что мне выпало стать представителем человечества в этом противостоянии человека и машины. «Не представляю, как мы сможем жить дальше, зная, что существует нечто умнее нас», — заявил я на церемонии открытия. Сейчас можно сказать, что я сделал это заявление под воздействием скорее эмоций, нежели мыслей.
Это было не единственное мое необдуманное высказывание о компьютерных шахматах. В одном из интервью той поры я сказал, что шахматная корона достанется компьютеру раньше, чем женщине{49}, — прогноз, который сбылся. Эти слова были восприняты как проявление сексизма, чем в действительности они не являлись. Дело в том, что тогда на горизонте еще не было ни одной шахматистки с «мужским» чемпионским потенциалом. Только несколько лет спустя младшая из трех замечательных сестер Полгар из Венгрии, Юдит, ворвалась в шахматную элиту и обосновалась в десятке сильнейших шахматистов мира.
В тот воскресный день в Нью-Йорке мне удалось доказать, что я не зря верил в свои силы. В 1-й партии, играя черными, я постепенно выстроил доминирующую позицию. К 20-му ходу я уже чувствовал, что стратегически победил; мне нужно было только сохранить контроль над позицией, пока я не смогу нанести решающий удар. Игра шла в сравнительно быстром темпе: соперники имели по 90 минут вместо двух с половиной часов, положенных по стандартам классических шахмат. Это давало преимущество компьютеру, поскольку у меня оставалось меньше времени на проверку расчетов, но мне его хватило.
Сосредоточив свои силы в центре, я начал продвигать пешки к неприятельскому королю, и Deep Thought не оставалось ничего иного, как ждать, когда на него обрушится топор. Я знал, что, если будет хотя бы одна возможность выскользнуть из капкана, компьютер обязательно ее найдет, поэтому не торопил события. Гроссмейстер, оказавшись в такой пассивной и беспомощной позиции, сделал бы все для того, чтобы вырваться на свободу, ибо в этом случае у него появился бы шанс переломить игру. Люди понимают, что лучше рискнуть быстрым проигрышем, но зато получить хотя бы крошечный шанс на спасение, чем не предпринимать никаких действий и обречь себя на неминуемое медленное удушение.
Однако компьютеры не понимают таких абстрактных концепций, как шансы и компромиссы. Они всегда ищут лучший ход в данной конкретной позиции, поскольку попросту не способны на иное. Возможно, покерные машины запрограммированы иначе, но шахматные не умеют блефовать. Они не будут делать намеренно слабый ход в надежде, что противник не увидит подвоха. Некоторые исключения могут возникнуть в том случае, если программисты заранее изменят настройки машины так, чтобы она добилась победы любой ценой и избежала ничейного исхода. В настройках шахматных программ эта функция называется фактором пренебрежения (contempt factor); она может заставить машину продолжить борьбу и делать более рискованные ходы, вместо того чтобы довольствоваться ничьей. По сути, компьютер будет сверхоптимистично оценивать свою позицию или, как подразумевает название, пренебрежительно оценивать шансы противника.
В 1-й партии нашего матча у Deep Thought не было возможности проявить подобный оптимизм или пренебрежительность: несмотря на свойственную компьютеру упорную защиту, я в конце концов совершил прорыв и выиграл на 52-м ходу. Сегодня я с огорчением вижу, что не всегда делал лучшие ходы{50} и в один из моментов Deep Thought мог существенно укрепить свою оборону. По окончании партии я хвастливо заявил, что «после такого поражения человек был бы морально убит». Но машина не человек; ее нельзя запугать, поэтому 2-ю партию, белым цветом, мне пришлось начинать с чистого листа.
Белые ходят первыми, что по крайней мере на мастерском уровне дает такое же преимущество, какое можно получить благодаря подаче в теннисе{51}. В состязаниях профессионалов белые побеждают вдвое чаще, чем черные, хотя половина всех партий заканчивается вничью. Белые, как правило, определяют характер боя, и я воспользовался этим, разыграв ферзевый гамбит — предложив Deep Thought жертву пешки, ведь компьютеры были по-прежнему довольно жадны до материала. Как и следовало ожидать, машина клюнула на наживку и вскоре оказалась в трудной позиции: мои фигуры взяли под контроль всю доску. Моя атака на короля вынудила Deep Thought на 17-м ходу отдать ферзя, после чего наступила «техническая стадия реализации преимущества». Любой человек в этой ситуации сдался бы с чистой совестью, но программисты полагают, что машине терять нечего, и программируют ее на продолжение игры, даже если ее оценочная функция показывает неизбежный проигрыш. Учитывая, насколько хорошо компьютеры могут пользоваться человеческими промашками, такой подход нельзя назвать неразумным, хотя порой он раздражает.
На 37-м ходу оператор все же был вынужден признать поражение, и аудитория, явно болевшая за человека, наградила меня громом оваций. Мое первое серьезное сражение с шахматной машиной оказалось легким и приятным, и даже местные таблоиды уделили внимание этому матчу. «Красный шахматный король быстро сжег чипы Deep Thought»{52}, — написала New York Post, использовав анахронизм времен холодной войны. Команда Deep Thought была явно недовольна игрой своей машины, даже если и не ожидала другого результата.
Перечитывая впоследствии комментарии программистов о матче, я понял, что старая шутка о том, что все побежденные соперники оказываются не совсем здоровы[6], точно так же применима и к компьютерным шахматам: мне никогда не удавалось победить шахматную программу, в которой не было бы багов! Оказывается, в программе Deep Thought имелся дефект — «ошибка рокировки», ослаблявшая игру машины. Программисты обнаружили неполадку только через несколько недель. Как я расскажу чуть позже, это стало темой для обсуждения. Я также узнал, что между партиями Сюй Фэнсюн перенастроил машину на более медленную игру, что в очередной раз показывает, как глупо надеяться на то, что вы узнали о своем компьютерном противнике в ходе предыдущей партии: спустя час он может играть уже совсем по-другому.
Честно говоря, я не помню, чтобы первое официальное сражение с компьютером произвело на меня какой-то особый психологический эффект. Да, это отличалось от того, к чему я привык, но я не чувствовал никакой зловещей угрозы. Я был настолько уверен в своих силах, что не испытывал даже привычного напряжения, которое обычно чувствовал во время партий с гроссмейстерами. Наш поединок больше походил на дружеский товарищеский матч или научный эксперимент. Но в последующие годы все изменилось: машины превратились в опасных соперников и начали появляться на серьезных турнирах, где на кону стояли престиж и деньги, а не только будущее человечества.
7. Первый матч с DEEP BLUE
Я не умею проигрывать. Хочу прояснить это с самого начала: я ненавижу проигрывать. Ненавижу проигрывать плохие партии и ненавижу проигрывать хорошие. Я ненавижу проигрывать слабым игрокам и ненавижу проигрывать чемпионам мира.
После каждого проигрыша я провожу бессонные ночи. Бывало, что на церемониях награждения после тяжелого поражения у меня случались вспышки гнева. Я с раздражением обнаружил, что упустил хороший ход в проигранной 20 лет назад партии, которую анализировал для этой книги.
Я ненавижу проигрывать, и не только в шахматах. Терпеть не могу проигрывать в карточные и любые другие игры (именно поэтому я так редко играю в покер).
Неумение проигрывать — черта моего характера, которой я не особенно горжусь, но которой и не стыжусь. Чтобы быть лучшим в любой состязательной сфере деятельности, нужно не столько бояться поражений, сколько ненавидеть их. Радостное возбуждение — замечательное ощущение, и я думаю, что любой успешный спортсмен привыкает к нему в очень юном возрасте. Каждый спортсмен с течением времени находит для себя собственные стимулы. Но, как бы вы ни любили свой спорт, вы должны ненавидеть проигрывать, если хотите оставаться на вершине. Вас это должно задевать, и задевать очень глубоко.
В базе данных можно найти список практически всех серьезных партий, которые я сыграл с 12-летнего возраста, — всего более 2400. Из них я проиграл примерно 170. Если взять только турнирные и матчевые партии за 25 лет моей профессиональной карьеры, начавшейся, когда мне было 17, количество проигрышей уменьшается почти в два раза. Возможно, я не научился проигрывать просто потому, что у меня не было такой возможности. В 1990 году английский гроссмейстер Реймонд Кин написал книгу «Как обыграть Гарри Каспарова», в которой собрал все мои поражения за десять лет. Книга начинается словами: «Обыграть Гарри Каспарова в шахматы значительно сложнее{53}, чем взойти на Эверест или стать миллиардером… Я узнал, что покорить Эверест легче в шесть раз… заработать миллион долларов проще в пять раз…» Возможно, те немногие шахматисты, которым удалось меня победить, задавались вопросом, не следует ли им теперь заняться каким-нибудь другим делом.
Но шутки в сторону. То, как я отношусь к проигрышам, понятно из любого рассказа о моем матче с суперкомпьютером Deep Blue компании IBM в 1997 году. Или, если точнее, о матче-реванше.
Я смирился с тем, что почти никто не помнит о моем первом матче с Deep Blue в 1996-м, в котором я одержал победу. Люди забыли, что историческому перелету Чарльза Линдберга через Атлантический океан в 1927 году предшествовала масса неудачных попыток. Если матч 1996 года и вспоминают, то лишь потому, что мой проигрыш одной партии стал первой в истории победой машины над чемпионом мира в игре с классическим контролем времени. До этого я сыграл против машин несколько партий с укороченным контролем времени, и в некоторых из них потерпел поражение. Помимо классических шахмат существуют и «быстрые шахматы», или рапид (где у каждого игрока меньше 60, но больше 10 минут на всю партию), и молниеносная игра, или блиц (где у игрока не более 10 минут — обычно пять, а то и меньше). Есть даже «буллит», когда на всю партию дается лишь одна минута и шахматы фактически превращаются в эквилибристику.
Начиная с 1970-х стало очевидно: чем быстрее игра, тем больше преимущество компьютера перед человеком. Гроссмейстеры могут играть на основе интуиции, но шахматы прежде всего игра, требующая точности. Если у человека нет времени, чтобы провести надлежащие расчеты, тогда как машина способна проанализировать миллионы позиций в секунду, молниеносная игра может быстро превратиться в бойню. Малейшие оплошности и тактические промахи, обычно допускаемые людьми в игре друг с другом при укороченном контроле времени, мгновенно наказываются машинами, никогда не делающими подобных ошибок в ответ.
После победы над Deep Thought (1989) мой следующий публичный матч с машиной состоялся только через несколько лет. Отчасти это объяснялось тем очевидным фактом, что я не мог позволить себе тратить время впустую: шахматные машины должны были значительно усилиться, чтобы бросить мне настоящий вызов. В 1990-м я выиграл у Анатолия Карпова свой пятый матч за мировую корону, хотя в начале того года пережил трагедию на моей малой родине: мы с семьей и тысячами земляков были вынуждены бежать из Баку, где в преддверии будущего распада СССР начались армянские погромы.
Но я следил за прогрессом машин. На моем персональном компьютере всегда были установлены новейшие программы — я использовал их для анализа, а иногда и играл с ними ради развлечения. Хотя они не показывали сильной игры, такие программы, как Genius и Fritz, уже стали довольно опасными в тактическом плане даже на обычном домашнем компьютере или ноутбуке. В быстрой игре человеку стоило лишь один раз зевнуть — и все было кончено.
Мои пути с Deep Thought пересеклись еще раз весной 1991 года на компьютерной выставке в Ганновере. Состав команды Deep Thought частично сменился в процессе преобразования их детища в крупнейший проект IBM. Но Сюй Фэнсюн и Мюррей Кэмпбелл оставались лидерами команды, и оба приехали в Ганновер. Deep Thought пригласили выступить в самом сильном соревновании из всех, где доводилось играть машинам до того момента. Это был круговой турнир с участием семи немецких игроков — шести гроссмейстеров и одного крепкого международного мастера; их средний рейтинг составлял 2514 пунктов.
Получив доступ к колоссальным ресурсам IBM, Сюй Фэнсюн продолжал совершенствовать машину своей мечты, пытаясь внедрить в нее сверхбольшую интегральную микросхему (СБИС) с тысячами элементов на одном кристалле, но он еще не достиг цели. Тем не менее Deep Thought была сильнейшей машиной в мире, и, судя по ее предыдущим успехам, можно было ожидать, что в Ганновере она будет претендовать на высокое место. Но, как ни странно, она финишировала на 7-м, предпоследнем месте, одержав две победы при одной ничьей и четырех поражениях. Вину за два проигрыша команда возложила на ошибки в дебютной книге (регулярно всплывающая тема), однако в целом игру Deep Thought в Ганновере нельзя было назвать сильной.
Мой друг Фредерик Фридель, который был одним из организаторов этого турнира, предложил мне более интересное испытание. Он показал тексты партий первых пяти туров и предложил угадать, какие из этих партий были сыграны Deep Thought. Это был своеобразный вариант теста Тьюринга — посмотреть, сможет ли компьютер выдать себя за гроссмейстера. Мне удалось правильно указать две партии и еще в одном туре сузить выбор до двух партий, но один раз я ошибся — так что три из пяти компьютерных партий прошли тест Тьюринга. Для меня это было более убедительным показателем прогресса шахматного компьютера, чем результаты турнира. В некоторых партиях Deep Thought следовал привычной модели: ужасная стратегическая игра и неподобающая жадность к материалу, компенсируемые поразительным тактическим мастерством. Но другие партии были похожи на настоящие шахматы, даже если и не дотягивали до уровня чемпиона мира.
Я был заинтересован еще и потому, что не сомневался: вскоре баланс сил изменится и примерно через десять лет компьютеры станут достаточно сильными для того, чтобы победить меня. Но смогут ли они проницательно анализировать человеческую игру? Я потратил много времени на изучение сильных и уязвимых сторон моих соперников, хотя отдавал себе отчет в том, что вижу их сквозь призму собственных предпочтений и слабостей. Машины же предельно объективны. Шахматные программы уже показали свою полезность как вспомогательные инструменты для анализа партий, пусть даже они могли находить только грубые тактические ошибки. Но когда они станут достаточно сильными, думал я, возможно, они будут способны выявлять даже самые незначительные изъяны в моей игре и в игре моих соперников.
Эта идея так и не получила развития, отчасти из-за ограниченного потенциального рынка для таких программ. Всего несколько сотен шахматистов в мире достаточно регулярно играют с одними и теми же соперниками, чтобы им требовалась специальная подготовка. В конечном итоге в программу ChessBase были добавлены некоторые полезные функции, такие как автоматическое формирование профилей игроков, включая их любимые дебюты и избранные партии. Но эти функции скорее позволяли сэкономить время, чем были настоящими аналитическими инструментами. Они не были достаточно продвинутыми для того, чтобы указать на особенности, присущие данному шахматисту: например, «часто делает ошибки, когда его король находится под шахом» или «любит разменивать ферзей, играя черными». Кроме того, мысль о возможности подвергнуться такому глубокому анализу вызывала дискомфорт у некоторых игроков, хотя все их партии находились в открытом доступе. Я же был не против узнать, что машина скажет обо мне и моих партиях.
Меня также интересовало, что нового может привнести основанный на базовых данных компьютерный анализ человеческого поведения в такой области, как психология, и в частности, процесс принятия решений. Понятно, что вряд ли кто-то захочет добровольно передавать третьей стороне все свои тексты, электронные письма, сообщения в социальных медиа, историю поисковых запросов, историю покупок и все остальные составляющие цифрового следа, который мы создаем почти ежечасно. Но различные приложения и сервисы, хорошо это или плохо, уже имеют доступ ко всей подобной информации, и я уверен, что достаточное количество данных и грамотные аналитические инструменты позволили бы выявлять множество интересных корреляций, возможно, даже диагностировать такие вещи, как депрессия или ранние признаки деменции.
У Facebook есть средство для предотвращения самоубийств: пользователи могут отметить публикации, в которых высказываются мысли о суициде, и автору поста может быть предложена помощь. Фитнес-трекеры отслеживают все показатели работы вашего организма — от режима сна и сердечного ритма до количества сожженных калорий. Компании Google, Facebook и Amazon, вероятно, знают о вас больше, чем вы сами, но люди зачастую начинают нервничать, когда результаты анализа этих данных оказываются обнародованы, особенно если в публикации раскрывается неприятная правда.
Естественно, каждый раз, когда появляется доступ к таким персональным данным, возникает бесчисленное множество вопросов, связанных с защитой конфиденциальности, и достижение компромиссов в этой области будет оставаться одним из главных полей сражений в ходе революции ИИ. Я хотел бы узнать, что скажет машина о моей игре в шахматы, моем психическом и физическом здоровье, но хотел бы я, чтобы об этом узнал кто-то еще? Возможно, вы не станете возражать, если о вашем психическом и физическом здоровье узнают члены вашей семьи и лечащий врач, но как насчет вашего работодателя или страховой компании? В некоторых компаниях обзор социальных медиа уже стал стандартной процедурой процесса найма. Антидискриминационные законы в США запрещают спрашивать у кандидатов на рабочее место об их возрасте, поле, расе и состоянии здоровья, но алгоритмы анализа соцсетей могут выяснить это за доли секунды и, кроме того, сделать очень точные предположения о сексуальных предпочтениях, политических взглядах и уровне дохода.
История показывает, что стремление к комфорту в конечном итоге побеждает абстрактное желание конфиденциальности. Нам нравится делиться личной информацией в социальных сетях. Мы любим, когда алгоритмы Netflix и Amazon рекомендуют нам книги и музыку. Мы не откажемся от GPS-навигаторов, даже если их использование означает, что десятки частных компаний знают о вашем местонахождении практически в любой момент времени — и к этой информации могут получить доступ государственные органы и суды. Когда Gmail запустила сервис рекламных объявлений, основанный на сканировании содержания электронных писем, это вызвало всплеск общественного негодования, но он продолжался недолго. Это всего лишь алгоритм, к тому же от рекламы все равно никуда не деться — так не лучше ли видеть рекламные объявления, которые могут вас заинтересовать?
Конечно, это не означает, что мы должны покорно сдаться Большому Брату. Будучи уроженцем страны, послужившей прообразом антиутопического мира в романе Джорджа Оруэлла «1984», я особенно чувствителен к любым посягательствам на свободу личности. Слежение может быть инструментом как обеспечения безопасности, так и репрессий, особенно при современном уровне технологий. Все замечательные коммуникационные технологии, от которых мы зависим сегодня, сами по себе не являются ни добром, ни злом. Но глупо надеяться на то, что интернет, как утверждают некоторые, принесет свободу всем и каждому. Современные диктатуры и другие подобные режимы прекрасно знают, как ограничить эту свободу и использовать эти новые мощные инструменты в своих целях. Я рад, что защитники свободы личности и конфиденциальности не дремлют, особенно в связи с усилением полномочий государства. Я просто думаю, что они ведут заведомо проигрышную борьбу, поскольку технологии будут продолжать развиваться, а подавляющее большинство людей, интересы которых они пытаются отстаивать, не станут защищать себя сами. Мало кто читает заявления о конфиденциальности, игнорируя их так же, как предостережения об опасности трансжиров и кукурузного сиропа. Мы хотим быть здоровыми, но не можем отказаться от жаренных в масле пончиков. Самым большим препятствием в деле защиты конфиденциальности всегда будет человеческая природа.
Технологии, основанные на доступе к нашим персональным данным, будут предлагать все больше преимуществ, перед которыми мы едва ли сможем устоять. Цифровые помощники, Echo от Amazon и Home от Google, улавливают каждое слово и звук в доме и передают их для анализа в облако — и однако люди покупают эти устройства миллионами. Полезность всегда берет верх над иными соображениями. Еще более инвазивные технологии, такие как микросенсоры в сантехнических системах, в продуктах питания и даже внутри наших тел, поначалу будут внедряться в странах с нестрогим законодательством в области защиты конфиденциальности, особенно в развивающемся мире. Но когда будут получены первые результаты, показывающие экономическую выгоду и пользу для здоровья, шлюзы откроются и такие технологии заполонят весь мир.
Наша жизнь постепенно преобразуется в данные. Тенденция будет ускоряться по мере появления все более продвинутых инструментов, и мы будет принимать ее либо добровольно, в обмен на комфорт и полезность, либо вынужденно — вследствие ужесточающихся требований безопасности. Это направление развития не изменить, поэтому особое значение приобретает наблюдение за наблюдателями. Объемы производимых нами данных будут только расти и использоваться в основном в наших интересах, но мы должны контролировать, куда они попадают и как используются. Конфиденциальность уходит в прошлое, но ей на смену должна прийти прозрачность{54}.
В то время как основное внимание было сосредоточено на компьютерах с массивно-параллельной обработкой, специализированным аппаратным обеспечением и заказными микропроцессорами, революция происходила и в области шахматных программ для ПК. Благодаря тому, что растущее сообщество программистов получило возможность делиться идеями через интернет, а также ввиду появления все более мощных процессоров от Intel и AMD, персональные компьютеры с операционными системами MS-DOS и Windows постепенно наращивали свою шахматную силу. К 1992 году они затмили большинство популярных моделей электронных шахмат — так называли встроенные в электронные доски специальные шахматные компьютеры, которые производились компаниями Saitek и Fidelity и носили такие звучные названия, как Mephisto и даже Kasparov Advanced Trainer.
В конце 1980-х годов к некоторым моделям прилагалось послание от моего имени, гласившее: «Хотелось бы, чтобы игра с шахматным компьютером "Каспаров" доставила вам удовольствие и помогла усовершенствовать свое мастерство, — и кто знает, может быть, однажды мы встретимся с вами за шахматной доской!» Моя спортивная карьера оказалась достаточно долгой для того, чтобы это пожелание сбылось, и на различных шахматных мероприятиях ко мне часто подходили юные шахматисты с просьбой оставить автограф на их шахматном компьютере «Каспаров».
Для молодых читателей, которые не помнят те времена, скажу, что возможности персональных компьютеров в начале 1990-х годов были весьма скромными. Даже если вы приобретали компьютер самой последней модели за колоссальную цену $5000, очень скоро вам приходилось докупать к нему оперативную память, более емкий жесткий диск и более мощный процессор. Мало какая программа потребляет больше вычислительной мощности, чем шахматный движок. Он с легкостью использует все 100 % производительности процессора и все его ядра, сколько бы их ни было — четыре, десять или 20. За 15 минут работы шахматного движка мой старый ноутбук нагревался так, что его можно было использовать как тостер. Даже сегодня сверхмощные машины превращаются в медленных черепах, когда шахматный движок задействует для поиска все доступные ресурсы процессора.
Шахматные программы для ПК работают гораздо медленнее, чем программы на специализированном аппаратном обеспечении, такие как Deep Blue, что объясняется рядом причин. Однако это компенсируется тем, что они гораздо умнее и используют оптимизированные методы программирования, позволяющие добиться намного большей глубины поиска, чем при обычном исчерпывающем поиске. Они по-прежнему основаны на стратегии типа А — на грубой силе, но за многие годы стали значительно искуснее. Использование компьютеров многоцелевого назначения расширило возможности для креативного программирования и адаптации ПО; к тому же коммерческие шахматные программы постоянно повышали точность своих оценок, зачастую с помощью гроссмейстеров. В то же время шахматные микропроцессоры Deep Thought, хотя и имели настраиваемые аппаратные контроллеры, были фактически высечены из камня, пусть даже этим камнем был кремний.
Скорость работы аппаратного обеспечения во многом зависит от простоты принципиальной схемы. Как написала команда Deep Thought/Deep Blue в 1990 году о своей машине, «принесение в жертву некоторых шахматных знаний в оценочной функции рассматривается как оправданное, если это позволяет существенно упростить схемы». Они также признали, что «на данный момент оценочные функции в лучших коммерческих шахматных программах работают гораздо более эффективно, чем в программах, применяющихся в научных целях»{55}. Звучит неутешительно, но на самом деле это давало ученым основания надеяться на значительное улучшение в случае, если они сумеют создать следующее поколение шахматных микросхем и усовершенствовать оценочную функцию Deep Thought.
В 1992 году я сыграл длинный неофициальный блицматч с одной из программ нового поколения. Создавшая ее немецкая фирма ChessBase насмешливо окрестила свое детище Fritz, и это название практически стало синонимом шахматных движков для ПК. Разработчиком был голландец Франс Морш — автор программ для настольных электронных шахмат, таких как Mephisto и пр., — привыкший втискивать максимально оптимизированный код в очень ограниченные ресурсы. Он также внедрил несколько методов усиления поиска, которые повысили силу шахматных машин, несмотря на то, что увеличение глубины обычно замедляло их работу.
Одно из этих усовершенствований заслуживает, чтобы ненадолго на нем остановиться, поскольку оно представляет собой интересный пример того, как можно сделать машину умнее с помощью методик, не имеющих ничего общего с работой человеческого разума. Речь идет о так называемой эвристике нулевого хода — методе, заставляющем программу предположить, будто одна из сторон пропускает ход. То есть программа должна прийти к выводу, что один игрок сделал два хода подряд. Если позиция этого игрока не улучшается даже после двух ходов подряд, можно допустить, что первый ход является пустышкой и может быть отсечен от дерева поиска, что сокращает его длину и делает поиск по оставшимся вариантам более эффективным. Эвристика нулевого хода была использована в некоторых самых ранних шахматных программах, в том числе в советской «Каиссе». Это элегантный и немного парадоксальный подход — повышать эффективность алгоритмов, основанных на принципе исчерпывающего поиска, за счет ограничения поиска.
Люди тоже используют при планировании разные эвристические подходы. Например, стратегическое мышление требует от нас определения долгосрочных целей и промежуточных этапов без учета того, как на наши действия может отреагировать оппонент. Я могу посмотреть на позицию на доске и подумать: «Было бы хорошо, если бы мне удалось поставить слона сюда, пешку сюда, а затем подключить к атаке ферзя». Здесь нет никаких расчетов, лишь своего рода список стратегических пожеланий. Только после этого я начинаю думать, возможно ли это на самом деле и что в ответ может предпринять соперник.
Программисты, работавшие над шахматными программами типа Б с выборочным поиском, хотели научить машины именно такому стратегическому целеполаганию. Вместо того чтобы просматривать только дерево доступных вариантов, программа типа Б также изучала и оценивала гипотетические позиции. Если эти позиции получали высокую оценку, повышалась стоимость их элементов при поиске. Во многих случаях качество оценки улучшалось, но поиск становился таким медленным, что страдали результаты, — серьезный недостаток, характерный для всех программ типа Б.
Более успешным оказался другой метод, который также позволяет машинам анализировать гипотетические позиции за пределами дерева вариантов. В случае применения метода Монте-Карло машина берет все доступные позиции и с каждой разыгрывает большое количество случайных партий, определяя количество возможных побед, ничьих и проигрышей. Таким образом для каждого следующего хода выбирается наиболее удачная позиция. Играть «миллионы партий в рамках одной» оказалось не очень эффективной тактикой в шахматах, но в го и других играх, где точная оценка невероятно трудна для машин, метод Монте-Карло дает хорошие результаты. Он не требует больших знаний или эвристических правил; машина просто отслеживает цифры и ходы — и выбирает лучшие.
Это обилие интересных идей, призванных повысить эффективность интеллектуальных машин, показывает, почему попытки понять, как работает человеческий разум, и проникнуть в тайны мышления были отброшены. Что важнее — процесс или результат? Люди всегда хотят результатов, будь то в инвестировании, сфере безопасности или шахматах. Такое отношение, сокрушались многие программисты, способствовало созданию сильных шахматных машин, но ничего не дало науке и прогрессу в области ИИ. Шахматная машина, которая думает как человек, но проигрывает чемпиону мира, не сделает сенсации. Когда же шахматная машина побеждает чемпиона мира, никого не волнует, как она думает.
И это наконец-то случилось. В мае 1994 года в Мюнхене я проиграл программе Fritz 3 в блицтурнире, организованном при поддержке корпорации Intel Europe. Intel оказала существенную помощь Профессиональной шахматной ассоциации (ПША), созданной годом ранее мной и моим коллегой, претендентом на мировую корону Найджелом Шортом. В турнире участвовали сильнейшие шахматисты мира и программа Fritz 3, работавшая на новом процессоре Pentium. Целью организаторов было помочь шахматам обрести еще бóльшую популярность и потенциальных спонсоров, о чем я мечтал с тех пор, как увидел, насколько широкую известность получил мой матч с Deep Thought в 1989 году.
С предшественником Fritz я уже сталкивался в товарищеском блицматче в Кельне в декабре 1992-го. Я сыграл 37 партий против любимого детища Фредерика Фриделя и, более того, детально проанализировал действия программы, указав, когда та сделала особенно хороший ход и когда играла откровенно слабо. Хотя программа еще не стала диким зверем, но она уже и не была безобидным домашним питомцем. Я проиграл девять партий при двух ничьих и 26 победах.
Но в Мюнхене произошла совсем другая история. Это был серьезный турнир, несмотря на формат блиц, и я не сомневался в победе независимо от того, будет ли в нем участвовать машина или нет. После медленного старта я выиграл восемь партий подряд, но программа Fritz 3 следовала за мной по пятам, и наконец настал наш черед встретиться за доской. Я агрессивно разыграл дебютную стадию и всего после десятка ходов имел подавляющую позицию. Однако затем начал разворачиваться сценарий, который станет типичным для партий между людьми и машинами в течение следующего десятилетия. Я сделал один неточный ход, и машина контратаковала. Раздраженный своим промахом, я решил пожертвовать материал, отдав ладью на слона, чтобы удержать инициативу. Позиция была примерно равной, но в блице я не мог положиться на точность расчетов, чтобы воспользоваться своими возможностями. Несмотря на обоюдные ошибки ближе к концу партии, когда машина дала мне шанс свести партию к ничьей, а я его упустил, Fritz 3 сумела добиться победы.
Хотя мы играли блиц и каждому давалось по пять минут, это была первая победа машины над чемпионом мира по шахматам в официальном соревновании. По значимости ту партию можно было сравнить пусть не с высадкой человека на Луну, но как минимум с запуском небольшой ракеты. Мы c Fritz 3 оказались на вершине турнирной таблицы, что для машины являлось впечатляющим результатом. Мне это было на руку, поскольку давало возможность встретиться с ней в матче за первое место и отыграться. На этот раз мне удалось сосредоточиться и полностью разгромить машину, одержав три победы при двух ничьих. В одной ничейной партии я тоже фактически победил, но мне не хватило времени, чтобы выиграть позицию с ферзем против ладьи.
Но спустя несколько месяцев фортуна повернулась ко мне спиной, когда на очередном турнире, организованном Intel под эгидой ПША в Лондоне, я встретился с другой шахматной программой для ПК — Genius, разработанной Ричардом Лэнгом. Участники играли в быстрые шахматы на выбывание, и каждая сторона имела четверть часа на партию. Мне выпало играть с Genius уже в первом раунде, что, конечно же, привлекло большое внимание. Хотя это все еще не были классические длинные шахматы, ставки поднялись высоко. Игрок, проигравший миниматч из двух партий, выбывал из турнира, который входил в серию Гран-при, — поэтому имело значение каждое очко.
В 1-й партии, играя белыми, я получил отличную позицию, но зевнул один ход, позволив машине добиться уравнения. Тогда я совершил еще один смертный грех в партии против компьютера: начал играть слишком напористо. Вместо того чтобы сделать простую ничью и перейти к следующей партии, я попытался развить инициативу в пресном эндшпиле «ферзь и конь против ферзя и коня», но почти сразу об этом пожалел. Совершив ряд удивительных маневров ферзем, Genius ослабил положение моего короля так, что в итоге я проиграл пешку, а затем и партию. Такой резкий оборот событий стал для меня полной неожиданностью; вы можете увидеть мой шок, посмотрев на YouTube видео с этого турнира.
Несмотря на осечку, я был уверен, что одержу победу черными во 2-й партии, а затем выиграю тай-брейк и продолжу участие в турнире. Мне удалось получить очень хорошую позицию и выиграть пешку, снова в эндшпиле «ферзь и конь против ферзя и коня». Но Genius снова совершил целую череду невероятных маневров ферзем и застопорил мою проходную пешку. Я сидел, обхватив голову руками, но был вынужден смириться с ничьей и выбыл из соревнования{56}. Это был сильный официальный турнир, хотя и по быстрым шахматам, и временами машина демонстрировала отличную игру. Все еще не высадка на Луну, но уже выход на околоземную орбиту.
Обе мои партии с Genius, особенно 2-я, отражали уникальную природу компьютерных шахмат. Самые большие проблемы у шахматистов возникают с визуализацией ходов коней, поскольку те ходят буквой «Г» — в отличие от других фигур, двигающихся по прямой. Но компьютеры ничего не визуализируют и управляют каждой фигурой с одинаковым мастерством. Кажется, Бент Ларсен — первый гроссмейстер, проигравший машине, — сказал: если убрать из шахмат коней, то рейтинг компьютеров тут же упадет на пару сотен пунктов. Это преувеличение, но в нем есть немалая доля истины. То же самое касается и ферзя, самой сильной фигуры: на открытой, не загроможденной пешками доске ферзь может достичь практически любого поля за один-два хода. Это резко повышает уровень сложности, с чем компьютеры справляются гораздо лучше людей. Столкнуться с компьютером в открытой позиции типа «ферзь + конь» — ужасный сон под стать романам Стивена Кинга.
На протяжении всей шахматной истории даже самые великие игроки избегали такой сверхсложной тактической игры, но с 1993 года она стала обычным делом для компьютеров. Играя с людьми, вы знаете, что ваш соперник сталкивается в ходе партии примерно с такими же проблемами, что и вы. Практически всегда я чувствовал, что умею рассчитывать варианты лучше любого другого шахматиста, за исключением «индийского чудотворца» Виши Ананда, заслуженно славившегося своей быстрой реакцией. В целом же я знал, что если не могу просчитать до конца последствия своего хода, то и сопернику это вряд ли удастся. Но примерный баланс сил исчезает, когда вы играете против мощной машины. Она играет не просто хорошо — она играет иначе.
Кроме того, вас все время преследует тревожное ощущение, что машина может видеть нечто такое, чего вы не можете себе даже представить. Когда на доске сложная позиция, вы напряжены и опасаетесь коварного удара со стороны машины. Поэтому вы дважды и трижды перепроверяете свои расчеты, вместо того чтобы положиться на интуицию, как поступили бы, играя против человека. Все эти дополнительные расчеты отнимают массу времени и делают игру предельно изнурительной в физическом и психологическом плане.
Когда вы всю жизнь играете в шахматы, у вас обязательно формируются определенные привычки, но их приходится нарушать, если вы играете против машины. Хотя я не был от этого в восторге, я хотел доказать, что могу преодолеть все препятствия и подтвердить свой титул сильнейшего шахматиста мира не только среди людей, но и среди машин.
Программы для ПК делали впечатляющие успехи, но я не упускал из виду и Deep Thought. В феврале 1993 года я еще раз пересекся с командой IBM в Копенгагене, где машина бросила вызов датской сборной, включая Бента Ларсена. IBM горела желанием проверить свое новое детище в деле. Маркетологи IBM решили переименовать Deep Thought II и дали машине название Nordic Deep Blue, вероятно, чтобы отличить ее от следующей версии, которая уже находилась в разработке и по завершении должна была бросить вызов мне как чемпиону мира. Но я думаю, что не будет большой путаницы, если с этого момента я буду называть ее просто Deep Blue.
Как бы она ни называлась, привезенная в Данию машина не произвела на меня впечатления. Мы использовали ее для анализа одной из моих партий перед аудиторией, желающей узнать, какие предложения та может сделать. Данные компьютером оценки позиций были откровенно плохи, он стабильно недооценивал мои шансы на атаку и нескоро понимал, что предложенные им усиления не сработали. Однако он умело сыграл против Ларсена и других датчан, набрав почти 2600 пунктов, и тем самым дал мне понять, что его значительный прогресс не за горами. Создатели проекта Сюй Фэнсюн и Мюррей Кэмпбелл включили в команду программиста Джо Хоана, к тому же теперь они могли полагаться на огромные материальные и человеческие ресурсы самой IBM. Вскоре команду Deep Blue перевели в главный исследовательский центр IBM в городе Йорктаун-Хайтс (штат Нью-Йорк). Надо сказать, что в ту пору компания переживала самый трудный период за всю свою 80-летнюю историю: ее акции упали до минимума из-за не очень успешных попыток угнаться за множеством новых шустрых конкурентов. Но новый генеральный директор Лу Герстнер отказался от плана по расчленению IBM на отдельные компании, что положило бы конец шахматному проекту.
В мае 1995 года мне удалось отомстить программе Genius в матче по быстрым шахматам, транслировавшемся по телеканалу German TV в Кельне. Конечно, глупо говорить о мести компьютерной программе, которой все равно, что делать — играть в шахматы или считать песчинки в пустыне, — но мне нравилось так думать. Первая партия должна была закончиться вничью, но Genius совершил традиционную ошибку шахматных машин, проявив чрезмерную жадность. Программа съела мою отдаленную пешку и позволила мне развить решающую атаку на ее короля. Во 2-й партии я сделал спокойную ничью, без кульбитов. В интервью я признался, что дома тренировался с одной из версий этой программы, чтобы как можно лучше подготовиться к матчу.
В конце года я сыграл еще один миниматч, на этот раз с программой Fritz 4 в Лондоне. Честно признаться, появление все новых версий программ с возрастающими порядковыми номерами было немного пугающим. Возможно, мне следовало настоять на том, чтобы после моего успеха в шестом матче на первенство мира меня называли «Каспаров 6.0». К тому же это было бы не так далеко от реальности: в 1993 году американский софтверный гигант Electronic Arts выпустил шахматную программу для ПК под названием «Гамбит Каспарова». У нее был сильный движок, красочная графика, и периодически на экране выскакивал короткий видеоролик, где я давал советы, такие как «Следите за пешкой!» или «Вы выбрали неверный путь!». На тот момент это была одна из самых передовых программ, но я, вероятно, посмеялся бы, если бы сегодня сумел найти ее рабочую версию.
Одной из интересных особенностей наблюдения за развитием шахматных программ от одной версии к другой было то, что я всегда мог распознать ДНК программы. В них добавляли новые коды, новые алгоритмы поиска и улучшения, использовали процессоры нового поколения, но все равно каждая машина имела что-то такое, что можно было назвать ее уникальным стилем. Я шутил, что программисты выращивают свои программы как детей или по крайней мере как домашних животных и оставляют в них свой неизгладимый след, который передается от одной версии к другой так же, как зеленые глаза или рыжие волосы. Со временем эти характерные признаки теряли свою устойчивость, как это происходит в любой генетической системе.
Например, программа Fritz была зациклена на материале и отстаивала каждую пешку любой ценой, даже в очень неважной позиции. Это нисколько не умаляет достоинств Fritz, но ее создатель Франс Морш сам признавал, что его программа никогда не являлась самой агрессивной на рынке. Можно вспомнить программу Junior, победительницу многих чемпионатов и детище израильских специалистов Шая Бушински и Амира Бана. Эта программа, наоборот, была революционно агрессивной, легко жертвовала материал ради открытых линий и шансов на атаку, что на тот момент расценивалось как совершенно «некомпьютерная» игра. Эти две программы настолько отличались друг от друга, что неизбежно возникал вопрос, не впитали ли флегматичная голландско-немецкая программа и воинственный израильский движок некоторые из черт национальных характеров. Вполне вероятно, поскольку личностные качества программиста неизбежно отражаются на свойствах программы, особенно если он сам — достаточно сильный шахматист со своим выраженным стилем игры.
Такие генетические профили разных программ имели практическую ценность для меня и других гроссмейстеров, сражавшихся с машинами на протяжении десятилетия и дольше. Конечно, нельзя было надеяться на то, что на очередном турнире или матче вы столкнетесь точь-в-точь с такой же программой, но, даже если вы располагали ее старой версией или текстами ее предыдущих партий, это значительно облегчало подготовку. По мере того как машины накапливали историю партий против людей и других машин, мы получили возможность готовиться к партиям с ними во многом так же, как мы готовились к партиям с гроссмейстерами. Конечно, всегда существовала вероятность того, что между двумя соревнованиями или даже партиями в компьютер будет загружена совершенно новая дебютная книга или даже новая «личность», но машины редко менялись полностью, хотя и становились все сильнее.
Две лондонские партии в быстрые шахматы с программой Fritz 4 запомнились мне из-за другого уникального аспекта игры против компьютеров. На седьмом ходу, играя черными, я передвинул слона на два поля — с с8 на а6. Но оператор по невнимательности ввел в программу ход слоном на одно поле, на b7. Невероятно, но партия продолжалась еще четыре хода, прежде чем оператор заметил свою ошибку. Что еще более немыслимо, когда слона поместили на правильное место, позиция осталась пригодна для игры, хотя, разумеется, требовала смены тактики. Я выиграл эту партию и, сделав ничью во 2-й, победил в матче, но та досадная ошибка оставила неприятный осадок. В отличие от меня, программа нисколько не была раздражена оплошностью своего оператора.
В начале 1995-го команда Deep Blue обратилась к Дэвиду Леви и Монти Ньюборну по поводу возможности матча со мной в следующем году, и я попросил своего агента Эндрю Пейджа следить за ситуацией. Когда я встретился с создателями Deep Blue в Дании двумя годами ранее, я шутливо заметил, что им нужно поторопиться, поскольку я хочу сразиться с их суперкомпьютером, пока еще молод и полон сил, — а на тот момент мне уже было под 30. К тому же я знал, что не останусь чемпионом мира навечно — так же, как был уверен в том, что не бессмертен. Компания IBM хотела этого матча, и я тоже; вопрос был только в том, когда будет готов Deep Blue.
Сюй Фэнсюн, работавший над шахматными микропроцессорами со свойственным ему неудержимым перфекционизмом, продолжал отодвигать сроки, и я, сам будучи чрезвычайно педантичен, мог его понять. Если и есть люди, которые в наибольшей степени способствовали наступлению Американского века, — то это талантливые инженеры с их мечтами и готовностью следовать за своими устремлениями сквозь огонь и воду. Но действительно, в компьютере постоянно возникали какие-то неполадки. Когда вы читаете отчеты Сюй Фэнсюна и других членов команды о разработке машины и ее игре в 1994–1995 годах, создается впечатление, будто вы читаете дневники сотрудников фирмы по ремонту компьютерного оборудования. Ошибки, сбои, прерывание телефонной связи, разрывы интернет-соединения, ошибки в дебютных книгах, ошибки в программе, отсутствие контактов в схеме — все, кроме вирусов. Между тем IBM хотела, чтобы машина постоянно путешествовала и участвовала в различных соревнованиях и выставках, внося свой вклад в создание имиджа компании.
Одним из таких событий стал чемпионат мира по шахматам среди компьютерных программ в Гонконге (1995). Главным фаворитом состязания являлся суперкомпьютер Deep Blue Prototype — машину тогда называли так (поскольку процесс создания нового аппаратного обеспечения еще не был завершен), хотя она и представляла собой все ту же Deep Thought II. За прошедшие несколько лет компьютер не проиграл в турнирах ни одной другой машине и, согласно Сюй Фэнсюну, при тестировании побеждал все ведущие коммерческие программы в соотношении три к одному. (Возможность протестировать свою машину в игре против конкурентов, просто купив нужную программу, в то время как доступа к их детищу не было ни у кого, давала команде Deep Blue серьезное преимущество.)
Но, как говорится, в этой жизни может случиться всякое, и именно поэтому мы любим играть в игры. В четвертом туре Deep Blue сыграл вничью с программой для ПК WChess и в пятом, последнем туре должен был встретиться с Fritz 3. Deep Blue был на пол-очка впереди и, по словам Сюй Фэнсюна, «при предварительном тестировании в центре IBM выиграл у Fritz девять из десяти партий»{57}. Он играл белыми, что тоже могло способствовать успеху. Программа Fritz 3 применила острую сицилианскую защиту и получила отличную позицию, а Deep Blue, по-видимому, пребывал в замешательстве из-за перестановки ходов и, не сумев продолжить партию по дебютной книге, перешел к самостоятельной игре.
Будь Deep Blue действительно намного сильнее, чем Fritz 3, для него это не представляло бы большой проблемы. Справедливости ради надо сказать, что дебют и правда оказался сложным и даже современные программы не справились бы с подобной ситуацией без дебютной книги. Deep Blue походил на юных шахматистов, которых на своих занятиях я критикую за то, что они безотчетно следуют дебютной теории и поэтому не в состоянии понять позицию, возникающую после того, как все усвоенные варианты заканчиваются. Однако для Deep Blue партия складывалась не так уж плохо. Игрок с 200-балльным преимуществом в рейтинге в такой позиции чувствовал бы себя вполне комфортно.
Но техника снова подвела. Из-за потери соединения между Гонконгом и Нью-Йорком компьютер пришлось перезагружать и заново устанавливать связь. Как утверждает Сюй Фэнсюн, из-за «холодного» перезапуска компьютер заново начал процесс анализа и сделал другой ход — не тот, что был выбран до разъединения.
Прежде чем переходить к захватывающему финалу этой маленькой машинной драмы, я хочу остановить ваше внимание на изложенном выше эпизоде, поскольку подобное не раз случалось и в ходе моих баталий с Deep Blue. Почти в каждом рассказе о партиях того периода можно найти упоминания о перезагрузках, перезапусках, сбоях и разрывах соединения. В одной из партий гарвардского турнира Deep Blue потерпел техническое поражение из-за сбоя питания, а в Пекине проиграл чемпионке мира Се Цзюнь из-за неполадок в системе. Но такова уж природа всех экспериментальных технологий, и обычно подобные обстоятельства оговорены в правилах матчей.
Сами по себе подобные аварии меня не волнуют, но меня беспокоят два связанных с ними момента. Первый состоит в том, что для возвращения машины в игру требуется вмешательство оператора. Дело не ограничивается восстановлением телефонной связи и ожиданием того, когда будет установлено повторное интернет-соединение. «Нам пришлось перезапустить Deep Thought II», — пишет Сюй Фэнсюн. И я предполагаю, что им также пришлось заново ввести в компьютер всю ранее сыгранную партию, чтобы тот мог продолжить игру. Как следствие, Deep Thought сделал другой ход, вместо того, который он счел лучшим перед сбоем. Вот что пишет по этому поводу Сюй Фэнсюн: «По словам Джо Хоана, наблюдавшего за игрой из нашей лаборатории в Хоторне, Deep Thought II переключился на альтернативный ход. Но этот ход не успел появиться на экране в Гонконге до обрыва связи, и мы узнали о нем только после партии».
Таким образом, команда Deep Blue утверждает, что ход, выбранный компьютером перед сбоем, был лучше хода, сделанного после возобновления работы системы. (Увы, это действительно так. Позднее я проанализировал партию и могу сказать, что сделанный после устранения неполадки 13-й ход был и впрямь неудачным.) Но что если бы выбранный после сбоя ход оказался намного сильнее первого? Особенности работы шахматных программ таковы, что после перезагрузки машина могла потратить на расчеты чуть больше времени и найти лучший ход или же быстро пойти иным, более благоприятным для себя образом — поди угадай. При всей снисходительности к экспериментальным машинам, потенциальные последствия таких ситуаций не могут не настораживать.
Игра продолжалась с большим преимуществом Fritz 3. В своем рассказе Сюй Фэнсюн делает попытку защитить честь Deep Blue, но его дальнейшие комментарии к партии можно назвать полной чушью. Пусть я ничего не знаю о том, что такое «микросхема по 0,8-мкм КМОП-технологии», и о других технических тонкостях работы компьютеров, но я прекрасно разбираюсь в шахматах. Сюй Фэнсюн пишет, что компьютер «замешкался» и «еще не разогрелся», словно речь идет о соревнованиях по бегу. На самом деле в тот момент Deep Blue, хотя этого и не осознавал, фактически проиграл партию, сделав после сбоя два ужасных хода. Правда, первая оплошность, совершенная сразу же после перезапуска, осталась безнаказанной: программа Fritz 3 не заметила решающего удара. Через два хода, уже в явно плохой позиции, Deep Blue совершил еще одну самоубийственную ошибку{58}, просмотрев мощную атаку черных на королевском фланге. Все было кончено. Оба моих шахматных движка — один с 3000-очковым рейтингом в моем ПК, второй с 2800-очковым у меня в голове — мгновенно определили, что после 16-го хода черных белым крышка. Deep Blue, которому уже нечего было терять, отдал огромное количество материала, прежде чем сдался на 39-м ходу. Так маленький немецко-голландский Давид сокрушил американского Голиафа и в итоге выиграл чемпионат мира.
Я был рад за Фредерика и моих друзей из фирмы ChessBase, но такой исход ставил под вопрос возможность проведения матча между мной и Deep Blue, поскольку суперкомпьютеру IBM не удалось стать чемпионом, а следующий чемпионат мира среди шахматных программ мог состояться только через несколько лет. Но в итоге нам это не помешало. Ни у кого не возникло сомнений, что Deep Blue — сильнейшая шахматная машина в мире, особенно после появления ее новой, модернизированной версии, с которой я встретился в Филадельфии девять месяцев спустя и которая была намного сильнее той, что проиграла программе Fritz 3 в Гонконге.
Имелась и еще одна небольшая проблема: мне нужно было доказать, что я по-прежнему являюсь чемпионом мира. Осенью 1995 года мне пришлось отстаивать свой титул в матче на большинство из 20 партий с молодой индийской звездой Виши Анандом. Мы играли в Нью-Йорке на 107-м этаже Южной башни Всемирного торгового центра. Торжественный первый ход сделал мэр Рудольф Джулиани, и произошло это 11 сентября.
Некоторыми подробностями матча с Анандом я поделюсь чуть позже и расскажу о том, как машина помогла мне сохранить титул, а сейчас хочу вернуться к истории моего противостояния с Deep Blue: 10 февраля 1996 года стало еще одним днем, вошедшим в мою коллекцию сомнительных исторических дат. Прежде чем сразиться с Deep Blue в филадельфийском матче из шести партий, я успел стать первым чемпионом мира, проигравшим блицпартию одному компьютеру и миниматч в быстрые шахматы другому. Тенденция была очевидна. Садясь за стол напротив Сюй Фэнсюна, я прекрасно осознавал, что если буду удерживать свой титул достаточно долго, то однажды стану первым чемпионом мира, проигравшим компьютеру и в классические шахматы. Но пока я не был к этому готов.
Матч принимала и спонсировала Ассоциация вычислительной техники (ACM), внесшая значительный вклад в развитие компьютерных шахмат. Состязание было приурочено к 50-летнему юбилею первой цифровой машины ENIAC, который Ассоциация отмечала на своей ежегодной Неделе информатики в Филадельфии. Монти Ньюборн, сам разработчик шахматных программ, пользуясь своим положением в ACM, активно продвигал идею «человек против шахматной машины». Выступая в роли посредника между этими двумя сторонами, он участвовал в разработке правил филадельфийского матча, получившего громкое название «Шахматный вызов». Международная ассоциация компьютерных шахмат (ICCA) выступила в качестве согласующего органа, и ее вице-президент Дэвид Леви помогал с переговорами и организацией. Призовой фонд составлял $500 000, из которых $400 000 предназначалось победителю. Изначально всю сумму планировали разделить в соотношении три к двум, но после моей попытки настоять на том, что победитель забирает все, был достигнут компромисс: четыре к одному. Я верил в свои силы и спустя шесть лет ожидания, прошедших после разгрома Deep Thought в 1989 году, полагал, что организаторы матча нуждаются во мне больше, чем я в них.
Однако я немного ошибался. Некоторое время назад Intel прекратила оказывать финансовую поддержку моей еще не оперившейся Профессиональной шахматной ассоциации и ее турнирам серии Гран-при, и я надеялся заключить аналогичный контракт с IBM. Мой внезапный и опрометчивый разрыв отношений с Международной шахматной федерацией (ФИДЕ) в 1993 году сделал меня козлом отпущения в шахматном мире, но благодаря привлечению новых спонсоров ПША проводила интересные соревнования, давая многим гроссмейстерам возможность заработать неплохие деньги. Однако Intel Europe сообщила нам, что не собирается возобновлять спонсорский контракт. И одной из причин, по которым я согласился играть матч в Филадельфии и последующий матч-реванш в Нью-Йорке за сумму меньше миллиона долларов, была именно надежда заключить долгосрочное спонсорское соглашение между ПША и компанией IBM.
Прогнозируя результаты этого долгожданного матча, эксперты в основном предсказывали мою победу. Дэвид Леви смело заявил, что я выиграю все шесть партий. Мы с руководителем команды IBM Си Джей Таном полагали, что матч закончится со счетом 4:2, с той лишь разницей, что я сделал ставку на себя, а он — на Deep Blue. Я не сомневался в собственных силах, но меня беспокоило отсутствие какой-либо информации об этой новой версии — разумеется, не о ее технических характеристиках, которые были для меня бесполезны, а об особенностях игры. Версия, с которой мне предстояло сразиться, еще не сыграла ни одной публичной партии, и я не имел ни малейшего представления о том, на что она была способна.
Однако те данные, которыми мы располагали, впечатляли. Предыдущая модель — последняя из носивших официальное название Deep Thought — имела скорость перебора от трех до пяти миллионов позиций в секунду. У новой же модели с 216 новыми шахматными микропроцессорами, подключенными к суперкомпьютеру IBM RS/6000 SP, она достигала ста миллионов в секунду. Я знал, что в 20 раз быстрее не значит в 20 раз лучше, но машина все равно оставалась для меня черным ящиком, а это всегда вызывает неприятные чувства. По мнению экспертов, формула «скорость увеличивает глубину, глубина увеличивает силу», доминировавшая в компьютерных шахматах на протяжении нескольких десятилетий, могла вывести эту новую версию на рейтинг выше 2700 пунктов. Улучшение дебютной книги и рост шахматных знаний могли добавить еще 50–100 пунктов, приблизив Deep Blue к моему уровню 2800+. Все это пока было чисто теоретическими предположениями. Но кто знал, какие еще секреты могли скрываться в этом черном ящике?