Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: У атомов тоже есть сердце. Резерфорд. Атомное ядро. - Roger Corcho Orrit на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

ОТКРЫТИЕ ЯДРА

В 1911 году Резерфорд опубликовал статью "Рассеивание альфа- и бета- частиц веществом и структура атома", в которой описал свою новую теорию атома:

"Хорошо известно, что альфа- и бета- частицы при столкновениях с атомами вещества испытывают отклонения от прямолинейного пути. [...] Поэтому нет сомнения в том, что столь быстро движущиеся частицы проникают сквозь атомы, встречающиеся на их пути, и что наблюдаемые отклонения обусловлены сильным электрическим полем, действующим внутри атомной системы. [...] Наблюдения, проведенные Гейгером и Марсденом по рассеянию альфа-лучей, показали, что некоторое количество альфа-частиц при однократном столкновении испытывают отклонение на угол, больший 90°. [...] По-видимому, разумнее предположить, что отклонения на большой угол обусловлены однократным атомным столкновением. [...] Простой расчет показывает, что в атоме должно существовать сильное электрическое поле. [...] При рассмотрении данных в целом, по-видимому, наиболее простым является предположение, что атом имеет центральный заряд, распределенный по очень малому объему. [...] При сопоставлении излагаемой в данной статье теории с экспериментальными результатами предполагалось, что атом состоит из сконцентрированного в точке центрального заряда*.


Немецкий физик Ханс Гейгер, 1928 год.

Резерфорд смог определить, что диаметр внутренней структуры в атоме должен соответствовать примерно 10-14 м, то есть быть в десять тысяч раз меньше атома. Принято сравнивать размер атомного ядра с мухой внутри огромного собора, однако в таком незначительном объеме, который представляет собой ядро, сконцентрировано 99% массы атома. Оставшееся пространство представлялось загадочно пустым и не имеющим точных пределов, лишь иногда эту пустоту пересекали электроны.

Согласно интерпретации Резерфорда частицы отскакивали друг от друга под воздействием отталкивающей силы. На тот момент было уже доказано, что частицы с одним знаком заряда отталкиваются, с противоположными знаками — притягиваются. В 1913 году этот ход рассуждений позволил Резерфорду сделать вывод, что поскольку альфа-лучи имеют положительный заряд, их отклонение при прохождении сквозь золотую фольгу обусловлено столкновением с частицами того же знака заряда. Так можно было объяснить, почему большинство альфа-частиц проходит сквозь фольгу без отклонения: им на пути не встречаются положительные заряды. Протон был обнаружен позднее, в 1918 году, когда Резерфорд понял, что открытия атомного ядра недостаточно и что нужно разделить его на составляющие и изучить его строение.

АТОМИЗМ

Открытие Резерфорда пришлось на несколько сумбурный период в истории физики. Модель атома Томсона предложена сравнительно недавно, еще не достигнуто согласие в отношении существования атомов, химики и физики почти столетие разделены на два лагеря: одни полагают, что атомизм — лишь бездоказательное пустословие, в другом лагере утверждают, что атомы — основа всех элементов. Имелось множество моделей, по-разному соотносящихся с экспериментальными данными, но результаты были неоднозначными.

Путь атомной гипотезы оказался долгим. Во все времена она становилась предметом полемики, ее сторонники обвинялись в неверии и материализме, подвергались преследованиям. Первые атомисты жили еще в Древней Греции. Демокриту (460-370 до н. э.) атомы представлялись конечными составляющими бытия, которые не могли быть разделены, разрушены, подвержены действию времени, из них образовалось все вокруг. Как считал он сам: "Лишь в общем мнении есть сладкое и горькое, теплое и холодное; в общем мнении существуют разные цвета; на самом деле существуют только атомы и пустота*.

ЭПИКУР И КЛИНАМЕН

Эпикур (341-270 до н. э.) — древнегреческий философ, родился на острове Самос. Его семья происходила из Афин, куда он перебрался позднее и где разбил сад, чтобы взращивать в нем знания и дружбу. В центр человеческой жизни Эпикур ставил удовольствие, понимание которого сближало его со скептиками. Он боролся со страхами, в том числе со страхом смерти, показывая, что в основе их всех лежат неправильные верования. Для Эпикура число атомов бесконечно (так же как и Вселенная), сами атомы вечны, неделимы и неизменны, они обладают формой, величиной и весом. Атомизм ведет к механистическому восприятию Вселенной, в которой нет места свободе воли. И, защищая свободу воли, Эпикур был вынужден включить идею о клинамене, случайном отклонении атомов. После этого можно было говорить о присутствии некоторой неопределенности во Вселенной.


Эпикур, гравюра из книги Томаса Станли "История философии-, 1655 год.

На протяжении веков атомизм был философским течением с небольшим количеством сторонников. Эпикур, например, полагал, что атомы закручиваются в вихри, создавая бесконечность "миров" со своими богами. К царству атомов относилась также и душа, состоящая из тончайших атомов. В ходе истории многие выдающиеся ученые, среди которых Галилей и Ньютон, защищали атомизм, чем способствовали развитию мысли в этой сфере. Однако отсутствовало самое главное — привязка атомизма к реальной жизни. У гипотезы не было доказательной базы, для того чтобы безоговорочно найти себе место в ряду других философских концепций. В первом издании Британской энциклопедии (между 1768 и 1771 годами) в статье "Атом" его привязка к философскому течению едва затронута: "В философии — мельчайшая частица материи, не поддающаяся делению. Атомы являются minima naturae (мельчайшими телами) и представляются началом любой физической величины".

С XIX века развитие физики и химии вынудило значительно расширить данное определение.

АТОМЫ В ХИМИИ

Новый этап возрождения идей атомизма в XIX веке наступил в основном благодаря химии и был обусловлен различными причинами, среди которых выделяется крушение доктрины о четырех стихиях, подчинявшей себе интерпретацию природы почти целое тысячелетие. Антуан Лавуазье (1743-1794) обнаружил, что вода, прежде считавшаяся одной из стихий, наряду с огнем, землей и воздухом, на самом деле состоит из кислорода и водорода. Это открытие дало новое понимание природы вещей на основе химической науки. Несмотря на это сам Лавуазье скептически относился к атомной теории.

Весьма вероятно, что мы никогда ничего не узнаем об атомах.

Антуан Лавуазье, французский химик

ДАЛЬТОН. ПЕРВООТКРЫВАТЕЛЬ АТОМА

Сын квакеров из Камберленда (Англия) Джон Дальтон (1766-1844) начал свою научную карьеру как метеоролог. Считается, что его представления об атоме происходят именно от исследований атмосферы. Дальтон был первым, кто обнаружил, что воздух являет собой неоднородную субстанцию и состоит в основном из азота (80%) и кислорода (примерно 20%). Он также описал дальтонизм, особенность зрения, названную его именем. Дальтон много внимания уделял преподаванию и основал академию. По поводу атомной теории в 1804 году он написал следующее:

"1. Существуют мельчайшие частицы, атомы, из которых состоит материя. 2. Атомы неделимы, их невозможно разрушить. 3. Атомы одного химического элемента имеют одинаковые химические свойства, не преобразуются и не изменяются в других элементах".

В концепции кратных отношений, предложенной Дальтоном, известной как закон Дальтона и до сих пор включенной в начальный курс химии, важен принцип сохранения массы. В любой химической реакции масса реактивов будет равна массе продуктов.


Ученым, наконец поместившим атомную теорию в центр химического знания своей эпохи, стал Джон Дальтон (1766- 1844). Он прибег к старой концепции атомизма для объяснения открытого им относительного атомного веса элементов.

Школьный учитель Дальтон в 1803 году провозгласил свой так называемый закон кратных отношений, согласно которому разные химические элементы комбинируются друг с другом, как небольшие целые числа. Закон сформулирован так:

"Если два элемента образуют друг с другом несколько химических соединений, то массы одного из элементов, приходящиеся на одну и ту же массу другого, соотносятся между собой как небольшие целые числа".

Дальтон интерпретировал кратные отношения как доказательство атомизма. Если представить, что определенное соединение состоит из атомов разных элементов, имеющих определенную массовую пропорцию, тогда даже если мы возьмем большое количество соединений, пропорция останется неизменной. Дальтон открыл макроскопическую характеристику — постоянное отношение масс компонентов гетерогенного вещества с массами компонентов вещества — и интерпретировал ее как следствие явлений, имевших место на микроскопическом уровне, и специфическую комбинацию разных видов атомов.

В отношении атомов Дальтон настаивал, что они неделимы, что их невозможно ни создать, ни уничтожить, то есть в химических процессах происходит лишь изменение комбинаций атомов. Он выяснил, что каждый элемент состоит из атомов одного типа, схожих между собой и различающихся с атомами других элементов. Одна из отличительных характеристик, которые Дальтон установил для них, относилась к атомному весу. Он также утверждал, что атомы комбинируются при создании химических соединений.

Его убежденность в том, что атомы невозможно разрушить, привела его к отстаиванию закона о сохранении материи (ранее предложенного Лавуазье): "Мы могли бы с таким же успехом попытаться внести в Солнечную систему новую планету или уничтожить одну из уже существующих, как и создать или уничтожить частицу водорода". Тем не менее труды Резерфорда, которые мы рассмотрим в следующей главе, позволили доказать, что представление Дальтона было неполным.

СПОР

В XIX веке многие ученые полагали, что переход от макроскопического к микроскопическому миру, понимание которого основывалось на научном эксперименте, неприемлем ввиду невозможности непосредственного наблюдения микроскопического мира. Критики атомизма нашли много аргументов, отстаивая свою позицию в рамках позитивизма. Для основателя этого философского движения, французского социолога Огюста Конта (1798-1857), наука опиралась на констатацию фактов. Любое утверждение, касающееся окружающей реальности, не подпитанное фактами, расценивалось как метафизическое размышление и отвергалось наукой. С точки зрения позитивизма атомизм обладал всеми чертами метафизического пустословия.

Одним из наиболее настойчиво противостоявших атомизму ученых был Жан-Батист Дюма (1800-1884):

"Что остается от амбициозного экскурса, совершенного нами в сферу атомов? Похоже, ничего основательного. Разве только убеждение, что химия сбивается с пути всякий раз, когда оставляет дорогу эксперимента и пытается продвигаться в потемках [...]. Если бы я мог, я бы вычеркнул слово "атом" из науки, потому что убежден: это понятие выходит далеко за пределы экспериментов".

Критика атомов наталкивалась на полярное к ним отношение других химиков, например Уильяма Праута, который в 1815 году пришел к выводу, что все атомы на самом деле являются соединениями атомов водорода (что напрямую связано с доказательством Резерфорда).

Кто-нибудь когда-нибудь видел молекулу газа или атом?

Марселен Бертло (1827-1907), французский химик и историк

Появлялось все больше свидетельств существования атомов, но из-за отсутствия возможности прямой проверки ученые предпочитали отвергать гипотезу, стремясь исключить из науки чисто умозрительные измышления, к тому же многие из них считали прямую проверку чем-то выходящим за пределы человеческих возможностей.


Согласно кинетической теории газов газ состоит из атомов и молекул, находящихся в постоянном движении, сталкивающихся между собой и со стенками сосуда. При большем количестве накопленной энергии частицы двигаются быстрее, столкновений больше, а температура увеличивается.

ОЧЕРЕДЬ ЗА ФИЗИКОЙ

Острая полемика, возникшая в химической науке, распространилась и на физику. Теперь сторонники атомов включили в обсуждение термодинамику и изучение теплоты. Если в отношении теплоты еще можно отметить, что физики сконцентрировались на изучении макроскопических факторов и наблюдаемых в действительности явлений, то открытия Джеймса Клерка Максвелла и Людвига Больцмана перевернули данное представление. Оба ученых исследовали известные понятия с позиции движения атомов, при этом они не ограничились индивидуальной траекторией отдельного атома, а попытались рассчитать статистическое поведение множества атомов.

Согласно этой теории газ состоит из множества атомов, которые сталкиваются между собой и со стенками сосуда, в котором находится газ, как бильярдные шары (см. рисунок). Максвелл и Больцман установили, что средняя энергия отдельного атома газа в постоянном движении связана с давлением и температурой.

Так же как это происходило в химической науке, многие физики с недоверием относились к атомной теории. Тому имелось множество причин, среди которых, например, принцип экономии мысли. Объяснять то, что можно наблюдать, и отказываться от того, что наблюдать нельзя, многим ученым (в их числе австрийцу Эрнсту Маху) представлялось ошибкой.

В 1906 году Больцман, всю жизнь защищавший атомизм, совершил самоубийство, незадолго до того, как Резерфорд вторгся в мир атомов.

ИССЛЕДОВАТЬ ЧЕРНЫЙ ЯЩИК

Сомнения и конфронтации относительно атомов начали ослабевать в тот момент, когда были открыты составляющие внутренней структуры атома: сначала электроны, позже протоны, несколько десятилетий спустя — нейтроны. От химиков работа перешла в руки физиков (хотя часто сферы исследования обеих дисциплин пересекаются). Французский физик и философ науки Анри Пуанкаре (1854-1912) так охарактеризовал поворот, произошедший в отношении атомов:

"Атомная гипотеза в последнее время стала такой основательной, что больше не кажется гипотезой: атомы — не просто полезная выдумка, мы можем сказать, что видим их, так как способны их подсчитать".


РИС .6

АТОМНАЯ СТРУКТУРА

В 1897 году появилась возможность измерить удельный заряд электрона. Британский физик Джозеф Джон Томсон (1856-1940) впервые обнаружил отрицательно заряженные частицы, которые получили название электронов. Открытие их природы и основной характеристики стало большим достижением.


РИС. 7


РИС . 8


РИС . 9

Этот прорыв оказался возможным благодаря катодным лучам, представляющим собой электронные пучки, то есть поток электронов, испускаемых трубкой Крукса с небольшим количеством разреженного газа и впаянными в нее анодом и катодом (см. рисунок 6). При разности потенциалов появляются катодные лучи (электронные пучки), дающие зеленоватый флуоресцентный свет при прохождении через край стеклянной трубки. Их основная характеристика — прямолинейное перемещение — была обнаружена, когда посередине трубки установили объект и на дальней стенке появилась его тень (см. рисунок 7).

Также отмечалось, что при столкновении с объектом лучи могли сдвигать его вертушкой (см. рисунок 8). Это означало, что лучи состоят из частиц, обладающих массой. Затем выяснилось, что лучи обладают отрицательным зарядом, поскольку при воздействии на лучи магнитным полем проекция на стекле перемещалась относительно прямой траектории, так как лучи притягивались магнитом при наведении положительного полюса и отдалялись при приближении отрицательного (см. рисунок 9). Так Томсон идентифицировал электроны.

Ученый назвал их " корпускулами", а слово "электрон" было введено Джорджем Джонстоном Стони (1826-1911), их отличительная характеристика заключается в том, что они обнаруживались во всех элементах. Томсон доказал, что вне зависимости от происхождения корпускул и от выбора элементов, частицы демонстрируют одинаковые физические свойства. Томсон говорил об открытии следующее:

"Так как любой химический элемент способен производить электроны, мы можем заключить, что они входят в состав всех атомов.

Мы сделали первый шаг в понимании строения атомов".

Томсон первым увидел элемент структуры атома. Однако это открытие требовало поиска ответов на новые вопросы. Если у атома нейтральный заряд, что же внутри него противостоит отрицательно заряженным электронам?

РАЗМЕР АТОМОВ

Броуновское движение — это атомное явление, которое нетрудно увидеть, необходимы только микроскоп и частицы пыльцы. Однако в течение десятилетий ему не находилось объяснения. В 1827 году шотландский ботаник Роберт Броун наблюдал, как частицы пыльцы беспорядочно двигались без очевидной причины в воде, хотя должны были пребывать в состоянии покоя. Вот почему Броун заинтересовался этим движением. Только Альберт Эйнштейн рискнул дать ему объяснение в одной из своих статей, опубликованных в "чудесном· 1905 году. Эйнштейн пришел к выводу, что движение было вызвано воздействием атомов воздуха и воды на частицы пыльцы. Атомы газа находятся в постоянном движении, но их размер не позволяет нам наблюдать за ними.


Французский физик Жан-Батист Паррен, 1926 год.

Частицы пыльцы достаточно легкие, поэтому движение атомов воздействует на них; с другой стороны, они достаточно крупные, чтобы наблюдать за ними. Mo есть еще одно доказательство атомной теории.

Вклад Перрона

Идеи Эйнштейна требовали эмпирической поддержки. И эту поддержку дала работа Жана-Батиста Перрена (1870-1942), за которую в 1926 году тот был удостоен Нобелевской премии в области физики. Перрен использовал ультрамикроскоп, благодаря чему определил размер молекулы воды и составляющих ее атомов. В1913 году он опубликовал свои результаты: размер атома составляет 10-10 м. Перрен был привлечен к исследованиям строения атома и предложил изменить модель Томсона, отмечая, что электроны должны располагаться на внешней поверхности атома (иначе говоря, изюм должен находиться на поверхности пудинга). В любом случае речь шла об относительно корректной догадке.

А принимая во внимание низкую массу электронов, в чем содержится основная масса атома? В 1899 году Томсон так описал свои сомнения относительно заряда:



Поделиться книгой:

На главную
Назад