Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Параллельные миры: Об устройстве мироздания, высших измерениях и будущем космоса - Митио Каку на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

В 1960-е годы в космическом пространстве обнаружили загадочные источники невероятной энергии, названные квазарами, или квазизвездными объектами. (Название было таким броским, что позднее его использовали в качестве марки телевизора.) Квазары генерировали невероятные количества энергии и характеризовались красным смещением огромной величины, что означало, что они находятся на расстоянии миллиардов световых лет от нас, а также что они освещали Вселенную еще в раннем ее детстве (сегодня астрономы считают, что квазары – это гигантские молодые галактики, ведомые энергией огромных черных дыр). У нас нет доказательства существования каких-либо квазаров сегодня, хотя, согласно теории стационарной Вселенной, они должны существовать. За миллиарды лет они исчезли.

В теории Хойла крылась еще одна проблема. Ученые доказали, что во Вселенной слишком много гелия, чтобы это вписывалось в теорию стационарной Вселенной. Гелий, известный как газ, используемый для надувания воздушных шаров и небольших дирижаблей, в действительности довольно редок на Земле, но он является вторым по относительному содержанию элементом во Вселенной после водорода. Вообще, он настолько редок, что впервые был обнаружен не на Земле, а на Солнце. (В 1868 году ученые анализировали свет Солнца, проходящий через призму. Преломленный луч света распадался на обычную радугу цветов и спектральных линий, но ученые обнаружили нечеткие спектральные линии, вызванные загадочным элементом, никогда не виденным ранее. Они ошибочно посчитали, что это металл, а названия металлов (в английской терминологии) оканчиваются на -ium: например, lithium (литий), uranium (уран). Они дали этому загадочному металлу название helium (гелий) – от греческого названия Солнца Helios. Когда же в 1895 году гелий был найден на Земле в залежах урана, ученые с большим смущением обнаружили, что это газ, а не металл. Так название гелия, впервые открытого на Солнце, изначально оказалось неправильным.)

Если первичный гелий в основной своей массе рождался в звездных ядрах, как считал Хойл, он должен был быть довольно редким и находиться в недрах звезд. Но астрономические данные показали, что относительное содержание гелия во Вселенной довольно высоко и составляет 25 % всей массы атомов во Вселенной. Было обнаружено, что гелий однородно распространен по всей Вселенной (как и предполагал Гамов).

Сегодня мы знаем, что и в теории Гамова, и в теории Хойла были зерна истины относительно нуклеосинтеза. Гамов считал, что все химические элементы были побочным результатом, или «золой», Большого взрыва. Но его теорию убили провалы элементов с массовым числом выше 5 и 8. Хойл же считал, что смог зачеркнуть теорию Большого взрыва, показав, что в звездах «пекутся» все элементы и к Большому взрыву прибегать нет потребности. Но его теории не удалось объяснить огромный процент гелия, существующий, как известно, во Вселенной.

По сути, Гамов и Хойл создали взаимодополняющую картину нуклеосинтеза. Очень легкие элементы с массой до 5 и 8 и правда возникли в результате Большого взрыва, как и предполагал Гамов. Сегодня в результате последних физических открытий стало известно, что во время Большого взрыва действительно возникла большая часть дейтерия, гелия-3, гелия-4 и лития-7, которые присутствуют в природе. Но более тяжелые элементы были в основном созданы в ядрах звезд, как утверждал Хойл. Если мы прибавим элементы тяжелее железа (медь, цинк и золото), которые возникли из обжигающего жара сверхновых звезд, то получим завершенную картину, объясняющую соотношение всех элементов во Вселенной. (Любая теория, соперничающая с нынешними взглядами космологов, столкнулась бы с задачей немыслимой сложности: объяснить возникновение более сотни элементов во Вселенной и множества их изотопов.)

Как рождаются звезды

Одним из неожиданных результатов жаркого спора по поводу нуклеосинтеза стало довольно полное описание жизненного цикла звезд. Стандартная звезда, такая как наше Солнце, начинает жизнь как огромный шар разреженного водорода, называемый протозвездой; постепенно шар сжимается под воздействием силы гравитации. Начиная сжиматься, этот шар ускоряет вращение (что часто влечет за собой образование двойной звездной системы, где две звезды следуют друг за другом по эллиптическим орбитам, или образование планет в плоскости вращения звезды). Ядро звезды очень сильно разогревается, достигая температуры приблизительно 10 млн градусов и более, при которой происходит нуклеосинтез водорода с образованием гелия.

Когда звезда раскаляется, ее называют звездой главной последовательности. Она может гореть около 10 млрд лет, сначала сгорает водород, а потом гелий. Наше Солнце сейчас находится в срединной точке этого процесса. По окончании периода сгорания водорода начинает гореть гелий, вследствие чего звезда невероятно расширяется – до размеров орбиты Марса – и становится красным гигантом. После того как гелиевое топливо истощается, внешние слои звездного ядра рассеиваются, обнажая ядро – белый карлик размером с Землю. Такими-то белыми карликами и встретят свою смерть звезды небольшого размера вроде нашего Солнца.

В звездах же, масса которых превосходит массу Солнца в 10–40 раз, процесс нуклеосинтеза протекает намного быстрее. Когда звезда становится красным сверхгигантом, в ее ядре стремительно синтезируются легкие элементы, и поэтому звезда выглядит как некий гибрид: белый карлик внутри красного гиганта. В этом белом карлике могут синтезироваться легкие элементы (с атомным весом ниже железа), составляющие периодическую таблицу элементов. Когда процесс нуклеосинтеза достигает этапа, на котором создается железо как элемент, энергия в процессе нуклеосинтеза больше не вырабатывается, и по прошествии миллиардов лет ядерные меха наконец прекращают свою работу. В этот момент звезда внезапно коллапсирует, создавая огромное давление, которое фактически вталкивает электроны в ядра. (Создаваемая плотность может в 400 млрд раз превосходить плотность воды.) В результате температура подскакивает до триллионов градусов. Энергия гравитации, сконцентрированная в этом крошечном объекте, вызывает взрыв, создавая сверхновую звезду. Высокая температура взрыва снова вызывает нуклеосинтез, и синтезируются элементы с атомным весом выше железа по периодической таблице.

Например, красная звезда-сверхгигант Бетельгейзе, легко различимая в созвездии Ориона, неустойчива; она может в любой момент взорваться как сверхновая, испуская огромное количество гамма– и рентгеновских лучей. Когда это случится, сверхновая будет видна даже днем, а ночью, возможно, затмит Луну. (Когда-то считалось, что колоссальная энергия, освободившаяся при взрыве сверхновой, уничтожила динозавров 65 млн лет тому назад. Вообще, сверхновая, находись она на расстоянии около 10 световых лет от нас, могла бы уничтожить всю жизнь на Земле. К счастью, звезды-кандидаты в сверхновые – Спика и Бетельгейзе – находятся на расстоянии 260 и 430 световых лет соответственно: это слишком далеко от нас, чтобы причинить какие-либо серьезные повреждения Земле, когда они в конце концов взорвутся. Но некоторые ученые считают, что вымирание кое-каких морских организмов два миллиона лет назад было вызвано именно взрывом сверхновой на расстоянии 120 световых лет от Земли.)

Это означает, что Солнце не является истинной «матерью» Земли. Хотя многие народы Земли почитали Солнце как бога, сотворившего Землю, такой подход верен лишь отчасти. Хотя изначально Земля произошла от Солнца (будучи частью эклиптической плоскости звездных обломков и пыли, циркулировавших вокруг Солнца 4,5 млрд лет назад), температура нашего Солнца высока лишь настолько, чтобы был возможен процесс нуклеосинтеза водорода с образованием гелия. Это означает, что нашей истинной «матерью» – солнцем была безымянная звезда (или скопление звезд), погибшая миллиарды лет назад при взрыве сверхновой, в результате которого близлежащие туманности оказались насыщены элементами с атомным весом выше железа, из которых состоят наши тела. Точнее, наши тела состоят из звездной пыли, из звезд, которые погибли миллиарды лет назад.

После взрыва сверхновой остается лишь то, что сегодня называется нейтронной звездой, которая состоит из плотного ядерного вещества, сжатого до размеров Манхэттена – почти 30 км. (Впервые существование нейтронных звезд было предсказано в 1933 году Фрицем Цвикки, но это казалось настолько фантастичным, что на протяжении десятилетий ученые не обращали на его слова внимания.) Поскольку нейтронная звезда испускает излучение нерегулярно, а также вращается с огромной скоростью, она похожа на маяк, испускающий вспышки света в процессе вращения. При наблюдении с Земли кажется, что нейтронная звезда пульсирует, отсюда и ее название – пульсар.

Чрезвычайно большие звезды, имеющие массу, возможно, в 40 раз превышающую массу Солнца, взорвавшись в конце концов как сверхновые, могут оставить после себя нейтронную звезду, масса которой больше трех солнечных масс. Гравитация этой нейтронной звезды настолько велика, что она может противодействовать силе отталкивания, возникающей между нейтронами, и звезда совершит свой заключительный коллапс и превратится в самый необычный, скорее всего, объект Вселенной – черную дыру, о которой я поведу речь в пятой главе.

Птичий помет и Большой взрыв

Смертельным ударом в самое сердце теории стационарной Вселенной стало открытие Арно Пензиаса и Роберта Вильсона в 1965 году. Работая с шестиметровым радиотелескопом в Bell Laboratories в городе Холмдейл (штат Нью-Джерси), они, ловя радиосигналы из космоса, поймали странный радиошум. Сначала они решили, что этот шум – результат какого-то отклонения в работе системы, поскольку получалось, что шум поступает равномерно со всех направлений, а не от конкретной звезды или галактики. Чтобы исключить возможное влияние грязи и мусора, они тщательно отчистили рупор телескопа от того, что Пензиас деликатно назвал слоем белого диэлектрического вещества (более распространенное название – птичий помет). В результате сила радиошума только возросла. Они и не подозревали, что случайно наткнулись на микроволновое реликтовое излучение, существование которого было предсказано Георгием Гамовым и его коллегами еще в 1948 году.

Довольно долго история космологии напоминала старые фильмы о кистоунских полицейских, в которых три группы копов пытаются раскрыть преступление, даже не подозревая о существовании друг друга. С одной стороны, Гамов, Альфер и Херман заложили основы теории микроволнового реликтового излучения в 1948 году; они предсказали, что температура этого излучения на 5 градусов выше абсолютного нуля. Идею об измерении микроволнового космического излучения они оставили, поскольку приборы, имевшиеся тогда в их распоряжении, не обладали достаточной чувствительностью даже для того, чтобы его обнаружить. В 1965 году Пензиас и Вильсон все-таки обнаружили излучение абсолютно черного тела, но не поняли этого. В то же время третья группа под руководством Роберта Дикке из Принстонского университета вновь обратилась к теории Гамова и его коллег и теперь активно занималась вопросом улавливания микроволнового реликтового излучения, но существовавшее оборудование было до прискорбия примитивным, чтобы его уловить.

Эта комическая ситуация нашла свое завершение, когда астроном Бернард Берк, общий друг Пензиаса и Дикке, рассказал первому о работе второго. Когда две группы исследователей наконец объединились, стало ясно, что Пензиас и Вильсон уловили сигналы, оставшиеся после того самого Большого взрыва. За это важное открытие Пензиас и Вильсон в 1978 году были удостоены Нобелевской премии.

Оглядываясь на прошлое, можно вспомнить, как Хойл и Гамов, два самых знаменитых автора противоречащих друг другу теорий, встретились в 1956 году в «кадиллаке»: эта судьбоносная встреча могла изменить весь ход развития космологии. «Я помню, как Георгий возил меня в белом "кадиллаке"», – вспоминал Хойл. Гамов тогда напомнил Хойлу о своем утверждении, что после Большого взрыва осталось излучение, которое можно увидеть даже сегодня. Однако, согласно последним расчетам Гамова, температура этого излучения была около 50 градусов. Тогда Хойл поделился с Гамовым информацией, которая стала для последнего шокирующим открытием. Хойлу была известна не нашедшая признания работа, написанная в 1941 году Эндрю Маккеларом, в которой автор утверждал, что температура открытого космоса не может превышать 3 K. При более высоких температурах происходили бы новые реакции, которые создали бы соединения углерода с водородом (CН) и азотом (СN) в возбужденном состоянии в открытом космосе. Измерив спектр этих химических элементов, можно было определить температуру открытого космоса. По сути, он выяснил, что плотность молекул CN, обнаруженных им в космосе, указывает на температуру 2,3 K. Другими словами, микроволновое излучение с температурой 2,7 K уже было как бы открыто в 1941 году, о чем Гамов не имел понятия.

Хойл вспоминал: «Случилось ли это потому, что "кадиллак" был слишком удобен, или потому, что Георгий настаивал на температуре выше трех градусов, а я – на равной нулю, мы упустили свой шанс сделать открытие, которое девятью годами позже сделали Арно Пензиас и Боб Вильсон»{45}. Если бы группа Гамова не сделала ошибку в расчетах и пришла к более низкой температуре или если бы Хойл не относился столь враждебно к теории Большого взрыва, то история космологии, возможно, оказалась бы иной.

Большой взрыв и психология

Открытие микроволнового фона Пензиасом и Вильсоном решающим образом повлияло на карьеру Гамова и Хойла. Хойла их работа чуть не вогнала в гроб. В конце концов в 1965 году на страницах журнала Nature Хойл официально признал свое поражение, приводя в качестве аргументов отказа от теории стационарной Вселенной микроволновое реликтовое излучение и относительное содержание гелия. Но что его действительно беспокоило, так это тот факт, что теория стационарной Вселенной потеряла свою прогностическую силу: «Всем известно, что существование микроволнового реликтового излучения убило космологию стационарной Вселенной, но что действительно убило теорию стационарной Вселенной – так это психология… Здесь, в микроволновом излучении, заключалось важное явление, которого она не предсказала за многие годы, и это сбило с меня спесь»{46}. (Позднее Хойл вернулся на прежние позиции, безуспешно пытаясь работать с другими версиями теории стационарной Вселенной, но каждый новый вариант был еще менее правдоподобным.)

К несчастью, вопрос о первенстве открытия оставил в душе Гамова неприятный осадок. Гамов, если читать между строк, был недоволен тем, что его собственная работа, а также работы его сотрудников так мало упоминались, если вообще упоминались. Неизменно вежливый, он помалкивал о своих чувствах, но в личных письмах отмечал несправедливость того, что физики и историки науки полностью проигнорировали их работу.

Хотя работа Пензиаса и Вильсона нанесла сокрушительный удар по теории стационарной Вселенной и обеспечила твердую экспериментальную основу теории Большого взрыва, в понимании структуры расширяющейся Вселенной существовали огромные пробелы. Например, в модели Вселенной Фридмана для того, чтобы понять, как эволюционирует Вселенная, необходимо знать значение Ω, средней плотности Вселенной. Однако определение ее оказалось довольно проблематичным, когда ученые обнаружили, что Вселенная состоит не только из известных нам атомов и молекул, а еще и из незнакомой новой субстанции, называемой темной материей, которая весит в 10 раз больше обычной. И снова блестящие достижения в этой области не были восприняты всерьез астрономическим сообществом.

Ω и темная материя

История темной материи, возможно, одна из самых необыкновенных историй космологии. В далекие 1930-е годы независимый швейцарский астроном Фриц Цвикки из Калифорнийского технологического института заметил, что движение галактик в скоплении галактик Кома не соответствовало теории гравитации Ньютона. Он обнаружил, что скорость движения галактик такова, что, по законам движения Ньютона, они должны были разлететься в стороны, а скопление – распасться. Цвикки решил, что единственным возможным объяснением того, что скопление Кома удерживается, а не разлетается в стороны, могло служить лишь то, что в скоплении в сотни раз больше материи, чем можно было увидеть в телескоп. Либо законы Ньютона действовали как-то неверно на межгалактических расстояниях, либо существовало огромное количество невидимой материи в скоплении Кома, которая не давала ему распасться.

Это стало первым свидетельством в истории, что чего-то крайне недоставало в отношении распространения материи по Вселенной. К несчастью, астрономы во всем мире либо не заметили пионерскую работу Цвикки, либо дружно отвергли его выводы по нескольким причинам.

Первая из них заключалась в том, что астрономы не склонны были верить в то, что теория гравитации Ньютона, занимавшая ведущее положение в физике на протяжении нескольких веков, может быть неправильной. Уже существовал прецедент такого кризиса в астрономии. Во время исследования орбиты Урана в ХIХ столетии было обнаружено, что она раскачивается – очень немного, но отклоняясь от уравнений Исаака Ньютона. Так что либо Ньютон ошибался, либо должна была существовать новая планета, чья гравитация воздействовала на Уран. Именно второе предположение оказалось верным, и при первой же попытке, совершенной в 1846 году при анализе предполагаемого положения планеты согласно законам Ньютона, была обнаружена планета Нептун.

Во-вторых, существовала такая проблема, как личность самого Цвикки и то, как астрономы относились к аутсайдерам. Цвикки был фантазером, на протяжении жизни над ним часто смеялись или просто не обращали на него внимания. В 1933 году вместе с Вальтером Бааде он придумал термин «сверхновая звезда» и предсказал, что после взрыва останется крошечная нейтронная звезда около 22 км в поперечнике. Эта идея показалась всем настолько абсурдной, что ее 19 января 1934 года даже высмеяли в комиксе на страницах Los Angeles Times. Цвикки страшно обозлился на маленькую элитарную группу астрономов, которые, как он думал, отказывали ему в признании, крали его идеи и не давали ему времени для наблюдений на 250– и 500-сантиметровом телескопах. (Незадолго до смерти в 1974 году Цвикки на собственные средства опубликовал каталог галактик. Каталог открывался заголовком «Напоминание корифеям американской астрономии и их подхалимам». В очерке была яростная критика узкой, закоренелой в своих традиционных взглядах элиты астрономов, которые стремились изо всех сил препятствовать работе таких независимых астрономов, как он сам. «Сегодняшние подхалимы и самые настоящие воры, особенно в Американском астрономическом обществе, кажется, совершенно свободно присваивают открытия и изобретения, сделанные волками-одиночками и инакомыслящими»{47}, – писал он. Цвикки назвал этих людей «сферическими ублюдками», потому что «они ублюдки, с какой стороны на них ни глянь». Он был разъярен, потому что его обошли вниманием и Нобелевскую премию за открытие нейтронной звезды дали кому-то другому{48}.)

В 1962 году астроном Вера Рубин заново открыла любопытную проблему галактического движения. Она изучала вращение галактики Млечный Путь и столкнулась с той же самой проблемой: астрономическое сообщество не приняло ее выводы. Обычно, чем дальше от Солнца находится планета, тем медленнее она вращается. А чем ближе, тем быстрее. Именно поэтому Меркурий назван по имени бога скорости – он располагается очень близко к Солнцу, и именно поэтому скорость Плутона в 10 раз меньше скорости Меркурия – Плутон располагается дальше всех планет от Солнца. Однако, когда Вера Рубин внимательно изучила голубые звезды нашей Галактики, она обнаружила, что звезды вращаются с неизменной скоростью вне зависимости от расстояния до ее центра (плоского вращающегося диска), тем самым нарушая принципы механики Ньютона. По сути, она обнаружила, что галактика Млечный Путь вращалась настолько быстро, что, по справедливости, ее звезды должны бы были разлететься в разные стороны. Но наша Галактика пребывала во вполне устойчивом состоянии на протяжении приблизительно 10 млрд лет; оставалось загадкой, почему ее вращающийся диск плоский. Чтобы не развалиться, она должна быть в 10 раз тяжелее, чем считали ученые в то время. Было очевидно, что не учтено 90 % массы галактики!

Работу Веры Рубин проигнорировали, может быть, потому, что автором ее была женщина. С некоторой болью Рубин вспоминала, что, когда она поступала в колледж на специальность «естественные науки» и случайно обмолвилась преподавателю в приемной комиссии, что ей нравится рисовать, тот спросил: «А вы никогда не рассматривали возможность сделать карьеру, делая зарисовки астрономических объектов?» Она писала: «Это стало ключевой фразой у нас в семье: на протяжении многих лет, когда что-то у кого-то из родственников шло не так, мы говорили: "А вы никогда не рассматривали возможность сделать карьеру, делая зарисовки астрономических объектов?"»{49} Когда Вера сказала своему школьному преподавателю физики, что ее приняли в Вассарский колледж, тот ответил: «У тебя все получится, только держись подальше от науки». Позднее она вспоминала: «Необходима невероятно высокая самооценка, чтобы выслушивать подобные вещи и не сломаться».

По окончании учебы Рубин подала заявление на вакантную должность преподавателя в Гарвард, и ее приняли, но она отказалась, потому что вышла замуж и уехала вместе с мужем-химиком в Корнелл. (Из Гарварда она получила ответ, где внизу были от руки приписаны следующие слова: «Черт побери этих женщин! Каждый раз, как я нахожу то, что нужно, они выходят замуж и уезжают».) Недавно она приняла участие в астрономической конференции в Японии, где была единственной женщиной. «Я, правда, долгое время не могла об этом рассказывать без слез, потому что, конечно, за одно поколение… немногое изменилось», – признавалась Вера Рубин.

Тем не менее несомненная значимость ее работы, а также работы других ученых постепенно начали убеждать астрономическое сообщество в существовании проблемы «отсутствующей» массы. К 1978 году Вера Рубин и ее коллеги тщательно изучили вращение 11 галактик; все они вращались слишком быстро, чтобы законы Ньютона позволили им оставаться единым целым. В том же году нидерландский радиоастроном Альберт Бозма опубликовал самый подробный анализ десятков спиральных галактик: почти все они демонстрировали то же самое аномальное поведение. Казалось, что это наконец убедило астрономическое сообщество в существовании темной материи.

Простейшим решением этой удручающей проблемы было предположение, что галактики окружены невидимым ореолом, который содержит в себе в 10 раз больше материи, чем звезды. С тех пор появились более совершенные приборы для определения наличия этой темной материи. Одной из наиболее впечатляющих является возможность измерения искривления звездного света при его прохождении сквозь невидимое вещество. Подобно линзе очков, темная материя может преломлять свет (благодаря своей невероятной массе, а следовательно, и силе гравитации). Недавно при тщательном компьютерном анализе фотографий, сделанных при помощи космического телескопа «Хаббл», ученые научились создавать карты распределения темной материи во Вселенной.

И сейчас продолжаются ожесточенные споры о том, из чего состоит темная материя. Некоторые ученые считают, что она может состоять из обычного вещества, которое просто плохо различимо (то есть из коричневых звезд-карликов, нейтронных звезд, черных дыр и так далее, которые практически невидимы). Такие объекты рассматриваются в целом как «барионное вещество», то есть вещество, состоящее из известных барионов (таких как нейтроны и протоны). Все вместе они называются МАСНО (сокращение, обозначающее массивные компактные объекты гало).

Другие считают, что, возможно, темная материя состоит из очень горячего небарионного вещества, такого как нейтрино (его так и называют – горячей темной материей). Однако нейтрино движутся настолько быстро, что на их счет нельзя списывать все скопление темной материи в галактиках, наблюдаемое в природе. Третьи опускают руки и считают, что темная материя представляет собой принципиально новый вид вещества, называемого холодной темной материей, или WIMPs (слабо взаимодействующие массивные частицы), и, пожалуй, это лучшая «кандидатура» для большей части темной материи.

Спутник СОВЕ

При помощи обычного телескопа, рабочей лошадки астрономии еще со времен Галилея, видимо, невозможно разрешить загадку темной материи. Астрономия продвинулась очень далеко, используя обычные оптические средства, имеющиеся на Земле. Однако в 1990-е годы появилось новое поколение астрономических приборов, сконструированных с использованием новейших спутниковых технологий, лазеров и компьютеров, которые полностью изменили лицо космологии.

Одним из первых плодов богатого урожая стал спутник СОВЕ (космический аппарат для изучения реликтового излучения), запущенный в ноябре 1989 года. Если работа Пензиаса и Вильсона подтвердила лишь некоторые данные, вписывающиеся в теорию Большого взрыва, спутник СОВЕ измерил множество параметров, которые в точности соответствовали прогнозам Гамова и его сотрудников об излучении абсолютно черных тел, выдвинутым в 1948 году.

В 1998 году на собрании Американского астрономического общества 1500 ученых внезапно вскочили и разразились бурными аплодисментами при виде фотографий, сделанных спутником СОВЕ, которые практически полностью согласовывались с тем фактом, что температура микроволнового реликтового излучения составляет 2,728 K.

Принстонский астроном Джереми Острайкер заметил: «Когда были обнаружены окаменелости в скалах, это совершенно четко обозначило происхождение видов. Что ж, спутник СОВЕ нашел окаменелости [Вселенной]»{50}.

Однако фотографии, сделанные со спутника СОВЕ, были довольно размытыми. Например, ученые хотели проанализировать горячие точки, или флуктуации космического фонового излучения, которые должны были составлять около одного градуса в поперечнике. Но оборудование спутника СОВЕ было способно уловить флуктуации только семи и более градусов в поперечнике, оно не было достаточно чувствительным, чтобы обнаружить эти маленькие горячие точки. Ученые были вынуждены ждать результатов работы спутника WMAP, запуск которого ожидался в начале века; они надеялись, что новые данные помогут разрешить массу вопросов и загадок.

Глава 4

Расширение и параллельные вселенные

Ничего не происходит из ничего.

Лукреций

Я допускаю, что наша Вселенная и в самом деле появилась ниоткуда около 10 млрд лет назад… Я выдвигаю скромное предположение о том, что возникновение нашей Вселенной является одним из тех событий, что происходят время от времени.

Эдвард Трайон

Вселенная – это полностью бесплатный ланч.

Алан Гут

В классическом научно-фантастическом романе Пола Андерсона «Тау Ноль» (Tau Zero) космический корабль под названием Leonora Christine запускают в космос с заданием достичь близлежащих звезд. На борту корабля находятся 50 человек; во время путешествия к новой звездной системе корабль может развивать околосветовую скорость. Что еще более важно, на корабле действует принцип теории относительности, который гласит, что чем быстрее движется корабль, тем больше замедляется время внутри корабля. А потому путешествие к близлежащим звездам, которое заняло бы десятилетия с точки зрения людей на Земле, для астронавтов длится лишь несколько лет.

Корабль представляет собой чудо техники; он приводится в действие прямоточными воздушно-реактивными двигателями, которые черпают водород из космоса, а затем сжигают его, получая неограниченное количество энергии. Корабль движется настолько быстро, что экипаж даже может наблюдать доплеровское смещение звездного света: звезды впереди кажутся голубоватыми, а звезды позади – красноватыми.

Затем происходит катастрофа. На расстоянии 10 световых лет от Земли корабль проходит сквозь межзвездное пылевое облако и попадает в область турбулентности, в результате чего временно перестает функционировать система торможения. Перепуганный экипаж оказывается в плену на вышедшем из-под контроля корабле, который все сильнее и сильнее разгоняется, приближаясь к скорости света. Члены экипажа беспомощно наблюдают за тем, как неуправляемый корабль за какие-то минуты пересекает целые звездные системы. За год корабль проносится сквозь половину галактики Млечный Путь. Бесконтрольно ускоряясь, корабль мчится мимо галактик; на это уходят месяцы, в то время как на Земле проходят миллионы лет. Вскоре скорость корабля настолько приближается к световой (τ0), что члены экипажа становятся свидетелями космических катастроф, на их глазах старится сама Вселенная.

В конце концов они видят, что изначальное расширение Вселенной прекращается и обращается вспять – Вселенная сжимается. Температура резко возрастает, и члены экипажа понимают, что корабль движется навстречу Большому сжатию. Они молятся про себя, видя, что температура растет, галактики начинают сливаться в единое целое – космический первоатом. Кажется, что они неминуемо встретят свою смерть в огненном катаклизме.

Их единственная надежда на то, что вещество взорвется и разлетится в пределах ограниченной области, а они на большой скорости проскользнут мимо. Чудом их защита срабатывает, когда они пролетают мимо первоатома и оказываются свидетелями рождения новой Вселенной. Когда Вселенная вновь расширяется, их восхищенным взорам предстает картина творения новых звезд и галактик. Им удается отремонтировать корабль, они тщательно рассчитывают курс, направляясь к достаточно взрослой галактике, которая содержит элементы высшего порядка, делающие жизнь в ней возможной. Наконец им удается обнаружить планету, где можно жить, и основывают там колонию, давая начало новому человечеству.

Эта история была написана в 1967 году, когда среди астрономов бушевали яростные споры о том, какова же конечная судьба Вселенной: погибнет ли она от Большого сжатия или Большого охлаждения, будет ли она бесконечно пульсировать или продолжит свое существование в стационарном состоянии бесконечно? С тех пор спор, кажется, нашел свое разрешение, и появилась новая теория – теория инфляции.

Рождение теории инфляции

«Это нечто невероятное», – такую запись сделал Алан Гут в своем дневнике в 1979 году. Он был воодушевлен сознанием того, что, возможно, натолкнулся на одну из величайших теорий космологии. Гут впервые за 50 лет подверг основательному пересмотру теорию Большого взрыва, сделав конструктивное наблюдение: он смог решить некоторые из глубочайших загадок космологии, предположив, что Вселенная подверглась гиперинфляции (ускоренному расширению) в момент своего рождения – расширению гораздо более быстрому, чем считало большинство физиков. Гут обнаружил, что, учитывая гиперрасширение, он может безо всяких усилий разрешить массу космологических вопросов, которые не поддавались никакому объяснению. Этой теории предстояло произвести революцию в космологии. (Последние космологические данные, включая результаты, полученные со спутника WMAP, согласуются с прогнозами, которые дает эта теория.) Это не только единственная действенная космологическая теория – она же простейшая и наиболее надежная.

Замечательно, что столь простая теория оказалась в состоянии разрешить так много сложных космологических вопросов. Одной из проблем, которые так элегантно разрешала теория инфляции, была проблема плоскостности Вселенной. Астрономические данные показали, что кривизна Вселенной очень близка к нулю: по сути, она намного ближе к нулю, чем до этого считали многие астрономы. Это могло бы объясняться тем фактом, что Вселенная, подобно шарику, который быстро надувают, стала более плоской за период расширения. Мы подобны муравьям, ползающим по поверхности шарика, – мы слишком малы, чтобы заметить очень небольшую кривизну поверхности. Инфляция настолько «вытянула» пространство-время, что оно кажется плоским.

Историческим в открытии Гута было то, что он применил физику элементарных частиц, занимающуюся анализом мельчайших частиц в природе, к космологии, изучению Вселенной во всей ее целостности, включая происхождение. Теперь мы понимаем, что глубочайшие загадки Вселенной нельзя решить без физики чрезвычайно малого – мира квантовой теории и физики элементарных частиц.

Поиски объединения

Гут родился в 1947 году в Нью-Брансуике (штат Нью-Джерси). В отличие от Эйнштейна, Гамова и Хойла, в жизни Гута не было судьбоносного момента, толкнувшего его в мир физики. Ни его отец, ни мать не получили высшего образования и не проявляли интереса к науке. Но, по собственному признанию Алана, его всегда восхищала связь математики с законами природы.

В Массачусетском технологическом институте в 1960-е годы он серьезно рассматривал возможность заняться физикой элементарных частиц. В особенности его восхищало всеобщее возбуждение, причиной которого стало новое течение в физике – поиски объединения всех основных сил. Святым Граалем физики были объединяющие мотивы, которые могли бы объяснить все тонкости строения Вселенной самым простым и связным образом. Целую вечность физики блуждали в поисках этого Грааля. Со времен древних греков ученые считают, что Вселенная, которую мы видим сегодня, представляет собой обломки чего-то гораздо более простого, и наша цель – раскрыть суть этого простого.

За две тысячи лет исследований природы вещества и энергии физики открыли, что механизм Вселенной приводят в действие всего четыре основные силы. (Ученые пытались и пытаются найти возможную пятую силу, но до сих пор все результаты исследований в этом направлении были отрицательными или неубедительными[13].)

Первая сила – гравитационное взаимодействие, которое удерживает Солнечную систему как единое целое и движет планеты по их небесным орбитам в Солнечной системе. Если гравитацию неожиданно «выключить», то звезды в небесах взорвутся, Земля рассыплется и нас всех выбросит в открытый космос со скоростью около полутора тысяч километров в час[14].

Вторая сила – электромагнитное взаимодействие, которое освещает наши города, заполняет мир телевизорами, сотовыми телефонами, радиоприемниками, лазерными лучами и сетью Интернет. Если внезапно выключить электромагнитное взаимодействие, то цивилизацию тут же отбросит на век-другой в прошлое, в темноту и безмолвие. Это наглядно продемонстрировала авария энергосистемы в 2003 году, парализовавшая весь северо-восток США. Если мы рассмотрим электромагнитную силу в микроскоп, то увидим, что она состоит из крошечных частиц, или квантов, называемых фотонами.

Третья сила – слабое ядерное взаимодействие, отвечающее за радиоактивный распад. Это слишком незначительный фактор, чтобы удерживать атом как единое целое, он позволяет ядру разделиться на более мелкие составляющие, или распасться. Радиоактивные приборы в больницах во многом основываются на слабом ядерном взаимодействии. Слабое ядерное взаимодействие также способствует разогреву земного ядра посредством радиоактивных веществ, что становится причиной извержения вулканов. Слабое ядерное взаимодействие, в свою очередь, основывается на взаимодействии электронов и нейтрино (призрачные частицы, практически не имеющие массы и способные проходить сквозь триллионы километров твердого свинца, ни с чем не сталкиваясь). Эти электроны и нейтрино взаимодействуют, обмениваясь частицами – W– и Z-бозонами.

Сильное ядерное взаимодействие скрепляет ядра атомов. Без этой силы ядра бы разделились на части, атомы бы распались, а вся наша реальность «расползлась» бы. Сильное ядерное взаимодействие отвечает за примерно сотню элементов, которые заполняют Вселенную. Вместе с тем сильное и слабое ядерные взаимодействия отвечают за свет, который испускают звезды согласно уравнению Эйнштейна Е = mc². Без ядерного взаимодействия Вселенная погрузилась бы во тьму, температура на Земле резко упала бы, а океаны превратились бы в ледники.

Удивительной чертой этих четырех сил является то, что все они принципиально отличаются друг от друга, обладая различными свойствами и имея каждая свои достоинства. Например, гравитация намного слабее трех остальных сил, она в 1036 раз слабее электромагнитного взаимодействия. Земля весит 6 трлн кг, и все же огромный вес и гравитация могут быть легко уравновешены с помощью электромагнитной силы. Даже ваша расческа может поднять клочки бумаги с помощью статического электричества, тем самым преодолевая силу гравитации. К тому же гравитация только притягивает свои объекты, электромагнитная же сила может как притягивать, так и отталкивать в зависимости от заряда частиц.

Объединение на уровне теории Большого взрыва

Один из фундаментальных вопросов, с которым столкнулась физика, таков: почему Вселенная должна приводиться в действие четырьмя различными взаимодействиями? И почему эти четыре взаимодействия должны быть столь непохожими друг на друга, обладать разными качествами, различной физикой и по-разному взаимодействовать?

Эйнштейн первым поставил перед собой цель объединить эти четыре силы при помощи единой связной теории поля, начав с объединения гравитации с электромагнитным взаимодействием. Он не добился успеха, потому что обогнал свое время: тогда слишком мало было известно о сильном взаимодействии, чтобы создать абсолютно реалистичную единую теорию поля. Но пионерская работа Эйнштейна раскрыла глаза целому миру физиков на возможность существования теории всего.

Цель единой теории поля казалась в высшей степени недостижимой в 1950-е годы, особенно в момент, когда в физике элементарных частиц царил полный хаос: ускоритель атомных частиц расщеплял ядро с целью обнаружить «элементарные составляющие» вещества, а на выходе при эксперименте обнаруживались сотни новых частиц. Физика элементарных частиц стала терминологическим противоречием, космической шуткой. Древние греки считали, что при расщеплении субстанции на основные составляющие все упрощается. Но все получилось с точностью до наоборот: физики изо всех сил пытались найти достаточно букв греческого алфавита для обозначения всех новых частиц. Дж. Роберт Оппенгеймер пошутил, что Нобелевскую премию по физике должен получить физик, который не открыл в этом году новую частицу. Нобелевский лауреат Стивен Вайнберг начал сомневаться, способен ли человеческий разум вообще постичь секрет ядерного взаимодействия.

Эта неразбериха несколько улеглась, когда Марри Гелл-Ман и Джордж Цвейг из Калифорнийского технологического института предложили теорию кварков – составляющих протонов и нейтронов. Согласно теории кварков три кварка составляют протон или нейтрон, а кварк и антикварк составляют мезон (частицу, удерживающую частицы ядра). Это было лишь частным решением (поскольку сегодня мы знаем, что мир заполнен различными видами кварков), но тогда оно влило новую струю энергии в пребывающую в спячке область науки.

В 1967 году физики Стивен Вайнберг и Абдус Салам совершили ошеломляющий прорыв, доказав возможность объединения слабого ядерного и электромагнитного взаимодействий. Они создали новую теорию, согласно которой электроны и нейтрино (называемые лептонами) взаимодействуют друг с другом путем обмена новыми частицами, названными W– и Z-бозонами, а также фотонами. Рассматривая W– и Z-бозоны и фотоны на общем основании, они создали теорию, объединяющую обе силы. В 1979 году Стивен Вайнберг, Шелдон Глэшоу и Абдус Салам получили Нобелевскую премию за совместную работу в области объединения двух из четырех сил – электромагнитного и слабого ядерного взаимодействий, – а также за активные исследования в области сильного ядерного взаимодействия.

В 1970-е годы физики провели тщательный анализ данных, полученных на ускорителе частиц Стэнфордского центра, обстреливающем цель мощными зарядами электронов, чтобы исследовать строение протона. Они обнаружили, что сильное ядерное взаимодействие, удерживающее кварки внутри протона, можно объяснить, введя новые частицы (названные глюонами), которые являются квантами сильного ядерного взаимодействия. Природу связующей силы, удерживающей протон от распада, можно было бы объяснить тем, что составляющие его кварки обмениваются между собой глюонами. Это привело к созданию новой теории сильного ядерного взаимодействия, названной квантовой хромодинамикой.

Итак, к середине 1970-х годов стало возможным объединить три взаимодействия из четырех (кроме гравитации) и получить так называемую Стандартную модель – теорию кварков, электронов и нейтрино, которые взаимодействовали путем обмена глюонами, W– и Z-бозонами и фотонами. Эта модель стала результатом десятилетий мучительной работы и исследований в области физики частиц. В настоящее время Стандартная модель способна структурировать все без исключения экспериментальные данные, имеющие отношение к физике частиц.

Хотя Стандартная модель – одна из наиболее успешных физических теорий всех времен, она весьма безобразна. Сложно поверить, что на фундаментальном уровне можно оперировать теорией, которая столь топорно описана. Например, в этой теории существует 19 произвольных параметров, которые рассчитываются эмпирически (то есть различные массы и силы взаимодействия не определяются теорией, их нужно выводить экспериментальным путем; в идеале же, то есть в подлинно объединяющей теории, эти константы должны определяться самой теорией, а не зависеть от внешних экспериментов).

Далее, в ней существуют три точные копии элементарных частиц, называемые поколениями. Сложно поверить, что природа на самом фундаментальном уровне будет использовать три точные копии субатомных частиц. Если не считать массы, то эти частицы – точные копии. (Например, такими копиями электрона являются мюон, масса которого в 200 раз больше массы электрона, и тау-частица с массой в 3500 раз больше.) Наконец, в Стандартной модели нет никакого упоминания о силе гравитации, хотя гравитация – пожалуй, наиболее всепроникающая сила во Вселенной.

Поскольку Стандартная модель, несмотря на ее потрясающий экспериментальный успех, кажется надуманной, физики пытались создать еще одну теорию, или теорию великого объединения, которая рассматривала бы кварки и лептоны на общем основании. Она также рассматривала глюон, W– и Z-бозоны и фотон на одном уровне. (Однако эта разработка не смогла стать «окончательной теорией», поскольку гравитация в ней подозрительным образом не учитывалась: ее считали слишком сложной для слияния с остальными силами, как мы это увидим.)

Программа объединения, в свою очередь, ввела в космологию новую парадигму: Идея была очень простой и изящной: в момент Большого взрыва все четыре основные силы объединились в единую связанную силу – загадочную сверхсилу. Четыре силы были равны друг другу по значимости и являлись частью единого связного целого. Однако, когда Вселенная начала стремительно расширяться и остывать, изначальная сверхсила начала «расщепляться» и от нее одна за другой начали «отпадать» различные силы.

Согласно этой теории, остывание Вселенной после Большого взрыва аналогично замерзанию воды. Когда вода находится в жидком состоянии, она вполне однородна и поверхность ее гладкая. Однако при замерзании внутри ее объема образуются миллионы крошечных ледяных кристалликов. Когда жидкая вода замерзает, ее изначальная однородность нарушена, поскольку лед содержит трещины, пузырьки и кристаллы.

Другими словами, сегодня мы видим, что Вселенная ужасно повреждена. Она совсем неоднородна и несимметрична, она состоит из неровных горных цепей, вулканов, ураганов, каменистых астероидов и взрывающихся звезд; при этом отсутствует всякое единство, более того, мы видим, что четыре основные силы никак не связаны друг с другом. Но причина того, что Вселенная так искорежена, – это то, что она уже старая и холодная.


Хотя Вселенная возникла в состоянии совершенного единства, до сегодняшнего дня она прошла много фазовых переходов, или изменений состояния, при которых вселенские силы одна за другой освобождались от взаимодействия с остальными по мере остывания Вселенной. Физикам предстоит заглянуть в прошлое, воссоздать этапы изначального формирования Вселенной (в состоянии совершенного единства), которые привели к тому повреждению Вселенной, которое мы видим на сегодняшний день.

Таким образом, чтобы получить ключ к разгадке, необходимо точно понять, как произошли эти фазовые переходы с момента создания Вселенной, которые ученые называют спонтанными нарушениями. Будь то таяние льда, кипение воды, образование дождевых облаков или охлаждение после Большого взрыва, фазовые переходы могут соединять два совершенно разных состояния вещества. (Чтобы показать, насколько мощными могут быть эти фазовые переходы, художник Боб Миллер загадал загадку: «Как можно подвесить 200 000 кг воды в воздухе без всякой опоры?»{51} Ответ: «Образовать облако».)

Ложный вакуум

Процесс, когда одна сила отделяется от остальных, можно сравнить с прорывом плотины. Реки текут по склонам, потому что вода течет в направлении уменьшения энергии, то есть в сторону уровня моря. Наименьшим энергетическим состоянием является вакуум. Однако существует и необычный, ложный вакуум. Например, если мы соорудим плотину на реке, то будет казаться, что она находится в стабильном состоянии, в то время как в действительности она находится под огромным давлением. Если в плотине появится малейшая трещина, давление может разнести плотину, освободить поток энергии из ложного вакуума (перегороженная плотиной река) и вызвать катастрофический разлив ее в направлении истинного вакуума (уровень моря). Могут быть затоплены целые населенные пункты, если вдруг произойдет спонтанное разрушение плотины и внезапный переход от ложного вакуума к истинному.

Подобным образом, по теории великого объединения, Вселенная изначально возникла в состоянии ложного вакуума, где три силы были объединены в единое целое. Однако целостность эта была нестабильной, она спонтанно разрушилась, и произошел переход из ложного вакуума, где были объединены три силы, к истинному вакууму, где эти силы распались.

Все это было известно еще до того, как Гут начал анализировать теорию великого объединения. Но Гут заметил еще кое-что, что просмотрели другие: в состоянии ложного вакуума Вселенная расширяется экспоненциально, в точности так, как предсказывал де Ситтер в 1917 году. Энергия ложного вакуума является космологической константой, которая заставляет Вселенную расширяться с невероятной скоростью. Гут задался судьбоносным вопросом: может ли это экспоненциальное расширение де Ситтера разрешить некоторые космологические проблемы?

Проблема монополя

Одним из прогнозов теорий великого объединения было образование в начале времен множества монополей. Монополь – единичный магнитный полюс, северный или южный. В природе монополей не бывает: полюса встречаются только в паре. Если взять молоток и разбить им магнит пополам, то не получится двух монополей; вместо этого у вас окажется два меньших магнита с парой полюсов – северным и южным соответственно.

Проблемой, однако, стало то, что ученые, веками экспериментируя, не обнаружили убедительных доказательств существования монополя. Алан Гут был озадачен тем фактом, что теории великого объединения предсказывали существование большого количества монополей, хотя никто никогда их не видел. «Подобно единорогу, монополь и до сих пор продолжает пленять человеческий разум, несмотря на отсутствие убедительных доказательств его существования»{52}, – заметил Гут.

И тут внезапно ему в голову пришла идея. В мгновение ока все кусочки головоломного пазла встали на свои места. Он понял, что если Вселенная зародилась в состоянии ложного вакуума, то она могла расширяться экспоненциально, как и предполагал де Ситтер несколько десятков лет тому назад. В этом состоянии ложного вакуума Вселенная могла внезапно инфляционно расшириться до невероятной степени. Если ученые до сих пор и не встречали монополя, то дело обстоит так лишь потому, что монополи были разбросаны по всей Вселенной, которая имела гораздо большие размеры, чем можно было предположить.

Для Гута это осознание стало источником радости и удивления. Такое простое решение могло бы в момент объяснить проблему монополя. Но Гут понимал, что последствия этого решения для космологии будут гораздо более существенными, чем он сам усматривал в своей идее.

Проблема плоскостности Вселенной

Алан Гут увидел, что его теория разрешает еще одну проблему – проблему плоскостности Вселенной, которую мы упоминали ранее. Стандартная картина Большого взрыва не могла объяснить, почему Вселенная такая плоская. В 1970-е годы считалось, что плотность вещества во Вселенной, называемая Ω, равнялась приблизительно 0,1. Тот факт, что значение было относительно близко к критической плотности 1,0 через столько миллиардов лет после Большого взрыва, очень беспокоил ученых. По мере того как Вселенная расширялась, Ω должна была бы измениться. Ее же значение было неуютно близко к значению 1,0, которое описывает полностью плоский космос.

Уравнения Эйнштейна для любого разумного значения Ω в начале времен показывают, что в наши дни Ω должна равняться почти нулю. Потребовалось бы чудо, чтобы Ω находилась так близко к значению 1 через столько миллиардов лет, прошедших после Большого взрыва. Это то, что в космологии называют проблемой точной настройки. Бог, или Творец, должен был «выбрать» значение Ω с фантастической точностью, чтобы в наши дни она равнялась 0,1. Если в наши дни значение Ω находится в диапазоне от 0,1 до 10, то это подразумевает, что через секунду после Большого взрыва ее значение равнялось 1,00000000000000. Иными словами, в начале времен значение Ω должно было быть «выбрано» равным единице с точностью до одной стотриллионной, что с трудом укладывается в голове.

Представьте, что вы стараетесь поставить карандаш на острие. Сколько бы вы ни искали баланс, карандаш все равно падает. По сути, необходима потрясающая точность настройки – сбалансировать карандаш таким образом, чтобы он не упал. А теперь попробуйте сбалансировать карандаш так, чтобы он простоял на острие грифеля не несколько секунд, а несколько лет! Вот также невероятна и точная настройка, необходимая для того, чтобы сегодня Ω равнялась 0,1. Малейшая ошибка в настройке стала бы причиной нынешнего значения Ω, намного отличного от единицы. Так почему же плотность столь близка к первому дню творения, если, по справедливости, ее значение должно бы уйти астрономически далеко?

Для Гута ответ был очевиден. Вселенная просто-напросто расширилась до такой степени, что стала казаться плоской. Подобно человеку, считающему, что Земля плоская, потому что он не видит горизонта, астрономы заключили, что значение Ω находится в области 1, потому что инфляция сделала Вселенную плоской.

Проблема горизонта

Инфляция не только объясняла факты, свидетельствующие о том, что Вселенная плоская, – она также решила проблему горизонта. Эта проблема основана на простом понимании того, что ночное небо кажется относительно однородным, в какую бы точку вы ни смотрели. Если вы повернете голову на 180°, то увидите, что Вселенная однородна, хотя только что видели сегменты Вселенной, разделенные десятками миллиардов световых лет. Мощнейшие телескопы не могут обнаружить каких-либо заметных отклонений в этой однородности. Наши космические спутники показали, что космическое фоновое микроволновое излучение также распределено чрезвычайно однородно. В какую бы точку космоса мы ни проникли, температура фонового излучения меняется не более чем на одну тысячную градуса.

Но в этом-то и проблема, поскольку скорость света является конечным скоростным пределом во Вселенной. За время жизни Вселенной свет или информация никоим образом не могли пройти расстояние от одной части ночного неба к другой. Если взять, скажем, микроволновое излучение, видимое в одном направлении, то оно путешествовало более 13 млрд лет с момента Большого взрыва. Но если мы повернем голову на 180°, то увидим такое же микроволновое излучение, которое тоже пропутешествовало более 13 млрд лет. Поскольку эти излучения имеют одну и ту же температуру, это означает, что они находились в термальном контакте еще в начале времен. Но различные точки в ночном небе, разделенные расстоянием в 26 млрд световых лет, с момента Большого взрыва никоим образом не могли обменяться информацией.



Поделиться книгой:

На главную
Назад