Пол Скоулз в игре!
Уже на раннем этапе принятия решений атлеты, входящие в элиту мирового спорта, выигрывают за явным преимуществом. Дело ли тут в тренировках, врожденных качествах или и в том и в другом, но очевидно, что мозг спортсменов, имеющих дело с быстрыми перемещениями мяча, особым образом настроен на осуществление прогнозирования. Благодаря умению строить верные прогнозы и просчитывать ситуацию, они успевают выбрать оптимальный вариант действий, когда времени на размышление нет.
Пожалуй, лучшей иллюстрацией того, насколько важен и полезен навык прогнозирования в спорте, является знаменитый английский футболист Пол Скоулз. Бывший полузащитник Manchester United и сборной Англии в начале карьеры был низкорослым юношей-астматиком. Войти в историю футбола ему, как и Уэйну Руни, помогла работа головой. Скоулза нередко называют своим кумиром такие выдающиеся игроки, как испанский полузащитник Хави, регулярно выигрывавший Кубок мира. Его восхищало в Скоулзе умение протиснуться между соперниками и отдать идеальный пас, длинный или короткий. Действуя в довольно ограниченной центральной зоне, он удачно использовал выбор позиции, движение на поле и умение прогнозировать ситуацию в противостоянии игрокам, которые были быстрее, сильнее или элементарно мощнее его самого.
Позднее его тренер сэр Алекс Фергюсон говорил о нем так: «Он понимает то, что происходит вокруг него у края штрафной, лучше, чем большинство других игроков. Когда он был еще подростком, он всегда ухитрялся оказываться в нужном месте в самое нужное время, но и при подаче из-за пределов штрафной он действует не менее эффективно, потому что умеет правильно использовать свой опыт. Его футбольная голова — одна из светлейших в истории Manchester United».
Когда мы встретились для интервью, Скоулз как раз начал карьеру футбольного эксперта на британском спортивном канале BT Sport, где его футбольная голова оказалась востребованной, чтобы анализировать матчи. Это интервью, последнее за день, он дал в офисе телеканала рядом с лондонским собором Святого Павла. Сначала обычно немногословный Скоулз не демонстрировал готовности к увлекательной беседе, но стоило упомянуть об экспериментах Абернети, как футболист проявил живой интерес. «Это будет непросто, — рассуждал он вслух о том, реально ли принять передачу вслепую. — Хотя, думаю, есть футболисты, которые смогли бы. Но вообще принять вот так мяч с лета — это что-то из области фантастики».
Чем раньше спортсмен успеет сыграть по летящему к нему мячу — это касается футбола, крикета, сквоша, бейсбола, — тем больше у него будет времени на принятие решения и ответные действия. Этот навык позволяет таким игрокам, как Скоулз, просчитывать ситуацию на несколько шагов вперед. «Последнее, о чем я думаю, когда мне приходят мяч, — это что делать дальше», — утверждает он. Естественно — ведь он уже знает.
Глядя на игру тех спортсменов, у кого такой навык хорошо развит, можно подумать, что они находятся на каком-то другом стадионе. Вспоминается игра главного плеймейкера миланского Inter португальца Луиша Фигу на стадионе San Siro за несколько месяцев до окончания его карьеры футболиста. Он был самым возрастным игроком на поле и бегал медленнее всех, но создавалось впечатление, что у него в распоряжении громадные участки газона, хотя он никуда не спешил, не торопился. «Когда игра получается, чувствуешь, что у тебя куча времени, — делится впечатлениями Скоулз, который в свои лучшие годы испытывал нечто подобное. — Но так бывает не каждый раз. Когда играешь не на сто процентов, все происходит как-то суетливо и нервно, зато, когда все получается как надо, начинает казаться, что ты на поле один».
О похожем ощущении рассказывали представители самых разных видов спорта, в том числе пилоты «Формулы-1», вспоминая, как шли на обгон. И есть убедительные доказательства того, что это не просто ощущение.
Ученые из Университетского колледжа Лондона полагают, что мозг использует особый механизм ускоренной обработки зрительных сигналов в ситуации, когда необходимо выполнить определенные действия.[24] Испытуемых поделили на две группы и попросили реагировать на внезапно появляющиеся и исчезающие на экране диски. Волонтеры из первой группы должны были коснуться пальцем экрана в момент появления диска, а из второй — просто сказать об этом. Те, кто в качестве реакции выполняли действие, ощущали себя так, как будто у них было больше времени на осуществление этого действия, чем у тех, кого двигаться не просили.
«Самое главное для меня как полузащитника было четко знать, где находятся другие игроки моей команды, — продолжает Скоулз. — Я старался все время держать в голове картинку: где сейчас находится мой центр-форвард, где крайние хавбеки, где защитники. Нельзя просто получить мяч, не зная, что делать дальше или что происходит вокруг».
Отвечая на вопрос о том, как происходит принятие решения после получения передачи, Пол Скоулз фактически повторяет слова Уэйна Руни: «Все зависит от того, где в этот момент находятся игроки и где ты получаешь пас. Если там, где тебе удобно, можно ли переправить его в касание центр-форварду? Или лучше обработать и пойти вперед самому? Это бывает очень трудно объяснить, но представьте, что у вас в голове карта, где показано расположение всех игроков вашей команды, и вы решаете на основе этой карты».
У роботов-футболистов в программе заложена карта игровой площадки, и они точно знают и запоминают позицию игроков своей и чужой команды. Звезды мирового футбола тоже обладают этим качеством. В человеческом мозге есть специальный отдел, важный с точки зрения научения и памяти, он называется гиппокампом. Его клетки, известные как нейроны места и нейроны решетки, отвечают за контроль нашего собственного положения в пространстве и местоположения других людей.[25] Этих клеток насчитывается всего несколько тысяч, но, учитывая их возможные комбинации, такого количества вполне достаточно для кодирования всех точек, где мы оказываемся в течение жизни. Нейроны места привязаны к определенной обстановке: когда мы приходим домой или на работу, активизируется конкретный набор нейронов гиппокампа. Когда же мы заходим в незнакомое помещение, включается уже другая цепочка клеток места. Эти нейроны помогают нам ориентироваться относительно других объектов, благодаря им мы вспоминаем, где оставили машину, и можем ходить по дому в полной темноте. Впервые они были обнаружены в 1971 г. при проведении исследования на лабораторных крысах. Ученые могли точно сказать, где в данный момент находится животное, исходя из того, какие нейроны были у него активны. Среди спортсменов нейроны места особенно ценят, наверное, пилоты «Формулы-1», ведь они, например, позволяют им понять, когда пора сбросить скорость, чтобы войти в поворот.
В таких видах спорта, как футбол, у спортсменов нет возможности постоянно искать ориентиры, чтобы определить свое положение на поле. Здесь на помощь приходят нейроны решетки. Их открыли в 2005 г. Эдвард и Мэй-Бритт Мозеры, а также Джон О’Киф, получившие за это Нобелевскую премию. Нейроны решетки разделяют пространство вокруг нас на треугольники, расходящиеся из центра, в котором находимся мы. Когда мы стоим на точке, являющейся вершиной одного из таких треугольников, активизируется определенный нейрон решетки. Если мы сделаем два шага вперед по направлению к вершине другого треугольника, активизируется уже другой нейрон. Они отмечают наше положение в пространстве вне зависимости от конкретной ситуации, даже если мы меняем позицию. Поэтому высококлассные футболисты всегда точно знают, где находятся ворота, даже когда у них нет возможности осмотреться. У них автоматически включается ощущение пространства, поскольку они специально развивают его в себе.
Спортсмены уровня Пола Скоулза сочетают эту информацию с умением замечать детали, которые помогают им прогнозировать дальнейшее развитие событий. Следующая глава посвящена тому, как они встраивают ее в контекст, сформированный по другим источникам, и в итоге решают, как нужно действовать дальше.
Если бы ученым удалось просканировать мозг Уэйна Руни, когда в его сторону летел мяч, который он затем в прыжке через себя переправил в ворота, они бы увидели под его пересаженной шевелюрой калейдоскоп активно взаимодействующих нейронов.
В человеческом мозге происходит объединение сигналов от нейронов места и решетки с информацией из памяти, зрительной информацией и импульсами, посланными телом. Здесь же принимается решение о том, какие действия будут совершены. Мозг спортсмена отличается от мозга обычного человека скоростью принятия решений. Но если мы поймем, как и почему это происходит, то, вероятно, сможем приблизиться к их уровню.
Глава 2
Иллюзия выбора. Мика Хаккинен
Грейстокский лес объят загадочной тишиной. Густой хвойный массив в знаменитом Озерном крае на северо-западе Англии испещрен затейливо петляющими гравийными трассами. Внезапно в тишину врывается рев мотора, и спустя мгновение появляется раллийный болид Элфина Эванса, заносом входит в поворот и тут же исчезает в густом облаке поднятой им белесой пыли.
Эванс — восходящая звезда британского автоспорта. Его уже сравнивают с легендарным автогонщиком Колином Макреем, двукратным чемпионом мира по раллийным гонкам и победителем соревнований в составе той же команды M-Sport.
В Грейстокском лесу проходят тестовые заезды команды. Сегодня Эванс даст журналистам почувствовать все прелести работы штурмана, или второго пилота. Штурманы — это те суровые люди, которые сидят на пассажирском сиденье и подсказывают пилоту, что ждет экипаж впереди. Эвансу трасса хорошо знакома, так что помощь настоящего второго пилота ему не нужна. И это хорошо, потому что, когда твою голову на скорости все время болтает туда-сюда, прочитать что-либо абсолютно невозможно, особенно если текст состоит из убористо написанных и емких символов, которые штурман расшифровывает вслух для своего напарника, чтобы подготовить его к совершению маневра.
У каждого экипажа есть собственная, отработанная годами кодировка, но в любой системе записи тем или иным образом будет указываться расстояние до ближайшего поворота, описание опасного препятствия, например подъема, где следует проявить осторожность. Обозначение одиночного поворота может выглядеть так: «200 Л2 400», что означает «двести метров до левого поворота второго уровня сложности, потом четыреста метров до следующего отрезка пути». При добавлении различных деталей запись, естественно, усложняется. Например, «300 Т Л2 минус! П4 100» значит «триста метров до трамплина, затем левый поворот второй сложности при опасном отрицательном уклоне дороги, дальше правый поворот четвертого уровня и потом сто метров до конца отрезка». Во время гонки штурман сообщает пилоту огромное количество информации, поэтому перед началом чемпионата экипаж несколько раз проходит трассу в ознакомительном режиме, чтобы сделать легенду максимально точной и понятной.
Если смотреть глазами зрителя, находясь на точке, где трасса делает крутой поворот, создается впечатление, что Эванс спокойно контролирует машину, которая мягко входит в «шпильку» и затем плавно набирает скорость до следующего поворота. Но изнутри все выглядит совсем иначе. Когда сидишь, пристегнутый ремнями, в по-спартански брутальном, свободном от всего лишнего салоне тюнингованного «форда-фокус», ощущения непередаваемые! Пилот неожиданно резко рвет рычаг переключения скоростей и бьет по тормозам, при этом руль он держит плавно, делая лишь небольшие корректирующие движения в ответ на перемены в сцеплении с коварной трассой. Машина проходит трехкилометровый круг за неполные две минуты. К моменту финиша лицо Эванса пылает, а сам он сидит мокрый от пота вследствие физического напряжения и предельной концентрации.
После встряски на лесной трассе мы с Элфином уютно располагаемся в здании XII в., где когда-то была больница, а теперь находится главный офис команды M-Sport. Поразительный контраст: снаружи древние каменные стены усадьбы Довенби-холл, а внутри — просторное, идеально чистое помещение, где проводят техническое обслуживание гоночных автомобилей.
Эванс выглядит значительно моложе своих 27 лет, однако, несмотря на чуть детские черты, держится с той уверенностью, которая свойственна маститым гонщикам, хотя он участвует в мировом раллийном первенстве всего год. Короткие темно-русые волосы, торчащие уши, ярко-голубые глаза. Размышляя над заданным вопросом, Элфин неторопливо блуждает взглядом по богато декорированной столовой, в которой его яркий фирменный комбинезон смотрится довольно странно. Вопрос касается того, о чем думает гонщик во время заезда. Эванс дает неожиданный ответ.
— Честно говоря, ни о чем, — говорит он с легким валлийским акцентом. — Когда управляешь болидом, мысли приходят в голову крайне редко — так быстро все происходит. Нужно, чтобы ничто не отвлекало от управления. Конечно, какие-то мысли вертятся, но я обращал внимание, что, когда я вкладываюсь в гонку полностью, в какой-то момент понимаю, что вообще не помню, о чем думал последние 15–20 минут.
Тем не менее, хотя сам Эванс этого не замечает, его мозг за одну секунду принимает сотни разных решений. Просто представим себе, сколько всего нужно учесть в момент прохождения одного поворота. Прежде всего необходимо обработать непрерывно поступающую зрительную информацию о скорости и положении автомобиля. Затем информацию от рук, ног и других частей тела, которые ощущают качество сцепления болида с трассой и сигнализируют о том, надо ли делать на это какую-то поправку. Кроме того, в отличие от обычного водителя, пилот параллельно слушает указания штурмана и соотносит их с собственным опытом прохождения данного участка, с оценкой фактических условий и с личным видением оптимального способа вхождения в поворот. К тому же во время соревнований пилот учитывает информацию от своего штаба о том, с каким временем идут конкуренты, стоит ли рискнуть и прибавить или лучше будет не торопиться и сохранить имеющуюся позицию.
Все это успевает пронестись в голове гонщика еще до того, как он начал работать рулем и тормозом для входа в поворот. Чтобы принять всего одно элементарное решение — насколько повернуть руль или выжать газ, — мозг должен сопоставить информацию из десятков разных источников за какую-то долю секунды, провести сложные вычисления и выдать ответ — быстрый, точный и в то же время с достаточным допуском в условиях меняющейся обстановки. С добавлением новых факторов сложность расчетов возрастает в геометрической прогрессии, причем это характерно отнюдь не только для раллийных гонок. В этой главе мы поговорим о том, как спортсменам удается не запутаться в бешеном потоке информации, а получать с ее помощью быстрые и точные ответы.
Даже такие относительно простые действия, как прием мяча в футболе или ловля мяча в крикете, требуют расчета траектории объекта, движущегося с высокой скоростью, изменения собственного положения, а также выполнения определенных движений таким образом, чтобы не дать мячу просто отскочить куда попало. А для этого нужно обработать громадное количество информации. Вот одна из причин того, почему Мусташио и его партнеры по команде в ближайшее время не смогут выиграть у мадридского Real.
В памяти роботов-футболистов хранится вся информация, необходимая для выполнения последующих действий. Как уточняет Фил Калверхаус, их память «хранит копию всего, что происходит в реальном времени, включая сигналы с датчиков самого робота, их собственную информацию о местонахождении мяча и ворот, а также сигналы с датчиков остальных роботов. Таким образом, у каждого отдельного робота есть возможность принять решение относительно своих дальнейших действий».
У людей все устроено примерно так же. Но даже у спортсменов возможности мозга все равно ограниченны. Мы можем одновременно удерживать в голове лишь некоторое количество информации, ресурсы нашей памяти так или иначе имеют свой предел. В психологии есть термин «кратковременная память». В разное время для объяснения термина использовали разные аналогии: в 1950-х гг., например, ее сравнивали со школьной доской. Сегодня понятнее всего выглядит аналогия с оперативной памятью компьютера. В кратковременной памяти содержится весь объем информации, необходимой нам, чтобы осуществить то действие, которое мы в данный момент выполняем.
В середине 1950-х гг. психолог из Принстона Джордж Миллер опубликовал работу, из которой следовало, что человек в среднем способен одновременно удерживать в памяти от пяти до девяти элементов. Магическое число 7 +/ — 2 получило название «кошелек Миллера», и оказалось, что оно работает в отношении элементов самого разного рода. Возьмем, к примеру, числа. Посмотрите на следующий ряд чисел, а потом закройте книгу секунд на десять и попробуйте воспроизвести их все по порядку:
58201230719662652015
Чтобы запомнить такую или подобную последовательность, можно использовать несколько стратегий. Кто-то попытается повторить числа про себя, как мы делаем, чтобы не забыть номер телефона, пока ищем ручку. Согласно закону Миллера, большинство из нас смогут запомнить примерно семь чисел, после чего впадут в ступор.[26] А ведь это простейшая цепочка элементов. Выбирая, а затем с максимальной точностью осуществляя оптимальный вариант действий в таком виде спорта, как автогонки, человек производит расчеты с сотнями взаимосвязанных переменных. Это куда сложнее, чем семь единиц информации.
Значит ли это, что мозг Элфина Эванса и других высококлассных спортсменов устроен как-то принципиально иначе? Может, у них больше объем кратковременной памяти или сильнее «процессор», позволяющий им быстрее обрабатывать данные? В большинстве случаев это не так. Просто они научились использовать особые стратегии обработки информации.
Огненный болид Летучего финна
Тормозные диски объяты пламенем. «Мерседес» Мики Хаккинена под визг измученных тормозов только что заехал на пит-стоп трассы в английском Сильверстоуне. Колодки из углеволокна, которые прижимаются к диску и создают силу торможения, не выдержали агрессивного стиля вождения и воспламенились. Двукратный чемпион «Формулы-1» вылезает из машины. На нем черный кожаный комбинезон, облегающий гонщика чуть плотнее, чем на пике его карьеры. Хаккинен взъерошивает светлые волосы; ему кажется забавным, что к машине несется техник с огнетушителем. Зрители, пришедшие в медиадень с одним из спонсоров команды McLaren, явно в восторге от незапланированного шоу. Но наше интервью с финским пилотом состоится чуть позже.
Дав машине немного остыть, мы с Хаккиненом делаем круг по знаменитому автодрому. Финн гонит «мерседес» на пределе возможностей: визг покрышек, дым из-под колес, рев мотора. В какой-то момент мы срезаем поворот, и машину сносит на гравий. Любой на месте пилота, подвергающего тюнингованный автомобиль сумасшедшим нагрузкам на огромных скоростях, был бы максимально сосредоточен, как Элфин Эванс во время заезда по раллийной трассе. Однако Хаккинен только смеется и шутит. «Примерно так я вожу семью за покупками!» — перекрикивает он надрывный стон двигателя. А затем спокойно кивает на магнитолу и спрашивает, не включить ли радио. Спасибо, не надо!
Пилот может вести машину по гоночной трассе на высокой скорости под непринужденную беседу благодаря тому, что за годы тренировок его мозг научился работать особым образом. Комплексные решения и движения, связанные с управлением автомобилем, выбором нужного момента для торможения и угла поворота руля, контролируются на подсознательном уровне.
Поскольку такие решения принимаются автоматически, у мозга освобождается больше ресурсов на осуществление более осознанной мыслительной деятельности — в данном случае это мысли о том, как заставить журналиста дрожать от страха.
Чтобы добиться автоматизма, сперва следует научиться фрагментировать информацию. Этот процесс сродни тому, как раллийный гонщик и его штурман работали над легендой маршрута. Суть метода заключается в разбитии неких данных на небольшие совокупности, которые легче обрабатывать, чем весь массив целиком. Вернемся к числовой последовательности, которую мы пытались запомнить. Попробуем сделать это еще раз, только теперь предварительно выполним ее фрагментацию на более знакомые элементы:
5/8/2012, 30/7/1966, 27/4/2015
У нас получился список дат. Первая дата — день, когда сборная Великобритании установила рекорд на Олимпиаде в Лондоне, выиграв сразу шесть золотых и одну серебряную медаль. Вторая — победа сборной Англии на чемпионате мира по футболу. Третья — английский футбольный клуб Bournemouth завоевал себе место в Премьер-лиге. Мы воспользовались принятым форматом записи дат и в результате разбили сплошную последовательность чисел на фрагменты, имеющие значение для нас. Заметим, что магическое число Миллера 7+/-2 никуда не делось, просто теперь у нас в распоряжении не 20 элементов, а всего три.
В середине 1960-х гг. нидерландский шахматист и психолог Адриан де Гроот провел интересный эксперимент, к участию в котором он привлек как опытных гроссмейстеров, так и начинающих игроков.[27] В течение пяти секунд им демонстрировали шахматную доску с расставленными на ней фигурами, после чего фигуры убирали и просили участников по памяти восстановить комбинацию. Гроссмейстеры лучше справились с заданием, но лишь в тех случаях, когда расстановка была такой, какую можно было бы наблюдать в реальной игре. Опытный шахматист, в отличие от непрофессионала, видит не просто фигуры, случайным образом расставленные на доске, а осмысленный фрагмент игровой ситуации. Аналогичным образом мы членим последовательность букв на слова, а ряд чисел — на даты.
За счет фрагментации специалист может обрабатывать тот же объем данных, затрачивая при этом меньше мыслительных ресурсов, фактически на автомате. В другом похожем исследовании шахматистам показывали доску с фигурами и предлагали повторить расстановку уже на другой доске.[28] Более опытным игрокам требовалось посмотреть на первую доску меньшее количество раз, чем новичкам.
Подобную закономерность можно наблюдать и в более активных видах спорта.
В конце 1980-х — начале 1990-х гг., когда в ходе легендарного противостояния футбольных клубов Liverpool и Manchester United ливерпульцы постепенно сдавали позиции команде из Манчестера, в составе которой был и Пол Скоулз, ученые из обоих городов принципиальных соперников совместно трудились над исследованием особенностей пространственного мышления у футболистов.[29] Испытуемым показывали десятисекундные фрагменты матча. Фрагменты могли быть как системно организованными, так и лишенными такой организации. В первом случае это, например, было развитие атаки путем перепасовки; во втором — беспорядочные действия игроков, скажем, после отскока либо перехвата мяча. Эксперимент показал, что опытные спортсмены гораздо лучше запоминали позиции конкретных игроков на поле в системно организованных фрагментах, однако при отсутствии системности в действиях футболистов результаты оказывались одинаковыми.
Звездам американского футбола также требовалось немного времени, чтобы правильно запомнить позиции игроков на поле. Они по тому же принципу группировали координаты отдельных спортсменов в более крупные элементы ситуации, уменьшая тем самым количество запоминаемых элементов. Наставники университетских команд продемонстрировали способность мысленно достраивать недостающие фрагменты игровой ситуации.[30] Когда им показывали небольшой кусочек изображения, они уверенно называли момент игры и восстанавливали всю картину происходящего. Там, где непрофессионал видит лишь случайное расположение отдельных людей, специалист мыслит готовыми схемами.
Еще одним ярким примером группировки информации в спорте являются указания квотербека или тренера игрокам в американском футболе относительно того, какой тип розыгрыша должна выполнить команда. Бывший квотербек Национальной футбольной лиги США Трент Дилфер, рассказывая в интервью спортивному сайту FanHouse о стратегиях запоминания ключей к таким зашифрованным «посланиям», говорил о том, как трудно в этом плане бывает игрокам, переходящим в другую команду. «Многие тренеры используют систему нумерации, — объяснял он. — Например, фраза „Красный направо 22 Техас“ обозначает „нападение Западного побережья“.[31] В другом клубе оно обозначается фразой „Сплит направо скат направо угол 639 F“».[32]
Более простым примером группировки информации является расстановка футболистов на поле, когда позиции десяти полевых игроков можно представить в виде формул: 4–4–2 или 4–3–3. Таким образом, мы сократили количество элементов с десяти до трех. Тот же принцип лежит в основе составления автогонщиками легенды трассы. Итак, успешные спортсмены мыслят с помощью готовых структур, которые позволяют разбить большой объем информации на отдельные фрагменты, что облегчает их запоминание, высвобождая часть интеллектуальных ресурсов и внимания для других целей. Как утверждает Трент Дилфер, простое запоминание розыгрыша — совсем не то, что «владение им»: «Сначала ты знаешь ситуацию, потом понимаешь ее и уже потом начинаешь чувствовать ее инстинктивно. Вот это для меня и значит владеть ситуацией».
Автоматика, систематика, схематика
Фрагментация применима не только к отвлеченным понятиям вроде чисел и позиций, она также имеет место в процессе освоения новых навыков. Когда Эванс впервые сел за руль, он наверняка все делал медленно и очень осмысленно, как всегда бывает у учеников в автошколе. Скорее всего, ему тоже было трудно одновременно следить за движениями рулем и переключением передач, за отпусканием педали сцепления и нажатием педали газа, чтобы поймать момент схватывания.
Это проходят все. Когда мы учимся какому-то практическому навыку, мы понимаем, что именно нужно делать, но нам сложно удержать все это в голове. Мы можем с большим трудом вспоминать, как перейти со второй на третью передачу, чтобы при этом еще не забыть выжать сцепление, проверить зеркала и не съехать с дороги. Со временем все эти действия проходят стадию группировки и постепенно начинают воспроизводиться автоматически. Так мы
Американцы Мэтью Смит и Крейг Чемберлен провели эксперимент, иллюстрирующий это утверждение. Они собрали группу футболистов разного уровня и дали им задание провести мяч несколько метров змейкой, одновременно поглядывая на экран, чтобы не пропустить определенную фигуру, которая должна была на нем появиться.[33] Начинающим футболистам пришлось очень несладко. Их результаты были гораздо хуже, поскольку префронтальной коре их мозга оказалось не по силам разом выполнить оба действия. Профессионалы же прошли змейку практически с той же скоростью, с какой у них это получалось раньше, несмотря на дополнительное задание.
Переход действия из разряда сознательно контролируемых в разряд автоматических можно наблюдать на аппарате фМРТ. Ученые из Стэнфордского университета в Калифорнии провели сканирование мозга добровольцев, которые в этот момент выполняли задание на определение скорости реакции. Результаты сканирования показали, что первоначально активность регистрируется во многих участках мозга, но по мере того, как человек осваивает процедуру выполнения задания, уровень активности в этих участках снижается. Мы еще вернемся к этому выводу, но пока отметим, что мозг профессионального спортсмена работает менее напряженно, чем мозг непрофессионала.
В другом калифорнийском научном центре, Университете в Санта-Барбаре, Николас Вимбс занимался исследованием нейронных процессов, лежащих в основе фрагментации моторных задач, посредством которой физические действия становятся автоматическими.[34] «Любой фрагмент можно представить в виде ритма», — объясняет он, имея в виду структуры, в которые входят сами элементы и промежутки или паузы между ними. Мы имеем дело с такими структурами, когда запоминаем новую информацию или обучаемся какому-то навыку. Например, можно говорить о цифрах номера телефона, разделенных промежутками, или о действиях теннисиста при выполнении подачи, разделенных паузами.
Вначале префронтальная кора проявляет высокую степень активности. Данная область находится в передней части мозга и отвечает за множество важных аспектов высшей нервной деятельности от внимания и кратковременной памяти до индивидуального характера человека и его социального поведения. Именно благодаря ей происходит фрагментация комплексного действия, которому мы хотим обучиться, на более простые элементы. Допустим, подачу в теннисе можно разложить на подброс мяча, замах, удар и переход в позицию для приема ответного мяча. Но чтобы добиться автоматизма в выполнении подачи, мозг должен связать эти отдельные кусочки в единый процесс. Группой исследователей под руководством Вимбса было проведено сканирование мозга испытуемых, которые нажимали на клавиши в определенной последовательности, опираясь на запись у них перед глазами. Это напоминает игру на фортепьяно или гитаре по нотам; нечто подобное также проделывают любители музыкальной компьютерной игры Guitar Hero. «Когда они повторили комбинацию по 200 раз, то научились отлично справляться, — рассказывает Вимбс. — Через некоторое время комбинации становятся привычными. В начале эксперимента у одного из участников уходило примерно четыре с половиной секунды на каждую последовательность из 12 нажатий клавиш. К его окончанию все справлялись в среднем менее чем за три секунды».
Результаты сканирования показали, что, когда в действиях испытуемых появлялось все больше автоматизма, на первый план выходили более древние скопления клеток, спрятанные под корой больших полушарий, — базальные ганглии. Получается, что автоматизм, чтобы проявить себя, как бы готовит своего представителя. Это похоже на обучение нового сотрудника: после того как базальным ганглиям «объяснили», что надо делать, и дали выполнить операцию достаточное количество раз, высшие отделы мозга сняли контроль за этой операцией и полностью доверили ее обученному молодому специалисту. Если же начальник вдруг решает вернуться и посмотреть, как сотрудник справляется с возложенными на него обязанностями, стоя у него за спиной, качество выполнения операции может пострадать. Соответственно, когда спортсмен пытается анализировать действия, которые он обычно производит неосознанно, они становятся неуклюжими, нескоординированными и просто провальными, как будто он раньше никогда этим не занимался. Так выглядит классическая схема срыва спортсмена в критической ситуации, мы затронем этот вопрос подробнее в одной из следующих глав. Пока же ознакомимся с результатами исследования, которое особенно ярко иллюстрирует важность автоматизма.
Девин Поуп и Морис Швейтцер, экономисты из Пенсильванского университета, сравнили более 2,5 миллиона паттов на гольф-турнирах разного уровня.[35] Выяснилось, что профессиональные гольфисты выполняли завершающий удар с меньшей точностью, когда итогом раунда для них мог быть берди (удар на один меньше пара), чем когда они пытались уложиться в пар, независимо от расстояния и сложности удара. Если на кону стоит возможность получить дополнительные очки, спортсмен концентрируется на своих действиях, то есть начинает сознательно их контролировать. В результате простое действие, производимое обычно на автомате, превращается в трудновыполнимую задачу.
Когда начинающий крикетист приступает к разбегу перед подачей, он думает о том, как он держит мяч; о том, что нужно добежать до криза, не заступив на него; как рассчитать замах, чтобы добиться максимальной силы подачи; как важно, чтобы рука не сгибалась при броске. В это время префронтальная зона коры его мозга работает с огромным количеством параметров.
Когда же за дело берется опытный игрок, он ни о чем таком не думает, потому что за его действия при подаче отвечают базальные ганглии. Если он в этот момент и думает о чем-то, то скорее о том, куда он направит мяч, каковы слабые стороны бэтсмена, находящегося в другом конце площадки, и как лучше выполнить другие подачи своей серии, чтобы вывести бэтсмена из игры.
Сознательно контролировать все параметры подачи мяча с разбега в крикете, приема подачи соперника в теннисе, удара в прыжке через себя в футболе невозможно ввиду ограниченного объема кратковременной памяти. Но когда все эти действия доводятся до такой стадии автоматизма, что нам уже не нужно задумываться о них, нам становится по силам совершить то, что на первый взгляд невозможно, причем мы успешно выполняем их, даже когда наше сознание занято чем-то другим.
«Окончательный выбор решения — за тобой»
«Когда в штрафную летит навес, у тебя в голове за долю секунды проносится множество вариантов, что можно сделать с мячом. Допустим, есть пять-шесть вариантов действий». Так Уэйн Руни описывал процесс принятия решений в интервью журналу ESPN (см. предисловие). «Окончательный выбор решения — за тобой, — сказал он там же. — Ну, а дальше уже дело техники».
Чтобы сделать окончательный выбор, мозгу сначала необходимо принять в расчет данные из множества различных источников, выработать потенциальные варианты решения, а также взвесить все риски и выгоды каждого из них. Чтобы узнать, как ему это удается, мы обратились за помощью к Нильсу Коллингу, с которым я учился в университете. Доктор Коллинг по-прежнему работает во внушительного вида бетонном здании, где расположен отдел экспериментальной психологии Оксфордского университета, занимаясь исследованием процессов принятия решений и оценки рисков.
«Очень интересный вопрос, особенно применительно к людям с высокой степенью развитости практических навыков — таким как спортсмены, — отвечает он. — Коротко говоря, мозг, в зависимости от конкретной ситуации, принимает решения, используя ряд различных систем. Каждая система, связанная с принятием решений, и соответствующая ей нейронная сеть имеют свои особенности, достоинства и недостатки. Причем они постоянно друг с другом конкурируют, что и определяет поведение человека».
Таких систем как минимум три, и очень вероятно, что у атлетов во время занятий их видом спорта происходит очень плавный переход между этими системами.
К первой группе относятся решения, предполагающие длительное размышление и тщательное взвешивание различных факторов. Мы все порой принимаем подобные решения на работе и в личной жизни. В качестве примера возьмем футбольного тренера, который изучает трансферный рынок, выбирая между ярким крайним нападающим и надежным центральным полузащитником. Или наставника, который должен дать совет теннисисту, когда тот никак не может справиться с мощным бэкхендом соперника. Оценкой различных вариантов по ряду критериев ведает область в нижней части лобной доли, известная как вентромедиальная префронтальная кора головного мозга. «Скажем, при покупке дома мы учитываем его цену, местоположение и множество прочих факторов. В итоге получаем простой индекс желательности или ценность в денежном эквиваленте для каждого дома и, сопоставляя их, делаем выбор, — объясняет Коллинг. — За этот процесс как раз и отвечает вентромедиальная префронтальная кора. Люди, у которых данная область повреждена, порой принимают нелогичные решения».
Вторая группа включает решения, принимаемые автоматически. Сюда относятся такие действия, как прием паса в футболе, что, как мы теперь знаем, контролируется более древней, подкорковой областью мозга, в частности базальными ганглиями. Как замечает доктор Коллинг, «многие такие действия даже не рассматриваются как решения».
Однако в спорте наибольший интерес представляют решения, занимающие промежуточное положение между процессами, доведенными до автоматизма, с одной стороны, и требующими длительной умственной работы — с другой. Причем они меняются в зависимости от игровой ситуации. «Такие решения не обязательно основаны на конкретных параметрах в рамках определенных сценариев или вариантов действий. Скорее, они апеллируют к не вполне ясному общему ощущению ситуации, в которой мы находимся, — поясняет Коллинг. — Например, решая, следует ли предпринять то или иное действие, мы можем представить себе его возможную альтернативу либо руководствоваться собственным ощущением простого наличия других возможностей, даже если мы не имеем в виду что-то конкретное. Соответственно, мы тут же начинаем искать более удачные варианты, если позволяет ситуация, а не мучаемся, выбирая между неудачными решениями».
Поэтому, скажем, пилот «Формулы-1» предпочтет не торопиться с обгоном другого болида на конкретном повороте, рассчитывая на то, что далее по ходу гонки ему представится более подходящая возможность. Коллинг с коллегами из Оксфордского университета нашли область лобной коры, ответственную за подобные решения, а также за привлечение информации из контекста.[36] «К примеру, благодаря этой области мы решаемся на рискованные шаги, только когда нас толкает к этому ситуация, — продолжает он. — Возьмем футболиста, чья команда на последних минутах матча проигрывает в счете. В этой ситуации он будет оценивать риски и последствия совсем не так, как в начале игры».
В отсутствие прессинга процесс принятия решений весьма демократичен. Вернемся к знаменитому голу, забитому Уэйном Руни «ножницами». Мозг игрока формирует план действий, например, «принять мяч на грудь» или «ударить головой с лета». В этом процессе задействованы сразу несколько участков, расположенных в лобной и теменной доле мозга.[37] Различные варианты действий представлены в виде определенных схем импульсной активности нейронов по аналогии с картинкой, складывающейся из отдельных кусочков, которые поднимают над головой болельщики на стадионе.
Электрические импульсы, исходящие из разных участков мозга, можно уподобить избирателям, голосующим за тот или иной вариант действий. Источником этих сигналов, в частности, служат: дорсальный поток, где происходит обработка информации о положении объектов; нейроны места и решетки, отвечающие за информацию о местонахождении объектов и окружающем пространстве; нейроны, связанные с мышцами и суставами. Сигналы делятся на возбуждающие и тормозные. Таким образом, как избиратели голосуют на референдуме, отмечая в бюллетене «да» или «нет», так же и нейроны способны влиять на то, активизируются ли другие нейроны, связанные с ними. В этом и состоит процесс принятия в расчет информации из всевозможных источников перед тем, как сделать выбор.
Данные сигналы, поступающие из различных зон мозга и тела, склоняют чашу весов за или против соответствующего плана действий. Когда уровень электрической активности (так называемая переменная решения) нейронов, представляющих ту или иную альтернативу, достигает определенного порогового значения, мозг приступает к выполнению соответствующего действия. Решение считается принятым.
Но на этом работа мозга не заканчивается. После того как выбор сделан, а тело уже приступило к выполнению действия, мозг продолжает корректировать свои сигналы телу в ответ на поступающие от него импульсы. Например, мозг формулирует задачу: «ударить головой с лета» — после чего строит прогноз относительно того, какой отклик он должен получить от глаз и других частей тела в процессе решения поставленной задачи.
Если информация от органов чувств не соответствует прогнозу, мозг может пересмотреть план действий, чтобы минимизировать вероятность ошибки. «Мозг не просто отдает четкие приказы, — объясняет научный обозреватель Карл Циммер в статье в научно-популярном журнале Discover, — он еще непрерывно уточняет санкционированную им программу действий, направленных на решение задачи. Спортсмены действуют эффективнее, чем все остальные, поскольку их мозг способен находить более эффективные решения».[38]
Короткий путь
После контакта с бейсбольной битой мяч летит по траектории, на которую влияет множество факторов: это и сила удара, и угол наклона биты, и скорость вращения, и уровень влажности воздуха, и направление ветра.
У опытного игрока, которому нужно поймать мяч, изначально уже есть преимущество. Он знает, куда нужно смотреть, и поэтому, в отличие от менее искушенного спортсмена, заранее готов к тому, как именно будет исполнена подача. Его движения доведены до автоматизма, следовательно, и сам процесс ловли мяча не представляет для него особых сложностей, если, конечно, он не будет слишком много задумываться о нем.
Однако мозгу еще нужно просчитать, в каком месте мяч должен коснуться земли, что, по идее, предполагает расчет траектории и скорости его движения. Дело в том, что от малейших изменений в скорости полета зависит очень многое, а единственным средством получения информации являются глаза спортсмена.
Игрок не может измерить скорость ветра и применить нужную физическую формулу. Если дать ему задачку на расчет траектории полета мяча, он вряд ли ее решит. Но, как ни странно, ему хватит какой-то доли секунды, чтобы побежать за мячом в правильном направлении.
Разгадка в том, что мозг умеет ловко пользоваться короткими путями к верному ответу. Этот метод также можно назвать методом использования готовых схем или эвристических правил. Его суть состоит в неосознанном применении определенных стратегий обработки информации, которые, как и метод фрагментации или группировки, позволяет снизить нагрузку на когнитивный аппарат. Нобелевский лауреат Даниэл Канеман в книге «Думай медленно… решай быстро» (Thinking Fast and Slow) так описывает эвристическое правило: «простейшая процедура, помогающая находить адекватные, хотя зачастую неидеальные, ответы на трудные вопросы».[39] Иначе говоря, это грубый, приблизительный расчет, основанный на практике.
В специальном исследовании методики, которую применяют опытные крикетисты в ловле мяча, Питер Маклауд из Оксфордского университета и его коллега Золтан Пал Дьенеш из Университета Сассекса взяли пушку, выстреливающую мячи под углом вверх с разной силой, чтобы они падали на разном расстоянии впереди или позади игрока. Затем они измерили скорость и направление пробежки каждого спортсмена и обнаружили, что все старались сделать так, чтобы угол, под которым они смотрят на мяч в течение всего времени его полета, оставался одинаковым.[40]
Мозг крикетиста не занимается расчетом траектории движения мяча, скорости ветра и вообще чем бы то ни было, что перегружает кратковременную память. Игрок просто смотрит на мяч и подстраивает собственную скорость так, чтобы взгляд был направлен на мяч под одним и тем же углом. Тем самым он гарантированно поймает мяч как раз тогда, когда тот прилетит в наиболее удобную для этого точку. Как мы уже знаем, в зрительном отделе коры головного мозга имеются нейроны, отвечающие за оптический поток, то есть воспринимающие приближение или отдаление объекта как изменение проекции его размеров на сетчатку глаза. Вполне вероятно, что у опытных ловцов хорошо развиты те области мозга, которые ответственны за учет угла зрения при наблюдении за движущимся объектом.
Подобные короткие пути к правильному решению называют «быстрыми и экономными эвристиками» за то, что они позволяют сберечь время и избежать сложных вычислений. Стратегия, основанная на использовании постоянного угла зрения, также находит применение в таких видах спорта, как регби или американский футбол, где бывает необходимо остановить бегущего соперника. Для этого спортсмены делают то же, что лев, охотящийся на антилопу: они бегут туда, где вот-вот окажется цель. Они настолько к этому привыкли, что способны проделывать это с завязанными глазами. К такому выводу пришел Деннис Шаффер из Университета Огайо, проведя эксперимент, во время которого игроки в американский футбол с повязкой на глазах должны были поймать мяч, в который было вмонтировано устройство, подающее звуковой сигнал.[41]
Такая стратегия не всегда себя оправдывает, в чем смогли убедиться игроки регбийной команды Harlequins в финале английской Премьер-лиги в 2013 г. Крайний нападающий их соперников Leicester Tigers Том Крофт при росте под два метра имел около 110 килограммов веса, однако для человека с такой комплекцией бегал он довольно резво. На записи игры видно, как защитник мчится наперерез, пытаясь перехватить Крофта, но не учитывает его феноменального разгона и падает на газон в тот самый момент, когда нападающий заносит мяч в зачетную зону, реализуя попытку.
Эвристическими правилами также пользуются спортсмены, решая, кому отдать пас. С точки зрения экономии умственных усилий проще всего действовать первым пришедшим в голову образом. По некоторым данным, так в 60–90 % случаев поступают игроки в баскетболе, австралийском футболе и гандболе.
Это объясняется тем, в какой последовательности в голове появляются различные варианты действий и как эта последовательность меняется в зависимости от прошлого опыта. «Действия, которые ранее совершались регулярно в аналогичных ситуациях, имеют больший приоритет, — поясняет Маркус Рааб, руководивший исследованием в области эвристики в спорте. — Мозг как бы уверен, что именно первый пришедший на ум ответ является наилучшим». Есть также данные о том, что опытным спортсменам на ум приходит меньше вариантов, чем начинающим. По сути, они способны сделать правильный выбор настолько быстро, что им просто не нужно генерировать множество вариантов.
Одна из наиболее известных теорий, объясняющих умение профессионалов быстро принимать верные решения, фактически также сводится к описанию короткого пути. Речь идет об использовании знакомых схем или считывании внешних сигналов. Этому вопросу посвящено большое количество работ. Даниэл Канеман относил такой способ мышления к Системе 1, которой, в свою очередь, противопоставлена Система 2, отвечающая за более вдумчивый мыслительный процесс. Тот же подход рассматривается в книге Малкольма Гладуэлла «Озарение. Сила мгновенных решений» (Blink: The Power of Thinking Without Thinking). При этом оба автора во многом опираются на книгу Гэри Клейна «Источники силы» (Sources of Power), где данный феномен называется моделью принятия решений, основанной на эффекте узнавания.
Вот цитата из книги: «Эксперты видят то, чего не видят остальные, и зачастую эксперты не понимают, что другие не в состоянии заметить того, что кажется им очевидным». Клейн приводит пример пожарных, которые интуитивно понимают, в какой момент горящее здание готово обрушиться. Тот же принцип применяется и в спорте.
«Эксперты, судя по всему, более тонко улавливают нужную информацию», — утверждает Нильс Коллинг. Мы действительно убедились в этом, анализируя их способности к вероятностному прогнозированию и определению источников полезной информации. Вспомним, как Криштиану Роналду точно угадывает направление движения защитника по одному движению его бедра.
Эффект узнавания срабатывает, когда спортсмен выполняет определенное действие или принимает определенное решение как реакцию на конкретный стимул. В бейсболе это будет, например, особый замах (или же отсутствие замаха) при виде вращения мяча или движения руки питчера, сигнализирующих о броске по дуге или о подаче с боковым отклонением мяча. В футболе — быстрое перемещение к ближней стойке ворот, как только крайний нападающий опускает голову, готовясь подать навес в штрафную.
Спортсмен ищет соответствие текущей ситуации среди тех, в которых он уже находился прежде, будь то во время игры или на тренировке. После этого он принимает решение, полагаясь на свой прошлый опыт. Отсюда смыслом тренировочного процесса является расширение диапазона ситуаций, в которых спортсмены должны действовать по схеме реакции на различные стимулы. В идеале нужно стремиться к тому, чтобы уметь принимать правильные решения во всех возможных ситуациях и тем самым добавить прогнозируемости в непредсказуемый мир спорта.[42]
Решения, принимаемые опытными спортсменами интуитивно, как правило, являются верными. Один из экспериментов с участием профессиональных шахматистов показал, что предельное сокращение времени на обдумывание ходов практически не сказалось на качестве их игры, поскольку в большинстве случаев первое же пришедшее им в голову решение было наиболее рациональным.
Постепенно, по мере накопления опыта, подобные экспресс-схемы закрепляются, благодаря чему и в более сложных ситуациях решения также приходят интуитивно или инстинктивно. Спортсменам кажется, что они просто угадывают, но их решения, как правило, оказываются верными. С каждым отданным пасом или принятой подачей их движения становятся все быстрее и точнее, а в их мозге происходят физические изменения. Эта способность мозга к адаптации называется нейропластичностью, и в следующей главе мы увидим, что именно она позволяет понять, в чем же состоит уникальность мозга спортсмена.
Глава 3
Изменения в мозге. Роджер Федерер
Сердце Билли Моргана бешено колотится. Апрель 2015 г. Склоны Итальянских Альп близ коммуны Ливиньо. Билли 26 лет, он сноубордист, и сейчас ему предстоит решающая попытка. На кону звание чемпиона мира, цена ошибки огромна.
— Мы готовились к этому полгода, — рассказывает Билли во время интервью спустя некоторое время. — Я очень переживал, не спал из-за этого. Я не думал, что когда-нибудь этот день настанет и я действительно окажусь там и выполню свою попытку.