Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Наука воскрешения видов. Как клонировать мамонта - Бет Шапиро на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Когда появилась уверенность в том, что прошло достаточно времени, Матиас взял кусочек янтаря стерильным пинцетом и осторожно поместил в контейнер с сухим льдом. Затем мы снова немного подождали.

Хотя янтарь – это окаменевшая древесная смола, он все-таки довольно податливый, – всякий, кто хоть раз прикасался к украшениям из янтаря, поймет, что я имею в виду. Если ударить кусок янтаря острым предметом, на поверхности может остаться щербина, однако янтарь практически невозможно разбить или расколоть. Мы же хотели очень, очень сильно охладить этот кусочек, чтобы он стал твердым и неподатливым – и хрупким.

По истечении долгих десяти минут Матиас достал наш янтарь из сухого льда пинцетом и осторожно положил его на камень. Затем я подняла молоток и стала бить маленький блестящий кусочек геологической истории снова и снова, пока он не рассыпался на сто тысяч пятьсот миллиардов крошечных, сверкающих, липких кусочков. Затем мы начали отделять янтарь от пчел с помощью увеличительного стекла (ил. 4). Этот процесс подразумевал неоднократную повторную заморозку, повторное разбивание молотком и ювелирную работу пинцетом. Через несколько часов у нас было две пробирки: одна в основном содержала янтарь, а вторая – пчел. Мы взяли пробирку с пчелами и поместили ее в морозильную камеру. На сегодня работа была окончена.

Следующим утром Матиас занялся выделением древней ДНК из останков пчел, сохранившихся в янтаре. За годы работы наши коллеги разработали протоколы выделения ДНК, обеспечивающие высокую чувствительность процесса, специально для таких ситуаций, как эта. Если ДНК и сохранилась в останках этих пчел, от нее определенно осталось немного. Матиас выбрал протокол, который позволял выделять очень старую ДНК наиболее успешно. Мы применили лучшую технологию из имевшихся у нас.

Когда мы завершили работу по выделению ДНК, настало время отправить получившиеся результаты на секвенирование, а затем подождать. Результаты секвенирования прибыли спустя три недели. У нас ничего не вышло.

Я чувствовала разочарование. Было бы просто невероятно выделить ДНК насекомых, застывших в янтаре. Причем под «невероятно» я имею в виду неправдоподобно. Притянуто за уши. Невозможно в это поверить. Матиас, думаю, ощутил облегчение. Мы оба понимали, что если бы нам удалось выделить ДНК возрастом в миллионы лет, нам осталось бы только посвятить всю жизнь дальнейшим исследованиям в этой области. Вначале нам пришлось бы потратить значительное количество времени и сил на то, чтобы самим убедиться в этом, а затем – чтобы убедить наших коллег в том, что мы нигде не допустили ошибки.

Глядя на кусочек янтаря, содержащий сохранный живой организм, нелегко понять, почему сообщество исследователей древней ДНК должно так скептически отнестись к возможности выделения ДНК этого организма. В янтаре обнаруживали застывших там насекомых, лягушек и даже ящерицу возрастом в 23 миллиона лет, все они находились в прекрасном физическом состоянии. Почему же их ДНК не может сохраниться так же хорошо?

Горькая правда заключается в том, что ДНК просто не живет в течение миллионов лет. Если бы нам удалось извлечь настоящую древнюю цепочку нуклеотидов из янтаря, мы бы нарушили все известные нам законы сохранения и распада ДНК.

Как? Никакого Парка юрского периода?

За миллионы лет до своего превращения в янтарь древесная смола представляла собой субстанцию, называемую копалом. За тысячи лет до того, как стать копалом, это просто древесная смола – липкая аморфная органическая субстанция, выделяемая преимущественно хвойными деревьями – соснами, кипарисами, кедрами, секвойями и т. д. Смола служит нескольким целям. Она защищает дерево от повреждений и болезнетворных микроорганизмов. Она также помогает ему залечить серьезные раны, оставшиеся, к примеру, на месте обломанных ветвей. К тому же она имеет выраженный запах, привлекающий любопытных насекомых. Когда дерево выделяет смолу, насекомые и другие мелкие животные, а также фрагменты растений попадают в ее ловушку, а иногда оказываются целиком покрытыми липкой субстанцией. За миллионы лет из смолы испаряются летучие органические вещества, оставляя образующие янтарь нелетучие соединения и всё то, что оказалось заключенным в этом янтаре.

Секрет феноменальной сохранности животных в янтаре, вероятно, заключается в скорости, с которой их поглощает древесная смола. Если живое существо обволакивается ею со всех сторон и погибает практически мгновенно, у бактерий, живущих в его кишечнике и в окружающей среде, остается совсем мало времени на то, чтобы расселиться по его организму и начать процесс разложения. Ткани животного также быстро теряют влагу, из-за чего погибают ферменты, которые иначе разрушили бы ДНК.

Именно эта мысль – о том, что янтарь может быть уникальной средой, способствующей сохранению ДНК в течение сверхдолгого периода времени, – двигала учеными в начале девяностых, когда они попробовали провести такой эксперимент в первый раз. Однако, в отличие от нас, эти ученые заявили об успехе. На самом деле они просто кричали о нем в своих отчетах, опубликованных в наиболее уважаемых научных журналах.

В начале 90-х годов XX века исследование древней ДНК только начинало наращивать обороты как серьезный научный проект. Ученые выделили цепочки ДНК из останков 170-летней квагги (вымершего родственника зебры), человеческих мумий, чей возраст насчитывает несколько тысяч лет, а также мамонтов и неандертальцев возрастом более чем в 30 тысяч лет. Исследователи только начали осознавать, какие тайны может открыть нам эта древняя ДНК.

Первое применение ученые нашли ей в таксономии: с ее помощью можно определить, какие из живущих видов были ближайшими родственниками вымерших. К примеру, теперь мы знаем, что индийские слоны состоят в более близком родстве с мамонтами, чем африканские, и что ближайший живущий родственник дронта – гривистый голубь, красивая птица с цветастым оперением. Некоторые результаты анализа древней ДНК удивили нас. В Новой Зеландии было описано три разных вида моа (Dinornis) на основе различий в размерах их костей. Но благодаря древней ДНК, выделенной из этих костей, мы узнали, что на самом деле на каждом острове обитало только по одному виду больших моа. Размер не имел никакого отношения к таксономии: более крупные кости принадлежали самкам моа, а менее крупные – самцам.

По мере того как совершенствовались технологии извлечения древней ДНК, эта научная отрасль прогрессировала: от вопросов таксономии мы перешли к более детальным вопросам эволюционной истории популяций. Исследуя последовательности ДНК, мы можем увидеть скрытые паттерны локальных вымираний и распространения видов на большие расстояния – все это мы не могли установить, изучая ископаемые остатки. К примеру, лошади – тот самый вид, который в итоге одомашнили люди, – существовали как отдельный таксон в течение по меньшей мере одного миллиона лет. Лошади впервые появились в Северной Америке и распространились в Азию по Берингову перешейку, периодически соединявшему два континента во времена ледниковых эпох плейстоцена. В течение этого периода лошади несколько раз перемещались между Северной Америкой и Азией в обоих направлениях, каждый раз образовывая новые популяции и/или гибридизируясь с уже существующими. Можно даже рассматривать возвращение лошадей в Северную Америку европейскими колонистами как последнее событие в череде локальных вымираний, распространений и восстановлений их вида на этой территории. Дикие лошади Северной Америки, в сущности, представляют собой результат непреднамеренного эксперимента по восстановлению дикой природы, увенчавшегося полным успехом.

С помощью древней ДНК можно выявить гены, отвечающие за признаки, больше не встречающиеся у современных животных, к примеру гемоглобин мамонтов, благодаря которому эритроциты более эффективно разносят кислород по организму крупного животного в условиях сильных холодов. Благодаря древней ДНК мы также можем с точностью определить, какие генетические изменения определяют наши отличия от неандертальцев. В общем, древняя ДНК оказалась мощным инструментом для изучения эволюционных процессов, которые сформировали существующее разнообразие форм жизни.

Исследовательской группой, лидирующей в обнаружении древней ДНК в конце восьмидесятых и начале девяностых, была «Группа изучения ДНК вымерших видов» Алана Уилсона при Калифорнийском университете в Беркли. Под его руководством были разработаны первые протоколы извлечения фрагментов ДНК из ископаемых остатков или мертвых организмов и, что важно, отделения подлинной древней ДНК от контаминантной.

Осознание того, насколько плодотворна тема исследований древней ДНК для научной фантастики, пришло очень быстро. Майкл Крайтон признает, что именно «Группа изучения ДНК вымерших видов», в числе прочего, вдохновила его на создание «Парка юрского периода». А вскоре после выхода книги в 1990 году научная фантастика стала научным фактом: несколько групп ученых (но не группа из Калифорнийского университета в Беркли) сообщили о том, что им удалось секвенировать ДНК пчел, мелипон, термитов и разноножек возрастом в десятки миллионов лет и даже жука-долгоносика возрастом в 120 миллионов лет. Вся эта ДНК была выделена из тел насекомых, застывших в янтаре.

Это выглядело слишком хорошо, чтобы быть правдой. В 2013 году группа ученых из Манчестерского университета в Англии поставила эксперимент с целью определить, возможно ли извлечь ДНК из останков пчел, обнаруженных в копале. Напомню, что копал – это предшественник янтаря, еще не до конца окаменевший. Следовательно, он намного моложе. Ученые из манчестерской группы выделяли ДНК из двух кусочков копала, содержащих пчел. Одному из кусочков было около 10 тысяч лет, а другому – меньше 60 лет. Для выделения ДНК использовались новейшие методы подготовки образцов и экстракции ДНК. Тем не менее в результате ученые не получили ничего – так же, как и мы из своего кусочка янтаря возрастом в 17 миллионов лет. Они не получили ничего даже из образца копала, которому было меньше 60 лет.

Этот манчестерский эксперимент стал вторым, в котором ученые попытались выделить древнюю ДНК из останков пчел, застывших в копале. В 1997 году группа исследователей из Музея естествознания в Лондоне попыталась повторить – и тем самым подтвердить – фантастические результаты, полученные в начале девяностых. Эти ученые собрали разнообразные кусочки янтаря и копала из музейной коллекции и попытались выделить и секвенировать ДНК древних насекомых. Им также не удалось обнаружить каких-либо признаков аутентичной древней ДНК.

Отсутствие результатов всегда сложно интерпретировать. Возможно, что если бы поступало все больше и больше данных, в конечном итоге мог бы появиться какой-нибудь результат. Однако совокупность имеющихся данных указывает на то, что древняя ДНК не сохраняется в янтаре. Нам мало известно о том, то происходит с насекомыми, застывающими в древесной смоле. Хотя они, вероятно, быстро теряют всю воду, что способствует сохранению ДНК, другие свойства янтаря ему препятствуют. К примеру, янтарь проницаем для газов и некоторых жидкостей, и это означает, что ДНК может быть не полностью изолирована от сил, разрушающих ее со временем. Кроме того, окаменевший янтарь в течение срока своего существования может попадать в условия очень высокой температуры или давления, а оба этих фактора ужасно влияют на сохранность ДНК.

Невозможность повторить те первые эксперименты доказывает, что ДНК не сохраняется в янтаре. Что же тогда удалось секвенировать ученым в начале девяностых?

ДНК из окаменелостей, в которых не сохранилась ДНК

Наиболее вероятным источником ДНК насекомых, обнаруженной в древних кусочках янтаря в начале девяностых, были насекомые – современные нам.

Хотя выше я не упомянула об этом, исследователям из лондонского Музея естествознания иногда удавалось выделить ДНК насекомых из своих коллекционных кусочков янтаря. Именно этот результат привел их к выводу, что янтарь не является источником древней ДНК. В своем эксперименте они отобрали как кусочки янтаря, содержащие насекомых, так и не содержащие ничего. Это была контрольная группа: если источником ДНК являются насекомые, содержащиеся в янтаре, значит, в пустых кусочках ее быть не должно. Результаты эксперимента не подтвердили эту гипотезу. Ученым с одинаковой вероятностью удавалось извлечь ДНК как из кусочков янтаря, содержащих насекомых, так и из кусочков, не содержащих ничего. Значит, источником ДНК было что-то другое, не те животные, останки которых сохранились в янтаре.

Этот результат указывает нам на ключевую трудность в работе с древней ДНК. Для того чтобы выделить ее из образцов, содержащих очень малое количество сохранного генетического материала, нам нужен очень чувствительный и эффективный метод. Но чем чувствительнее и эффективнее метод, тем с большей вероятностью он дает ложноположительные результаты.

В этих экспериментах ученые использовали полимеразную цепную реакцию (ПЦР) для амплификации (создания копий) ДНК насекомых (рис. 6). ПЦР была разработана в 1983 году Кэри Муллисом, который тогда работал биохимиком в компании Cetus Corporation. Технологии секвенирования ДНК сделали возможным определение точной последовательности нуклеотидов в участке ДНК. Однако эти технологии требовали миллионов клональных копий целевого фрагмента. До изобретения ПЦР этого добивались с помощью бактерий, которые стимулировали захватывать и встраивать в свой геном случайные фрагменты ДНК. Затем из этих бактерий вырастали колонии, в которых каждая бактериальная клетка содержала идентичную копию случайно захваченного фрагмента ДНК: в результате получалось достаточное количество копий, чтобы секвенировать этот участок. ПЦР представляет собой намного более быстрый способ копирования ДНК, а кроме того, и это важнее, она позволяет целенаправленно выбирать участки генома, которые мы будем копировать. Сейчас ПЦР – один из наиболее широко используемых и фундаментальных методов молекулярной биологии.


Рис. 6. Полимеразная цепная реакция, или ПЦР. ПЦР – распространенный метод молекулярной биологии, используемый для создания миллиардов копий фрагментов ДНК путем повторного нагревания и охлаждения ДНК в присутствии ДНК-полимеразы (фермента, участвующего в репликации ДНК), при этом из свободных нуклеотидов строятся копии цепочек ДНК и ДНК-праймеры, определяющие, какая часть генома должна быть скопирована

Полимеразная цепная реакция удивительно проста, учитывая революционные последствия ее появления. Чтобы представить себе этот процесс, вообразите, что мы хотим лучше разобраться в генетических различиях между домашними и дикими курами. Считается, что в одомашнивании кур важную роль сыграл ген рецептора тиреотропного гормона (рТТГ), ускоряющий размножение этих птиц. Мы предлагаем использовать ПЦР для амплификации (создания копий) этого гена, извлеченного из ДНК домашней курицы, и из сохранившихся останков древних кур, живших во времена, когда этих птиц еще не одомашнили. Затем мы секвенируем результаты ПЦР, чтобы определить последовательность нуклеотидов в этом гене и выяснить, отличается ли этот ген у домашних кур и их диких родственников и предков, живших в эпоху, предшествовавшую одомашниванию.

Вначале мы должны каким-то образом определить целевой фрагмент ДНК, соответствующий гену рТТГ. Для этого мы создаем ДНК-зонды, называемые праймерами, которые соответствуют участкам ДНК, примыкающим с двух сторон к гену рТТГ. Затем мы создаем смесь, содержащую эти праймеры, предварительно выделенную ДНК курицы, свободные азотистые основания и полимеразу – фермент, работа которого заключается в копировании ДНК. Теперь мы можем начать процесс копирования. Мы нагреваем нашу смесь, чтобы разрушить водородные связи, соединяющие вместе две нити ДНК. Когда молекула полностью разделяется на две нити, мы повторно охлаждаем смесь, вследствие чего они снова соединяются вместе. Поскольку праймеры имеют небольшую длину и в растворе их много, в первую очередь происходит присоединение двух праймеров к тем участкам генома, которым они должны соответствовать, – участкам, примыкающим к гену рТТГ, – и формируется двухцепочечная ДНК на этом участке генома курицы. Наконец, под воздействием полимеразы между праймерами достраивается недостающий участок – ген рТТГ. При этом одна цепочка ДНК выступает в роли шаблона, а свободные нуклеотиды достраиваются к ней, дополняя недостающую последовательность. По окончании этого процесса число копий гена рТТГ удваивается. Чтобы получить достаточное число копий для секвенирования, мы повторяем весь цикл 30–40 раз в течение нескольких часов и в итоге получаем триллионы идентичных копий гена рТТГ.

ПЦР имеет невероятную чувствительность. Теоретически ПЦР сработает, даже если в смеси будет присутствовать только одна копия целевой последовательности ДНК. С одной стороны, это очень хорошо для исследования древней ДНК, где мы должны рассчитывать на очень малое количество сохранившихся участков. С другой стороны, это может привести к катастрофе. Если можно амплифицировать ДНК, имея всего один ее фрагмент, значит, достаточно одного фрагмента ДНК, попавшего из окружающей среды, чтобы сорвать весь эксперимент. Учитывая эту крайне высокую чувствительность к контаминации, уникальные результаты, к примеру обнаружение ДНК насекомых, миллионы лет пробывших в янтаре, потребуют уникального подтверждения своей подлинности. Как минимум, для начала нужно повторить этот результат. В случае эксперимента на курах, который я описала выше, идентичные эксперименты проводились в лабораториях исследования древней ДНК в Даремском университете в Великобритании и Уппсальском университете в Швеции. В этих идентичных экспериментах были получены идентичные результаты секвенирования ДНК из останков древней курицы. Соответственно, результаты первого эксперимента действительно не были следствием контаминации.

Основным источником контаминации при исследовании древней ДНК является ДНК организмов, живущих в настоящее время. ДНК можно обнаружить везде. Она на лабораторной посуде, она в реагентах и растворах, используемых для выделения ДНК. Она на лабораторных столах, полах, стенах и потолках. Она летает по воздуху в лабораториях и коридорах. Что еще хуже, эта современная ДНК находится в прекрасном состоянии с точки зрения физики и химии. В то время как древняя ДНК, как правило, разделена на очень мелкие фрагменты, менее 100 пар оснований на одном целом участке (представьте это в виде слов «кот», «бык», «жук»), нити ДНК современных организмов могут состоять из миллионов пар оснований (представьте это в виде слова «превысокомногорассмотрительствующий»). К тому же древняя ДНК местами разрушена. Фрагментам древней ДНК зачастую недостает азотистых оснований, или же химическая структура этих оснований нарушена («кит», «^ык», «жк»). Фермент полимераза, используемый в ПЦР, не может «прочитать» эти поврежденные участки, и в результате при копировании цепочки появляются ошибки («кут», «зык», «жак»). Еще больше усложняет дело то, что фрагменты древней ДНК зачастую химически связаны с другими участками ДНК, образуя запутанные молекулярные структуры, которые полимераза не опознает как ДНК. Вследствие всех этих проблем полимераза в первую очередь обнаружит чистую, неповрежденную, свободно плавающую, целую контаминантную ДНК и свяжется с ней, предпочтя ее разорванной, соединенной с другими молекулами, поврежденной древней ДНК. Один-единственный фрагмент ДНК живого организма потенциально может вытеснить в ходе ПЦР многие сотни поврежденных фрагментов древней ДНК, что приведет к якобы секвенированию древней ДНК, выделенной из кусочка янтаря. Или из кости мамонта.

Контаминация не пустая угроза. Контаминация может принимать самые разные формы, и она сыграла немалую роль в формировании облика исследований древней ДНК. Первые и единственные участки ДНК динозавров, о которых сообщали исследователи, были (не стоит падать в обморок) результатом контаминации. Многие из них оказались участками человеческой ДНК. Поскольку никто не поверил, что динозавры состояли в более близком родстве с млекопитающими, нежели с птицами или рептилиями, и почти никто не поверил, что ДНК может сохраниться в настолько древних останках динозавров (представлявших собой в большей степени камни, нежели кости), этот результат отклонили, поскольку он определенно был вызван контаминацией.

Однако зачастую контаминация менее очевидна, и именно в таких случаях она представляет наибольшую опасность. ДНК современных голубей (тех самых сизых птиц, которые питаются фастфудом и брошенными окурками в городах по всему миру) каким-то образом попала в мой самый первый проект по исследованию древней ДНК, целью которого было секвенирование митохондриальной ДНК дронта (разновидность ДНК, наследуемая только по материнской линии (рис. 7). Как я уже упоминала, дронты относятся к семейству голубиных, и мне повезло, что я обнаружила контаминацию до того, как села писать выводы. В этом случае заметить ее было довольно просто. В то время как в большинстве моих экспериментов вообще не удавалось выделить ДНК, в этом конкретном эксперименте удалось получить огромное количество ДНК очень высокого качества. Это было явным признаком того, что результат ненастоящий. Я до сих пор не уверена, откуда взялась тогда сторонняя ДНК, но после того случая стала снимать обувь перед входом в лабораторию, а не просто надевать бахилы.


Рис. 7. Два источника ДНК в наших клетках. У людей, как и у всех прочих животных-эукариотов, каждая клетка содержит геном двух типов. Ядерный геном, включающий как аутосомы, так и половые хромосомы, находится в ядре клетки. Митохондриальный геном содержится в митохондриях – органеллах, плавающих в цитоплазме клетки. У большинства животных-эукариотов митохондрии наследуются только по материнской линии

Мой опыт и опыт множества моих друзей и коллег показывает, что существуют определенные контаминанты, которые неожиданно обнаруживаются время от времени, независимо от того, насколько чисто в лаборатории. Очень часто встречаются контаминантные цепочки ДНК домашних животных и домовых мышей. Возможно, причина заключается в том, что большинство наших экспериментов направлены на амплификацию ДНК млекопитающих, к которым, разумеется, относятся эти животные. Мы научились уживаться с контаминацией, рассчитывать на нее и искать ее. Из-за контаминации мы, ученые, изучающие древнюю ДНК, развили здоровую осторожность в отношении своих собственных данных и разработали высокие стандарты подтверждения подлинности результатов.

Надеюсь, это поясняет, почему мы надеваем такие сложные костюмы всякий раз, когда заходим в лабораторию исследования древней ДНК. Мы не защищаем себя от генетической угрозы, которая может таиться в окаменелостях. Напротив, мы защищаем ДНК, которая могла сохраниться в этих ископаемых остатках, от самих себя.

Разумеется, как бы тщательно мы ни старались избежать контаминации мамонтовых костей высококачественной ДНК, источником которой можем стать мы сами или что угодно еще, скорее всего, нам никогда не удастся найти кость, содержащую только ДНК мамонта. В самом деле, большая часть ДНК, выделенной из случайно взятой кости мамонта, будет принадлежать микроорганизмам. Что подводит нас к следующей проблеме.

Удивительное разнообразие ДНК в окаменелостях

Предположим, мы нашли в Сибири кость мамонта и хотим выделить из нее ДНК, чтобы секвенировать его геном. Для начала мы должны защитить кость от контаминации. Это значит, нам нельзя даже прикоснуться к ней голыми руками, потому что ДНК с наших рук попадет на кость и частично проникнет в ее поверхностные слои. Нам также нельзя дышать на эту кость, помещать ее в нестерильный пакет или позволять другим костям соприкасаться с ней. Итак, мы надеваем перчатки, маски и сетчатые шапочки для волос и храним каждый образец отдельно от других. Когда мы отделяем от образца кусочек, чтобы отправить его в лабораторию (ил. 5), то используем стерильные инструменты, работаем на стерильных поверхностях и после каждого образца обрабатываем все это хлорной известью.

По возвращении в лабораторию после полевых работ мы не достаем образец из стерильного пакета, пока не попадем в лабораторию. Там, облаченные в наши стильные и стерильные одежды исследователей древней ДНК, мы дробим кость в порошок с помощью стерильных дробящих инструментов и выделяем из этого порошка ДНК, используя стерильные растворы и стерильное лабораторное оборудование. По окончании выделения ДНК обломок мамонтовой кости уменьшается до размеров содержимого крошечной прозрачной пробирки: в ней содержится еще меньшее количество жидкости, на вид неотличимой от воды. В этой жидкости должна находиться ДНК мамонта.

А также ДНК бактерий.

А также ДНК грибов.

А также ДНК насекомых, растений, мышей, собак, людей и других живых существ.

Однако эти участки не мамонтовой ДНК не являются контаминантными. Точнее, это не контаминанты в том смысле, в каком таковым считалась бы моя ДНК, найденная в образце. Обнаруженные в нашей выжимке фрагменты ДНК, не принадлежащие мамонту, вероятнее всего, попали внутрь кости до того, как мы ее откопали, – где-то между моментом смерти мамонта и обнаружением его кости в земле. Бактерии, живущие в почве, грибы, насекомые и растения – все это организмы, которые заселяют кость и растут вокруг нее, пока она разлагается в земле. Вода, просачивающаяся сквозь почву, также несет с собой ДНК, которая попадет внутрь нашей кости. Даже моча содержит в себе ДНК. Несколько лет назад мы доказали, что ДНК овец можно обнаружить в Новой Зеландии в тех же слоях почвы, в которых в изобилии встречается ДНК моа, несмотря на то что овцы появились там спустя сотни лет после исчезновения этих птиц. В современной Новой Зеландии живет множество овец. Много овец выделяют много мочи, которая проникает сквозь почву в глубокие слои и смешивается с ДНК моа.

В некоторых костях мамонтов содержится большой процент мамонтовой ДНК по сравнению с ДНК микроорганизмов и других экзогенных источников. Именно эти кости мы предпочитаем использовать для секвенирования. К сожалению, очень трудно определить соотношение ДНК мамонта и других видов ДНК в образце, не продолжив работу и не проведя эксперимент: нужно выделить ДНК, секвенировать ее и посмотреть, что получится.

К счастью, существует несколько общих правил, касающихся сохранности ДНК, которыми можно руководствоваться при выборе образца.

Во-первых, ДНК лучше сохраняется в условиях холода. Химические процессы, в ходе которых происходит ее распад, при низких температурах протекают медленнее. Среди подходящих мест для поиска – замерзшая почва (вечная мерзлота) Арктики, а также пещеры, расположенные на большой высоте. Тропические острова – совершенно не то место, где могла хорошо сохраниться ДНК, что станет плохой новостью для энтузиастов, желающих воскресить дронтов (хотя не все дронты умерли на Маврикии, некоторых из них перевезли в Европу живьем, и в музейных коллекциях можно найти множество их останков).

Во-вторых, ДНК разрушается под действием ультрафиолета. УФ-лучи наносят ДНК одинаковые повреждения при жизни и после смерти, но только у мертвых нет механизмов восстановления ДНК, оберегающих нас от развития ужасного рака кожи каждый раз, когда мы выходим на солнце. Это снова-таки указывает на пещеры как на идеальные места для обнаружения хорошо сохранившихся останков, и можно предположить, что быстро погребенные останки хорошо сохранятся с большей вероятностью, чем останки, пролежавшие незащищенными на поверхности в течение многих месяцев или лет.

В-третьих, вода наносит особенно сильный ущерб ДНК. Быстрое высушивание трупа и его нахождение в условиях низкой влажности или при отрицательной температуре способствует длительному сохранению ДНК. Древнюю ДНК удавалось выделить из естественным образом мумифицированных останков людей, степных бизонов, мамонтов и представителей других видов. Наконец, разные виды тканей в разной степени подвержены повреждению и разложению. К примеру, кости оказались лучшим источником неповрежденной ДНК, чем мягкие ткани, что, возможно, связано каким-то образом со структурой костного матрикса или же с костными клетками самими по себе. Еще один прекрасный источник хорошо сохранившейся ДНК – волосы и шерсть, так как гидрофобная оболочка волоса ограничивает количество воды и микробов, которые могут проникнуть внутрь и повредить ДНК.

Временные пределы выживания ДНК

Законы физики и биохимии говорят нам о том, что ДНК не живет вечно даже в наиболее подходящей для ее сохранения среде. Учитывая это, нам будет полезно знать возраст образца, геном которого мы собираемся секвенировать, чтобы предсказать, насколько успешным окажется этот проект. Хотя и не существует четкого правила, определяющего точный промежуток времени, свыше которого ДНК не выживает, результаты биохимического моделирования указывают на верхний предел около 100 тысяч лет при умеренной температуре окружающей среды. Но на практике то, насколько стар может быть образец с сохранной ДНК, очень сильно варьирует и зависит от того, где он был найден, какой это тип ткани (шерсть, зуб, кость, мумифицированные мягкие ткани, яичная скорлупа) и что происходило с этим образцом в течение всего этого времени. В образцах, находящихся в тепле, погруженных в воду и открытых для воздействия ультрафиолета, спустя год может не остаться ни одного фрагмента полезной ДНК. В Арктике, если образец лишился мягких тканей и сразу после этого был заморожен, а затем пролежал под землей в замороженном состоянии от момента погребения до момента раскопок, ДНК внутри него может просуществовать сотни тысяч лет.

Важно разъяснить, что я имею в виду под «полезной» ДНК. Не бывает так, что вчера ДНК представляла собой хорошо сохранившуюся информативную молекулу, а сегодня, по истечении срока годности, рассыпалась в прах. Процесс распада ДНК включает как накопление химических повреждений, так и постепенное разрушение длинных цепочек с образованием все более мелких фрагментов. Когда длина фрагментов уменьшается до менее чем 25–30 пар оснований, мы уже не можем определить, к какому именно участку генома они относятся, и, следовательно, для генетических исследований они становятся бесполезны. Фрагменты ДНК длиной в одно-два спаренных основания могут существовать в течение очень длительного времени даже в крайне неблагоприятной для их выживания среде, однако выделение таких участков никак не поможет нам в сборке по кусочкам генома вымершего животного.

Недавно я участвовала в большой международной коллаборации, занимавшейся секвенированием полного генома древней лошади – такой же лошади, как те, что участвуют в «Кентукки Дерби» в наши дни, но только очень старой. Кость, которую мы использовали, была извлечена из вечной мерзлоты в канадской Арктике. Обнаружив эту кость, мы поняли, что она старая, – очень, очень старая, – и это сильно нас взволновало.

При исследовании древней ДНК критически важно знать возраст обнаруженных костей. Зная, насколько стара каждая кость, можно понять, как изменения размеров популяций и генетического разнообразия связаны с изменениями в окружающей среде. К примеру, лошади вымерли в Северной Америке около 12 тысяч лет назад. Как я уже упоминала в главе 1, существуют две конкурирующие гипотезы, объясняющие вымирание лошадей. Одна предполагает, что на пике последней ледниковой эпохи, около 20 тысяч лет назад, лошадям не хватало пропитания, другая – что их истребили люди, появившиеся в Северной Америке около 14 тысяч лет назад. Знать, что лошади вымерли 12 тысяч лет назад, и знать, почему они вымерли, – это не одно и то же. Чтобы подтвердить одну из двух гипотез, нам нужно выяснить, когда начали сокращаться популяции лошадей. А для этого мы должны установить возраст каждой кости.

Существует несколько способов узнать возраст кости, окаменелости или археологического артефакта. В некоторых условиях, например в пещерах или в местах археологических раскопок, они могут находиться в четко определенных слоях или пластах, где также обнаруживаются другие объекты, возраст которых известен. Это могут быть скопления окаменелостей, обнаруживаемые вместе только в слоях, относящихся к тому или иному временному интервалу, или доисторические орудия труда, использовавшиеся только в один определенный период. К сожалению, в вечной мерзлоте, где обнаруживается большинство интересующих нас лошадиных костей, такие слои встречаются не часто.

Возраст большинства костей, сохранившихся в вечной мерзлоте, определяется с помощью процесса, называемого радиоуглеродным датированием. В основе этого метода лежит определение относительного содержания в останках живого организма двух изотопов углерода – углерода-14 и углерода-12. Эти данные позволяют понять, сколько времени прошло с момента смерти организма. Углерод-14 представляет собой радиоактивный изотоп углерода, образующийся в атмосфере, когда космические лучи сталкиваются с атомами азота. Углерод-12 – это нормальный изотоп углерода. Углерод обоих видов соединяется с кислородом, образуя диоксид углерода, поглощаемый растениями в процессе фотосинтеза. Животные затем поедают эти растения, и содержащийся в растениях углерод проникает в их кости. В любой момент времени соотношение двух видов углерода в атмосфере и внутри организмов, живущих в этой атмосфере, одинаково. Углерод-14 радиоактивен и распадается с известной скоростью, его период полураспада составляет 5700 лет. Поскольку после смерти живые организмы прекращают потреблять углерод, мы можем рассчитать, как давно организм умер, исходя из количества углерода-14, сохранившегося в его останках.

Радиоуглеродное датирование – это эффективный и отличающийся приятной точностью способ оценки возраста костей, обнаруженных в вечной мерзлоте. Но количество углерода-14 в атмосфере очень мало по сравнению с количеством углерода-12 – приблизительно один атом из триллиона, – а период его полураспада очень недолог. Примерно спустя 40 тысяч лет в организме остается слишком мало углерода-14, чтобы его количество можно было измерить точно. Следовательно, радиоуглеродное датирование можно использовать только в течение этого очень короткого промежутка времени.

К счастью, существует другой способ оценить возраст костей, обнаруженных в вечной мерзлоте. При извержении вулканов в атмосферу широким веером выбрасывается облако очень мелкой пыли, часто называемой вулканическим пеплом, или тефрой. Тефра, образующаяся при каждом извержении, имеет уникальный геохимический состав. Как оказалось, геохимики разработали несколько способов определить, когда произошли эти извержения. Эти методы основаны на том, что воздействие высокой температуры «обнуляет» возраст минералов. Следовательно, измерив определенные характеристики минералов, можно узнать, когда произошло извержение вулкана.

Залежи вулканической тефры располагаются на просторах Аляски и Юкона, отмечая извержения, которые происходили на территории, на западе доходящей до Алеутских островов и полуострова Аляска. Когда пепел оседает на землю, вечная мерзлота как будто покрывается белым одеялом. Со временем над слоем вулканического пепла образуются осадочные породы вечной мерзлоты, и теперь он четко отделяет окаменелости, погребенные до извержения вулкана (находящиеся под слоем тефры), от тех, которые появились там после извержения (расположенные над слоем тефры). Этот метод не так точен, как радиоуглеродный анализ, но он позволяет приблизительно определить возраст костей, слишком старых для датирования с использованием радиоактивного углерода. Именно этот метод мы использовали для оценки возраста нашей древней лошадиной кости.

«Слишком старый» – это сколько?

Мое излюбленное место для полевых работ – это Клондайк, золотоносный район, расположенный сразу за городом Доусон на территории Юкон, Канада. Оказывается, добыча золота – это буквально золотая жила для палеонтологии ледникового периода. Большинство золотодобытчиков на Клондайке используют процесс, называемый разработкой россыпей (ил. 6). Вода, образующаяся при весеннем таянии снегов, собирается в пруды-накопители. После того как все участки вечной мерзлоты, открытые солнцу, растают, воду закачивают насосом в место добычи золота и выливают под давлением на растаявшую грязь. При этом вода смывает всё, кроме сплошных кусков льда. Затем добыча ненадолго прекращается, пока солнце не растопит следующий слой замерзшей грязи. Затем растаявшая грязь вновь смывается водой. Этот процесс повторяется, пока вечная мерзлота не исчезнет, оставляя под собой только золотоносную россыпь.

К большому удивлению старателей, само золото нас не особенно волнует. Но зато нас очень интересуют тысячи костей, извлеченных из земли в процессе смывания слоя вечной мерзлоты (ил. 7–9). Около 80 % таких костей, найденных на Клондайке, принадлежат степным бизонам, около 10 % – лошадям, а остальные – в основном мамонтам, медведям, львам, американским северным оленям, волкам и овцебыкам. Крайне важно, что разработка россыпи проводится медленно и методично, а это означает, что многие из этих костей можно извлечь еще замороженными. Такие кости сохранились идеально.

Мы обнаружили по-настоящему старую лошадиную кость в золотом руднике поблизости от Тисл-Крик. Это место выделялось даже среди золотоносных россыпей Клондайка. Несколькими годами ранее группа геологов под руководством Дуэйна Фрёзе из Альбертского университета обнаружила, что вечная мерзлота в районе Тисл-Крик была очень старой. Мало того, это был самый древний участок вечной мерзлоты из когда-либо обнаруженных. Они узнали об этом, потому что обнаружили там вулканический слой, называемый тефрой «Голд Ран». Эта тефра осела на землю в центральной части Юкона около 700 тысяч лет назад. Итак, мы узнали, что лошадиные кости находились в слое вечной мерзлоты возрастом в 700 тысяч лет, и нам не терпелось выяснить, содержат ли они хоть немного лошадиной ДНК.

Дуэйн обнаружил семь костей, каждая из которых была крупнее, чем кости современных домашних лошадей, в слое вечной мерзлоты, прилежащем слою тефры «Голд Ран». Он проследил, чтобы во время транспортировки с места обнаружения в хранилище кости все время находились в замороженном состоянии. Мы взяли два образца костной ткани от двух из этих лошадиных костей и, к своему удивлению и восторгу, смогли выделить ДНК из обоих. Повторюсь: мы смогли выделить аутентичную ДНК древней лошади из двух костей возрастом в 700 тысяч лет.

Эти фрагменты представляют собой самые древние цепочки ДНК, когда-либо полученные из образцов, возраст которых установлен достаточно точно. Но экстраординарные заявления требуют таких же экстраординарных подтверждений. Настоящие ли результаты мы получили? Думаем, что да. Мы в высшей степени тщательно следили за тем, чтобы образцы хранились в замороженном состоянии и вдали от других образцов или других источников контаминантной ДНК. Фрагменты, которые мы выделили из этих костей, были короткими и очень сильно поврежденными, чего и следует ожидать при работе с древней ДНК. Данные анализа указывают на то, что эти лошади эволюционно были намного древнее тех, которые живут сейчас. К тому же результаты удалось повторить. Мы выделили ДНК этих лошадей в моих лабораториях в Оксфорде и в Университете штата Пенсильвания, а мой коллега Людовик Орландо и его группа в Копенгагенском университете смогли выделить ДНК одной из костей несколько раз. Результаты всех этих экспериментов согласовывались друг с другом как в том, что касалось собственно восстановления последовательностей ДНК, так и в отношении характера повреждений в этих цепочках. В совокупности эти наблюдения подтверждают аутентичность найденной сверхдревней лошадиной ДНК.

К тому моменту как мы закончили секвенирование ДНК из этой кости, у нас образовалось около 12 миллиардов фрагментов. Мы взяли все эти фрагменты и попытались соотнести их с геномом домашней лошади – его последовательность была собрана и опубликована несколькими годами ранее. Около 1 % из наших 12 миллиардов фрагментов соответствовали различным частям генома домашней лошади, указывая на то, что эта крошечная часть ДНК, выделенной из найденной кости, представляла собой ДНК лошади. Остальные 11,9 миллиарда фрагментов соответствовали ДНК растений, грибов, бактерий и других организмов окружающей среды. Процентное соотношение лошадиной ДНК и ДНК окружающей среды приводит в ужас, но все же нам удалось секвенировать геном древнего животного.

Почему ДНК сохранилась в этой кости в течение такого исключительно долгого времени? С уверенностью сказать нельзя. Кость была обнаружена в самом древнем известном нам участке вечной мерзлоты, и, вероятно, она ни разу не оттаяла за те 700 тысяч лет, что прошли с момента ее погребения. Пока мы не обнаружим более древний участок вечной мерзлоты или окаменелости, расположенные в более древних слоях льда, этот срок можно считать предельным временем жизни ДНК в костях.

Такая исключительная сохранность образцов характерна не только для Арктики. В пещерах ДНК также сохраняется в течение значительного времени. К примеру, большинство костей неандертальцев, ДНК которых мы секвенировали, были найдены в пещерах. Не так давно ДНК удалось выделить из костей пещерных медведей возрастом в 300 тысяч лет и гоминин возрастом в 400 тысяч лет, обнаруженных в пещерах на территории Испании. Известно, что стабильность окружающей среды способствует сохранности ДНК, а в пещерах зачастую сохраняется одна и та же температура и влажность, что, возможно, объясняет эти примеры сохранения ДНК в течение исключительно долгого времени.

Но, похоже, что стабильность условий окружающей среды не является абсолютным требованием. Не так давно мы собрали по кусочкам полный, состоящий из 16 000 пар оснований, митохондриальный геном бизона возрастом в 100 тысяч лет, кость которого была найдена на месте древнего озера в Колорадо. Кость принадлежала вымершему виду бизонов, Bison latifrons, размах рогов которого достигал впечатляющих 2,5 метров – в 5 раз больше, чем у современного американского бизона. Кость бизона и ДНК внутри нее каким-то образом сохранились, несмотря на тысячи сезонных переходов от холодной зимы к жаркому лету. ДНК, обнаруженная в этой кости, находилась в ужасном состоянии, но, как ни удивительно, все еще была пригодна для исследования. Захотели бы мы использовать именно эту кость бизона в качестве источника генетического материала, с которого началось бы воскрешение Bison latifrons? Нет, только в случае, если бы у нас совсем не было выбора. Менее 0,1 % ДНК в этой кости принадлежало бизону, средняя длина фрагмента составляла около 30 пар оснований, и цепочки ДНК были сильно повреждены. Но если бы мы располагали только этой костью и действительно хотели вернуть гигантского бизона к жизни, мы смогли бы использовать ее для секвенирования бизоньего генома. Мы смогли бы получать только крошечную часть ДНК бизона за раз, и это стоило бы нам очень дорого. Но, в конечном итоге, нам, вероятно, удалось бы получить почти точную последовательность ДНК.

К счастью, в случае мамонта и странствующего голубя нам не придется полагаться на плохо сохранившиеся кости с крошечным количеством ДНК. Странствующие голуби вымерли всего лишь 100 лет назад, и сотни чучел этих птиц хранятся в музейных коллекциях по всему миру. Хорошо сохранившиеся останки мамонта встречаются в еще большем изобилии. Если мы ограничим себя последними 40 тысячами лет – что соответствует диапазону радиоуглеродного датирования и позволяет нам узнать точный возраст костей, с которыми мы работаем, – в музейных и университетских коллекциях по всему миру можно найти, вероятно, тысячи, если не сотни тысяч, останков мамонтов. Большинство из них были извлечены из вечной мерзлоты, в том числе в районе Клондайка. Над многими из них уже велась работа в рамках проектов по исследованию древней ДНК и даже по секвенированию генома. Однако нам нет нужды ограничивать себя образцами, хранящимися на полках при комнатной температуре, с быстро распадающейся в них ДНК. Все, что нам нужно, чтобы найти очень хорошо сохранившуюся кость мамонта, – это сесть в самолет, затем в вертолет, затем, возможно, на лодку и отправиться в Арктику.

Глава 4. Создаем клона

Когда вы работаете в тундре, никому нет дела до того, что вы фальшиво поете во весь голос, прогуливаясь вдоль извилистой реки. Никто не смеется над пятью слоями одежды, надетыми на вас, и не подшучивает над разнообразием сеток, которыми вы опутали себя в последней обреченной попытке не подпустить комаров к своему телу. Никто и ухом не ведет, когда ваш видавший виды вертолет Ми-8 совершает неожиданную посадку посреди сибирской тундры, чтобы подобрать франкоговорящую пару с пятилетним ребенком и большим красным холодильником.

Всему этому я научилась летом 2008 года, во время того, что я с нежностью вспоминаю как свой самый странный и наименее успешный сезон охоты за костями. Тем летом мы провели несколько недель в маленьком лагере, окруженном озерами, в низинной тундре полуострова Таймыр. Мы охотились на мамонтов.

Руководил экспедицией на Таймыр Бернар Бьюиг, бывалый и в хорошем смысле эксцентричный исследователь Арктики, и причин считать, что мы потерпим неудачу, не было. На протяжении десятилетий Бернар возглавлял компанию «Церполекс» (от франц. CERcles POLaires EXpédition) и руководил сухопутными экспедициями по Сибири и на Северный полюс. Эти экспедиции начинались на его хорошо оборудованной базе в Хатанге, небольшом российском городе, стоящем на реке Хатанге в Красноярском крае. К началу 2000-х Бернар переключился на экспедиции, имеющие более научный характер, и основал при «Церполексе» организацию Mammuthus (лат. «мамонт»), заявленной целью которой было исследование и прославление Арктики и ее многочисленных сокровищ. Однако, как намекает название этой организации, в центре ее особого внимания был поиск мумифицированных останков мамонтов и содействие их исследованию. Образование компании Mammuthus было либо предприимчивым шагом, либо просто очень своевременным, поскольку с начала этого столетия мумии мамонтов и других древних гигантов ледникового периода стали обнаруживаться в вечной мерзлоте Сибири на удивление часто.

Повстречавшись с Бернаром, нельзя было не увериться как в его лидерских качествах, так и в успехе экспедиции. К 2008 году Бернар имел десятки лет опыта работы в сибирской тундре. Он обладал неисчерпаемой энергией и энтузиазмом, был хорошо знаком с трудностями логистики при работе в Сибири (и знал способы обойти эти трудности), а также владел большой коллекцией теплых курток. Что важнее всего, он долго сотрудничал с местным населением, и это некоторым образом объясняет, почему он так часто первым получал доступ к недавно обнаруженным мумиям мамонтов. Все указывало на то, что экспедиция должна увенчаться успехом.

Наше приключение началось в сибирском доме Бернара в Хатанге. Хатанга – необычное место. Это одна из самых северных точек в мире, где живут люди. Хотя население города составляет менее 3,5 тысячи человек, там есть аэропорт, гостиница и музей природы и этнографии, полный экспонатов, связанных с людьми, живущими в этой местности, и ее историей. В Хатанге также есть несколько ресторанов, где подают мясо местных животных, приправленное укропом, и несколько маленьких магазинчиков, где продается морковь с признаками обморожения по цене 8 долларов, полуавтоматические пулеметы и причудливое разнообразие ароматизированной жевательной резинки. Дороги и речные берега усыпаны незнакомыми механизмами, некоторые из них, возможно, все еще работают. Люди там живут где угодно – и в маленьких деревянных хижинах, и в больших многоквартирных домах и даже транспортных контейнерах – тех, которые используются на судах-контейнеровозах для перевозки грузов через океан. Даже дом Бернара частично состоял из транспортных контейнеров, соединенных вместе и, предположительно, хорошо изолированных от внешней среды. В конце концов, город располагается на 71 градусе северной широты, и зимы в Хатанге темные и холодные, со среднемесячной минимальной температурой около –35 ˚C и полным отсутствием солнечного света в течение многих дней в декабре и январе. Правда, мы находились там с июля по август, и температура воздуха колебалась в приемлемых пределах 5–15 ˚C, а солнце светило круглые сутки. Разумеется, вокруг кружило несколько комаров, портя в остальном прекрасную атмосферу. Точнее, несколько сотен комаров.

На кубический сантиметр воздуха.

В нашей экспедиции участвовали Бернар, его жена Сильвия и их двадцатилетний племянник Питу, несколько русских, работавших на Бернара, французская женщина-режиссер и ее бойфренд, а также целое собрание ученых с самыми разнообразными интересами, касающимися животных ледникового периода. Самым старшим ученым в нашей группе был Дэн Фишер, специалист по изучению мамонтов и профессор Мичиганского университета. Дэн – мировой эксперт в своей области: исследуя паттерны роста мамонтовых бивней, он может определить пол, репродуктивную историю, образ жизни и даже причины смерти животного. Дэн тоже измеряет количество стабильных изотопов химических элементов, углерода и азота, накапливавшихся в бивне мамонта по мере его роста. Эти изотопы образуют почти непрерывную запись изменений в рационе мамонта и в окружавшей его среде. С нами также работали Адам Раунтри и Дэвид Фокс, ранее обучавшиеся под руководством Дэна. Наконец, среди нас было двое исследователей, интересующихся ДНК: я и Иэн Барнс, который в то время преподавал в колледже Ройял-Холлоуэй в Лондонском университете, но я познакомилась с ним во времена, когда трудилась над своей диссертацией в Оксфордском университете.

Дэн, Дэвид и Адам мечтали найти бивни, мы же с Иэном надеялись на кости мамонтов. Бивни лучше подходят для изотопного анализа, но в них содержится очень мало ДНК. Нас с Иэном, кроме того, интересовали все животные, обитавшие на Таймыре в периоды оледенения, так что мы не были строго сосредоточены на сборе мамонтовых костей.

По причинам, оставшимся для меня загадкой, и несмотря на обещания, данные Бернару еще до нашего прибытия в Хатангу, вертолета нам пришлось ждать целую неделю. Мы временно поселились у Бернара и, чтобы убить время, занялись исследованием Хатанги. Мы примерили на себя множество теплых курток и противомоскитных приспособлений. Мы бродили по улицам, дразня местных собак и пытаясь разгадать предназначение разнообразных механизмов. Мы устанавливали ловушки для насекомых и определяли виды тех, которые туда попались. Мы просверлили отверстия в нескольких костях из коллекции Бернара для нашей съемочной группы и на благо будущих исследовательских проектов. Пока мы ожидали, Бернар организовывал и был вовлечен в одну за другой встречи с его группой российских ученых и специалистов по логистике. Эти собрания были яркими и волнующими: гигантские карты не помещались на столах, разговоры переходили на повышенный тон, проводились сверки со старыми научными документами, описывающими географические пределы прошлых оледенений, водка лилась в стаканы и строился план будущей экскурсии.

Наконец, вертолет прибыл и настала пора вылетать в поле. Мы собрали еду, горючее и вещи и отправились из дома Бернара прямо в аэропорт. Мы пробрались через контроль безопасности на взлетную полосу и встретились лицом к лицу со своим следующим транспортным средством: всеми любимым вертолетом Ми-8. Около четверти пространства в нем уже занимали два огромных газовых баллона. Пробираясь мимо баллонов, мы забросили внутрь свое походное снаряжение, камеры и осветительные приборы для съемок, две большие надувные лодки и два подвесных мотора мощностью в 250 лошадиных сил каждый, запасы риса и неизвестной сублимированной еды, достаточные, чтобы прокормить двадцать человек в течение шести недель, гигантскую канистру бензина для готовки и водку в объеме, достаточном, чтобы ощущать счастье в течение по меньшей мере суток. В вертолете Ми-8 недоставало около трети окон, предположительно, чтобы на борту было удобнее курить.

Загрузив все свои вещи, мы забрались внутрь и устроились на лавках под окнами, а также сверху на вещах и баллонах с газом. Последним на борт поднялся Паша, пес нашего повара, годовалый сибирский хаски. Паша выражал свои опасения по поводу участия в нашей экспедиции, пытаясь слиться с покрытием взлетной полосы под трапом. Я разделяла Пашины сомнения относительно того, что лучше: быть проглоченным взлетно-посадочной полосой или подняться в небо на Ми-8. Когда стало ясно, что полоса не желает поглощать Пашу, он сбежал. Повар и один из пилотов выбрались наружу, выкурили несколько сигарет, поймали Пашу, подняли его на руках примерно до середины трапа, каким-то образом умудрились упустить его, поймали снова, усмирили в достаточной степени, чтобы дотащить до конца трапа и внести в дверь, и, наконец, мы устроились в кабине. Под радостные возгласы и отчаянный вой Паши мы оторвались от земли и полетели в сторону тундры.

Соматический ядерный перенос

Если в коллекциях по всему миру уже накоплено такое множество костей, зачем нам выбираться в поле, чтобы найти еще какие-то? Зачем иметь дело со сломанными вертолетами, золотыми рудниками, двадцатичетырехчасовым световым днем и тучами комаров? Ответ прост: лучшие кости – те, которые попали к нам прямиком из обледеневшей тундры. Мы хотим найти кости, которые ни разу не оттаивали. В них содержатся наилучшим образом сохранившиеся клетки с наилучшим образом сохранившейся ДНК.

Мы – не единственная группа ученых, проводящая свое лето в Арктике в поисках останков животных ледникового периода или болтающаяся по золотым приискам, но мне приятно думать, что у нас самый здравый подход к делу. К примеру, мы знаем, что не ищем клетки, которые можно будет клонировать. Все, что известно ученым о клонировании животных с использованием соматических клеток (то есть не являющихся ни сперматозоидами, ни яйцеклетками), говорит о том, что клонирование сработает только в том случае, если клетка содержит неповрежденный геном. Ни одной такой клетки не было обнаружено в останках вымерших животных, найденных во льдах тундры.

Разрушение ДНК начинается сразу же после смерти организма. Растительные и животные клетки содержат ферменты, задача которых – разрывать связи внутри молекулы ДНК. Эти ферменты, называемые нуклеазами, обнаруживаются в клетках, слезной жидкости, слюне, поте и даже на кончиках наших пальцев. Пока мы живем, нуклеазы критически важны для нас. Они уничтожают проникающие в наш организм патогенные микробы до того, как они причинят нам какой-либо вред. Они устраняют поврежденную ДНК, позволяя нашим клеткам починить то, что было сломано. А после смерти наших клеток нуклеазы разрушают их ДНК, так что нашему организму проще избавиться от них. Другими словами, нуклеазы эволюционировали таким образом, чтобы оставаться активными и после того, как клетка гибнет, и это плохие новости для тех, кто хочет клонировать мамонта.

В лаборатории мы не даем нуклеазам разрушать ДНК, которую мы пытаемся выделить, либо погружая свежий образец в раствор химических ингибиторов, либо подвергая его быстрой заморозке. Арктика – холодное место, но недостаточно холодное, чтобы заморозить что-то (особенно такое большое, как мамонт) достаточно быстро, чтобы защитить ДНК от распада. Вдобавок нуклеазы вырабатываются всеми живыми организмами, включая бактерии и грибы, которые колонизируют разлагающиеся тела мертвых животных. Следовательно, шанс, что геномы каких-либо клеток могут сохраниться совершенно нетронутыми в течение длительного времени после смерти, невелик. Без неповрежденного генома клонировать мамонта не получится. Точнее, не получится клонировать мамонта путем соматического ядерного переноса.

Соматический ядерный перенос – это унылое, но вполне подходящее название для процесса, благодаря которому у нас появился, в частности, самый известный клон – овечка Долли (рис. 8). Долли клонировали ученые из Рослинского института в Шотландии в 1996 году. Ученые удалили ядро – часть клетки, содержащую геном, из клетки молочной железы, взятой у взрослой овцы, и поместили это ядро в подготовленную яйцеклетку другой взрослой овцы. Затем эта яйцеклетка развилась в матке еще одной взрослой самки в совершенно здоровую особь своего вида. Важно отметить, что овца, клонированная путем ядерного переноса, была генетически идентична животному, ставшему донором клетки молочной железы, и не имела ничего общего со своей суррогатной матерью или той овцой, у которой взяли яйцеклетку.


Рис. 8. Соматический ядерный перенос, или «клонирование». У двух разных организмов берется соматическая клетка (слева вверху) и неоплодотворенная яйцеклетка (слева внизу). Ядра клеток удаляются, и ядро соматической клетки переносится в яйцеклетку, лишенную ядра. На яйцеклетку воздействуют электрическим током, и она начинает делиться. Образовавшийся эмбрион имплантируют суррогатной матери, и из него развивается особь, генетически идентичная донору соматической клетки

Чтобы разобраться в хитросплетениях этого процесса, нужно узнать кое-что о клетках. Наши тела (и тела других живых организмов) состоят из клеток трех основных типов: стволовых, половых и соматических. Соматических – больше всего, к ним относятся клетки кожи, мышечные клетки, клетки сердца и т. д. Соматические клетки имеют диплоидный набор хромосом, – это означает, что в них содержится по две копии каждой хромосомы – одна от матери и одна от отца. Соматические клетки также имеют специализацию – это могут быть клетки мозга, клетки крови или клетки молочной железы, подобные тем, которые использовали при создании Долли. Еще одна категория клеток – это первичные половые клетки (гоноциты), из которых образуются гаметы – сперматозоиды и яйцеклетки. Гаметы имеют гаплоидный набор хромосом, то есть в них содержится только одна копия каждой хромосомы. При нормальном половом размножении две гаплоидные гаметы сливаются в момент оплодотворения, образуя диплоидную зиготу, из которой затем развивается эмбрион.



Поделиться книгой:

На главную
Назад