Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: В помощь радиолюбителю. Выпуск 7 - Вильямс Адольфович Никитин на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:


Рис. 11. Чертеж печатной платы (в масштабе 2:1) искателя скрытой проводки

Щуп состоит из пластмассового конического колпачка, внутри которого располагается металлический стержень.

Устройство помещается в пластмассовый корпус, показанный на рис. 12, который можно склеить из молочного оргстекла. Такая миниатюрная конструкция позволяет носить искатель в кармане.


Рис. 12. Внешний вид корпуса искателя

2.4. Металлоискатель

Булгак Л., Степанов А. [8]

Металлоискатель этой конструкции, собранный на транзисторах и одной микросхеме К159НТ1Г, которая представляет собой набор из двух биполярных транзисторов, построен по классической схеме, содержащей два генератора и устройство, позволяющее распознавать изменения частоты биений. Основное отличие этого металлоискателя От других известных конструкций состоит в том, что генераторы собраны на транзисторах, сформированных на одном кристалле. Это обеспечивает высокую стабильность частоты генераторов, возможность использования частоты биений менее 10 Гц. Металлоискатель способен обнаруживать гвозди на глубине 15 см от поверхности земли, а крышки колодцев — на глубине 60 см. Потребление тока от батареи 3336Л напряжением 4,5 В не превышает 2 мА.

Принципиальная схема металлоискателя представлена на рис. 13.


Рис. 13. Принципиальная схема металлоискателя

Генераторы собраны по одинаковым схемам с общей базой и обратной связью с коллектора на эмиттер через конденсаторы С3 и С7.

Сигналы обоих генераторов смешиваются на резисторе R5 и детектируются диодами V4, V5, включенными по схеме удвоения напряжения. При детектировании образуются комбинационные частоты. Высокочастотные составляющие подавляются конденсатором С11, а разностная частота через конденсатор С12 поступает на вход усилителя звуковой частоты. Транзистор V6 работает в линейном режиме, a V7 и V9 — в ключевом, благодаря чему синусоидальный сигнал преобразуется в прямоугольный. Конденсатор С14 дифференцирует положительные перепады, а отрицательные подавляются диодом V8. Резистор R16 используется в качестве регулятора громкости.

Начальная настройка прибора на нулевые биения производится сердечником катушки L2. Подстрока частоты эталонного генератора в рабочем режиме выполняется стабилитроном V3, исполняющем функции варикапа, с помощью переменного резистора R7.

Поисковая катушка L1 наматывается внавал на оправке диаметром 160 мм и содержит 100 витков провода ПЭВ-1 диаметром 0,3 мм. После снятия с оправки катушка пропитывается эпоксидной смолой и экранируется — обматывается фольгой с наличием зазора на концах. Катушка L2 содержит 250 витков провода ПЭВ-2 диаметром 0,1 мм и помещается в броневой сердечник СБ-23-11a. Индуктивность катушки — 4 мГн. В качестве звукоизлучателя В1 используются высокоомные головные телефоны.

Глава 3

РЕЛЕ ВРЕМЕНИ

3.1. Реле времени на одном транзисторе

Виноградов Е. [9]

Рассматриваемое реле времени срабатывает при кратковременном нажатии кнопки и отпускает после заданного промежутка времени. Принципиальная схема реле приведена на рис. 14.


Рис. 14. Принципиальная схема реле времени на одном транзисторе

В исходном состоянии транзистор Т1 заперт, электромагнитное реле Р обесточено, а конденсатор С1 разряжен. При нажатии кнопки Кн конденсатор С1 быстро заряжается от источника питания практически до напряжения этого источника. После отпускания кнопки появляется ток базы транзистора, достаточный для его отпирания, от коллекторного тока срабатывает реле, и начинается медленный разряд конденсатора. По мере разряда уменьшается напряжение на конденсаторе, вследствие чего падает ток базы транзистора и его коллектора. Когда коллекторный ток станет меньше тока удержания реле, оно отпустит.

Время выдержки определяется скоростью разряда конденсатора или постоянной времени разряда, которая равна произведению емкости конденсатора на сопротивление цепи разряда — параллельное соединение двух цепей: резисторы R3, R4, R5 и R1 с сопротивлением эмиттерного перехода транзистора. В верхнем по схеме положении движка переменного резистора R5 резистором R4 можно устанавливать выдержку в пределах от 1 до 10 с, резистором же R5 — более минуты.

В схеме можно использовать транзистор КТ361В и электромагнитное реле РЭС15, паспорт РС4.591.004. Если необходимо реле с двумя группами переключающих контактов, можно использовать РЭС52, паспорт РС4.555.020.

3.2. Реле времени на транзисторах

Суковатицин А. [10]

Это реле времени собрано на трех транзисторах, два из которых соединены по схеме мультивибратора. Благодаря этому исключается обычный недостаток нечеткого срабатывания, когда транзистор должен запереться при уменьшении тока базы. Принципиальная схема реле показана на рис. 15.


Рис. 15. Схема реле времени на транзисторах

В исходном состоянии, показанном на схеме, после подачи на схему питания начинается заряд конденсатора С1. Ток заряда течет от плюса источника питания через эмиттерный переход транзистора VT2, С1 (по схеме справа налево) и резистор R3 на минус питания. Транзистор VT2 отпирается, и срабатывает электромагнитное реле К1, что приводит к замыканию контактов К1.1. Это приводит к отпиранию до насыщения транзистора VT3. Низкий потенциал его коллектора приводит к тому, что потенциал базы транзистора VT1 также низкий, и он заперт. Конденсатор С1 заряжен до напряжения, почти равного напряжению питания. Это состояние является устойчивым.

Запуск реле времени осуществляется кратковременным нажатием кнопки Кн. При этом транзистор VT3 запирается, потенциал его коллектора резко возрастает, что приводит к отпиранию транзистора VT1 и опрокидыванию мультивибратора. Транзистор VT2 запирается, и реле обесточивается. Это приводит к размыканию контактов К1.1. Начинается перезаряд конденсатора. Ток протекает от плюса источника питания через открытый транзистор VT1, С1 (по схеме слева направо), резисторы R2, R1 на минус питания. Скорость перезаряда определяется сопротивлением указанных резисторов, то есть регулятором R1. По мере перезаряда положительный потенциал базы VT2 уменьшается и, наконец, становится отрицательным. В этот момент отпирается транзистор VT2 и мультивибратор вновь опрокидывается, срабатывает реле К1, замыкаются контакты К1.1 и отпирается транзистор VT3, что препятствует переходу мультивибратора в режим генерации. Конденсатор С1 быстро заряжается через резистор R3 и эмиттерный переход VT2. Схема вновь оказалась в устойчивом состоянии и готова к следующему запуску.

В схеме можно использовать электромагнитное реле РЭС9, паспорт РС4.529.029-09.

3.3. Реле времени

Дробница Н. [11]

Это реле времени отличается от рассмотренных выше. Его схема не содержит электромагнитного реле. Оно рассчитано на бесконтактную коммутацию нагрузки мощностью до 1000 Вт, но в режиме ожидания потребляемая мощность не превышает 1 Вт. Диапазон установки выдержки времени — от 0 до 30 мин. Принципиальная схема реле приведена на рис. 16.


Рис. 16. Принципиальная схема реле времени

Питание реле производится от сети переменного тока напряжением 220 В с помощью диодного моста VD1-VD4. В одну диагональ моста подается напряжение сети последовательно с нагрузкой Rн, а ко второй диагонали подключен тиристор VS1. Поэтому, пока тиристор заперт, нагрузка обесточена. В исходном состоянии конденсатор С1 разряжен, транзисторы VT2-VT4 открыты, a VT1 и тиристор заперты.

После нажатия кнопки SB1 конденсатор С1 через резистор R5 и переходы транзисторов VT2, VT3 заряжается до напряжения стабилизации VD6. При отпускании кнопки на левой обкладке С1 появляется отрицательный потенциал. Транзисторы VT2-VT4 запираются положительным потенциалом на стоке VT2 и базе VT1. VT4 подает отпирающее напряжение на управляющий электрод тиристора. Конденсатор С1 разряжается через резистор R8, сопротивление которого определяет скорость разряда. Когда напряжение на С1 достигнет напряжения отсечки VT2, последний откроется скачком за счет положительной обратной связи через транзисторы VT3, VT4. Потенциал стока VT2 упадет, VT1 и VS1 запрутся, нагрузка обесточится, установится исходное состояние реле.

Глава 4

ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

4.1. Электронный коммутатор

Иванов Б. [12]

Большинство электронных осциллографов являются однолучевыми и позволяют наблюдать на экране форму лишь одного колебания. Но часто возникает желание увидеть одновременно формы двух колебаний, например форму сигнала на входе и выходе какого-либо устройства. Для этого необходим двухлучевой осциллограф. Однако с помощью сравнительно простой приставки однолучевой осциллограф позволяет решить эту задачу. Такой приставкой является электронный коммутатор. Он поочередно подключает на вход усилителя вертикального отклонения каждый из исследуемых сигналов.

Принципиальная схема электронного коммутатора показана на рис. 17.


Рис. 17. Принципиальная схема электронного коммутатора

Исследуемые сигналы подаются на клеммы «Вх. 1» и «Вх. 2», а сигнал с клемм «Вых.» — на соединитель «Вход У» осциллографа. Переменные резисторы R1 и R10 служат регуляторами уровня входных сигналов, подаваемых на базы коммутирующих транзисторов VT1 и VT2, которые поочередно открываются и запираются импульсами, поступающими в цепи эмиттеров с симметричного мультивибратора. Транзисторы VT1 и VT2 работают на коллекторную нагрузку R6, с которой снимается результирующий сигнал на клеммы «Вых.».

Резисторы R2, R3 и R8, R9 служат для установки режимов коммутирующих транзисторов. Переменный резистор R5 предназначен для сдвига осциллограмм в вертикальном направлении. При симметричной схеме линии разверток обоих сигналов совпадают и их осциллограммы накладываются одна на другую. При вращении резистора R5 симметрия нарушается и одна осциллограмма сдвигается по вертикали вверх, а другая — вниз.

Элементы схемы электронного коммутатора размещаются на печатной плате, показанной на рис. 18. Вместо транзисторов П416Б можно использовать КТ3107Б. При применении КТ3102Б нужно изменить на обратную полярность включения батареи питания и электролитических конденсаторов.


Рис. 18. Чертеж печатной платы электронного коммутатора

4.2. Измеритель емкости на логической микросхеме [13]

Измерение емкости конденсатора С основано на методе перезаряда конденсатора и заключается в измерении среднего значения зарядного тока. Если конденсатор периодически заряжается до напряжения U и разряжается до нуля с частотой f зарядный (или разрядный) ток I равен количеству электричества Q, протекающего через конденсатор в секунду: I = Q·f = C·U·f тогда:

C = (1/U·fI

Итак, если проводить измерения при постоянных значениях напряжения и частоты, емкость будет численно равна среднему значению зарядного или разрядного тока. Принципиальная схема измерителя емкости приведена на рис. 19.


Рис. 19. Принципиальная схема измерителя емкости

На элементах DD1.1 и DD1.2 собран генератор прямоугольных импульсов. Частота их повторения определяется сопротивлением одного из резисторов R1-R4 и емкостью одного из конденсаторов С1-С4. Элементы DD1.3 и DD1.4 включены параллельно для получения достаточного зарядного тока. Когда на их выходах уровень равен лог. 1, измеряемый конденсатор заряжается через диод VD2 и стрелочный прибор до напряжения питания. При уровне лог. 0 конденсатор разряжается через диод VD1 до нуля. Конденсатор С5 сглаживает колебания стрелки. Прибор имеет четыре диапазона измерений: 50, 500, 5000 пФ и 0,05 мкФ, устанавливаемые переключателем SA1. При налаживании на каждом диапазоне к гнездам XS1, XS2 подключается конденсатор известной емкости, и стрелка прибора устанавливается на нужное деление шкалы. В качестве стрелочного прибора используется миллиамперметр на 1 мА с сопротивлением рамки 240 Ом.

4.3. Прибор для проверки кварцевых резонаторов

Агафонов Ю. [14]

Прибор (рис. 20) проверяет кварцевый резонатор в реальном режиме генерации высокой частоты (от 100 кГц до 10 МГц).


Рис. 20. Принципиальная схема прибора для проверки кварцевых резонаторов

Генератор собран на полевом транзисторе VT1. С его стока высокочастотные колебания подаются на базу транзистора VT2, включенного эмиттерным повторителем, и выпрямляются диодом VD1. Выпрямленное отрицательное напряжение с анода поступает на индикатор РА1 через резисторы R3 и R4. По отклонению стрелки можно судить об исправности кварцевого резонатора. Подключение дополнительного конденсатора С4 расширяет пределы частоты генерации.

4.4. Прибор для проверки тринисторов

Борисов А. [15]



Поделиться книгой:

На главную
Назад