Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: В помощь радиолюбителю. Выпуск 8 - Вильямс Адольфович Никитин на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Биологически активные точки (БАТ) на поверхности кожи человека характеризуются тем, что сопротивление в этих точках резко понижено, а емкость увеличена. Предложенная схема, приведенная на рис. 39, позволяет легко находить эти точки и воздействовать на них.


Рис. 39. Схема для поиска и воздействия на БАТ

Устройство содержит мультивибратор, собранный на лавинных транзисторах микросхемы К101КТ1А. Частота вырабатываемых им колебаний определяется сопротивлением резистора R1 и емкостью конденсатора С3. При разомкнутой цепи электродов поиска частота колебаний выше порога слышимости. В процессе поиска биологически активной точки один электрод держится пациентом в руке, а второй равномерно перемещается по коже. Попадание электрода на биологически активные точки сопровождается резким уменьшением частоты колебаний, которые воспроизводятся динамической головкой ВА1. Частоту колебаний можно регулировать переменным резистором R1. Трансформатор Тр1, а также и динамическая головка могут быть взяты от громкоговорителя для радиотрансляционной сети.

Вместо транзистора П308 можно использовать КТ503В.

7.2. Бытовой электрофорез

Члиянц Г. [29]

Электрофорезом в медицине называется метод физиотерапии, состоящий в одновременном воздействии на организм постоянного электрического тока и вводимых им через кожу или слизистые оболочки лекарственных препаратов. Принципиальная схема самодельного аппарата для электрофореза приведена на рис. 40.


Рис. 40. Принципиальная схема аппарата для электрофореза

Устройство питается от батареи GB1 типа «Крона» напряжением 9 В. Поэтому оно совершенно безопасно для пациента, не создает при работе неприятных ощущений или ожогов.

Имеется возможность использования двух режимов. При разомкнутых контактах переключателя SA1 ток полного отклонения стрелки миллиамперметра РД1 составляет 5 мА, и переменным резистором R2 устанавливается ток пациента, который не должен превышать этого значения. При замкнутых контактах переключателя резистор R1 замыкается, а параллельно стрелочному прибору включается- шунт , благодаря которому полное отклонение стрелки прибора соответствует току, равному 50 мА. Ток пациента может быть увеличен. При использовании миллиамперметра типа М42300 сопротивление шунта должно быть равно 2,8 Ом. При использовании другого стрелочного прибора сопротивление шунта должно быть подобрано так, чтобы ток полного отклонения был равен 50 мА.

7.3. Прибор для локальной магнитотерапии

Machalik [30]

Магнитотерапия используется для подавления болевых синдромов при ревматизме, мигрени, болей в суставах и в других случаях. Принципиальная схема прибора показана на рис. 41.


Рис. 41. Принципиальная схема прибора для магнитотерапии

На транзисторах собран импульсный генератор. Рассмотрим его работу с момента, когда конденсатор начал заряжаться коллекторным током открывшегося транзистора VT1.

В это время транзистор VT2 заперт, поэтому VT3 открыт, через него протекает ток базы транзистора VT1, поддерживающий его открытым. По мере заряда конденсатора С1 напряжение на нем растет и в какой-то момент достигает порога отпирания транзистора VT2, что запирает транзисторы VT3 и VT1. Конденсатор С1 начинает разряжаться базовым током VT2. Когда потенциал базы станет меньше порога отпирания, транзистор VT2 запрется, что приведет к отпиранию транзисторов VT3 и VT1. Цикл закончился. Таким образом, время открытого состояния VT1 (длительность импульса) определяется постоянной времени заряда С1, которая равна C1xR2, время запертого состояния VT1 (длительность паузы) — постоянной времени разряда С1, равной C1xR3.

Зарядный ток конденсатора С1 представляет собой лишь малую часть импульсного тока коллектора VT1. Основной его ток проходит в обмотку электромагнита L1, так как его сопротивление значительно меньше R2. Наконец, малая часть импульсного тока направляется в цепь светодиода HL1 для индикации. От импульсов самоиндукции, возникающих на обмотке электромагнита в момент запирания транзистора VT1, его защищает диод VD1.

Питать прибор в целях электробезопасности целесообразно от автономного источника, например батареи «Крона». Обмотка электромагнита наматывается проводом ПЭВ-2 диаметром 0,25 мм внавал на изоляционном каркасе с внутренним диаметром 10 мм до заполнения каркаса, наружный диаметр которого составляет 20 мм, а расстояние между щечками — 20 мм. Внутрь каркаса плотно вставляется стержень из мягкой стали длиной 20–30 мм.

Приложение

СИСТЕМА УСЛОВНЫХ ОБОЗНАЧЕНИЙ ИНТЕГРАЛЬНЫХ СХЕМ

Условное обозначение интегральных микросхем (ИМС) для ориентации потребителей должно содержать информацию об их особенностях и назначении. Для этого согласно ГОСТ 17021-88 установлена определенная система. Главная часть условного обозначения состоит из трех- или четырехзначного числа, обозначающего номер серии, двух букв русского алфавита, которыми закодировано функциональное назначение микросхемы, и цифр порядкового номера разработки.

Первая цифра номера серии характеризует конструктивно-технологические свойства микросхемы: цифры 1, 5, 6 и 7 относятся к полупроводниковым микросхемам; 2, 4, 8 — к гибридным; 3 — к прочим, в том числе к пленочным. Гибридные микросхемы в настоящее время уже не выпускаются.

ИМС одной и той же серии обладают такими характеристиками, которые позволяют соединять между собой микросхемы этой серии разного функционального назначения без дополнительного согласования между ними и без дополнительных элементов схемы. Для этого микросхемы внутри серии рассчитаны на одинаковые напряжения питания и согласуются по уровням входных и выходных сигналов. Благодаря этому за счет широкой номенклатуры микросхем самого разного назначения внутри серии имеется возможность создания целого электронного устройства, собранного на микросхемах этой серии. Это значительно сокращает время разработки, габариты и массу устройства, а также потребляемую энергию. Хотя по питанию и входным-выходным сигналам микросхемы внутри серии полностью совместимы, обойтись без некоторых навесных элементов при создании аналоговых устройств пока не удается. Все еще приходится использовать катушки индуктивности, кварцевые резонаторы, крупногабаритные конденсаторы, переменные резисторы, электромагнитные реле и другие дискретные элементы. Многие разные серии микросхем также характеризуются одинаковыми значениями напряжения питания, что позволяет при сборке устройства использовать источник питания, вырабатывающий одно стабилизированное напряжение, что упрощает его конструкцию и сокращает номенклатуру источников питания.

Условные буквенные обозначения функционального назначения микросхем приведены в табл. 1.

Таблица 1. Условные буквенные обозначения функционального назначения ИМС

Обозначение Функциональное назначение

Формирователи

• АА Формирователи адресных напряжений и токов

АГ Формирователи импульсов прямоугольной формы

АП Формирователи прочие

АР Формирователи разрядных напряжений и токов

АФ Формирователи импульсов специальной формы

Схемы задержки

БМ Пассивные схемы задержки

БП Прочие схемы задержки

БР Активные схемы задержки

Схемы вычислительных устройств

ВА Схемы сопряжения с магистралью

ВБ Схемы синхронизации

ВВ Устройства управления вводом-выводом (схемы интерфейса)

ВГ Контроллеры

BE МикроЭВМ

ВЖ Специализированные устройства

ВИ Времязадающие устройства

ВК Комбинированные устройства

ВМ Микропроцессоры

ВН Схемы управления прерыванием

ВП Прочие устройства

ВР Функциональные расширители

ВС Микропроцессорные секции

ВТ Устройства управления памятью

ВУ Устройства программного управления

ВФ Функциональные преобразователи информации

ВХ Микрокалькуляторы

Генераторы

ГГ Генераторы прямоугольных сигналов

ГЛ Генераторы линейно-изменяющихся сигналов

ГМ Генераторы шума

ГП Прочие генераторы

ГС Генераторы гармонических сигналов

ГФ Генераторы сигналов специальной формы

Детекторы

ДА Детекторы амплитудные

ДИ Детекторы импульсные

ДП Детекторы прочие

ДС Детекторы частотные

ДФ Детекторы фазовые

Источники вторичного электропитания

ЕВ Выпрямители вторичных источников питания

ЕК Стабилизаторы напряжения импульсные

ЕМ Преобразователи вторичных источников питания

ЕН Стабилизаторы напряжения непрерывные

ЕП Прочие вторичные источники питания

ЕС Источники вторичного электропитания

ЕТ Стабилизаторы тока вторичных источников питания

ЕУ Схемы управления импульсными стабилизаторами напряжения

Схемы цифровых устройств

ИА Арифметико-логические устройства

ИВ Шифраторы арифметических и дискретных устройств

ИД Дешифраторы арифметических и дискретных устройств

ИЕ Счетчики арифметических и дискретных устройств

Комбинированные элементы арифметических и дискретных устройств

ИЛ Полусумматоры арифметических и дискретных устройств

ИМ Сумматоры арифметических и дискретных устройств

ИП Прочие элементы арифметических и дискретных устройств

ИР Регистры арифметических и дискретных устройств

Коммутаторы и ключи

КТ Коммутаторы и ключи тока

КН Коммутаторы и ключи напряжения

КП Коммутаторы и ключи прочие

Логические элементы

ЛА Логические элементы И-НЕ

ЛБ Логические элементы И-НЕ, ИЛИ-НЕ

ЛД Расширители

ЛЕ Логические элементы ИЛИ-НЕ

ЛИ Логические элементы И

ЛК Логические элементы И-ИЛИ-НЕ/И-ИЛИ

ЛЛ Логические элементы ИЛИ

ЛМ Логические элементы ИЛИ-НЕ/ИЛИ

ЛН Логические элементы НЕ

ЛП Логические элементы прочие

ЛР Логические элементы И-ИЛИ-НЕ

ЛС Логические элементы И-ИЛИ

Модуляторы

МА Модуляторы амплитудные

МИ Модуляторы импульсные

МП Модуляторы прочие

МС Модуляторы частотные

МФ Модуляторы фазовые

Наборы элементов

НД Микросборки из набора диодов

НЕ Микросборки из набора конденсаторов

НК Микросборки комбинированные

НП Микросборки прочие

HP Микросборки из набора резисторов

НТ Микросборки из набора транзисторов

НФ Микросборки функциональные

Преобразователи

ПА Преобразователи цифро-аналоговые (код-аналог)

ПВ Преобразователи аналогово-цифровые (аналог-код)

ПД Преобразователи длительности

ПЕ Умножители частоты аналоговые

ПЛ Синтезаторы частоты

ПМ Преобразователи мощности

ПН Преобразователи напряжения, тока

ПП Преобразователи прочие

ПР Преобразователи код-код

ПС Преобразователи частоты (в том числе перемножители аналоговые)

ПУ Преобразователи уровня (согласователи)

ПФ Преобразователи фазы

ПЦ Делители частоты цифровые

Запоминающие устройства

РА Ассоциативные схемы запоминающих устройств

РВ Матрицы постоянных запоминающих устройств (ПЗУ)

РЕ Масочные ПЗУ со схемами управления

РМ Матрицы оперативных запоминающих устройств (ОЗУ)

РП Прочие матрицы-накопители

РР ПЗУ с возможностью многократного программирования

РТ ПЗУ с возможностью однократного программирования

РУ ОЗУ со схемами управления

РФ ПЗУ с ультрафиолетовым стиранием информации

РЦ Запоминающие устройства на цилиндрических магнитных доменах

Схемы сравнения и селекции

СА Схемы сравнения и селекции по напряжению(компараторы)

СВ Временные схемы сравнения и селекции

СК Амплитудные схемы сравнения и селекции

СП Прочие схемы сравнения и селекции

СС Частотные схемы сравнения и селекции

СФ Фазовые схемы сравнения и селекции

Триггеры

ТВ Триггеры JK-типа (универсальные)

ТД Триггеры динамические

ТК Триггеры комбинированные

ТЛ Триггеры Шмитта

ТМ Триггеры D-типа

ТП Триггеры прочие

ТР Триггеры RS-типа (с раздельным запуском)

ТТ Триггеры Т-типа (счетные)

Усилители

УВ Усилители напряжения или мощности высокой частоты

УД Усилители операционные

УЕ Повторители сигнала

УИ Усилители импульсных сигналов

УК Усилители широкополосные

УЛ Усилители считывания и воспроизведения

УМ Усилители схем индикации

УН Усилители напряжения и мощности низкой частоты

УП Усилители прочие

УР Усилители сигналов промежуточной частоты

УС Усилители дифференциальные

УТ Усилители постоянного тока

Фильтры

ФВ Фильтры верхних частот

ФЕ Полосовые фильтры

ФН Фильтры нижних частот

ФП Фильтры прочие

ФР Фильтры режекторные

Многофункциональные устройства

ХА Аналоговые схемы

ХИ Аналоговые матрицы

ХК Многофункциональные комбинированные схемы

ХЛ Цифровые схемы

ХМ Цифровые матрицы

ХП Прочие многофункциональные схемы

ХТ Комбинированные матрицы

Фоточувствительные устройства с зарядовой связью

ЦЛ Линейные

ЦМ Матричные

ЦП Прочие

Могут выпускаться разные микросхемы одной и той же серии и одинакового функционального назначения, но выполненные по разным внутренним схемам и обладающие разными входными и выходными характеристиками. Такие микросхемы различаются номером разработки.

Для того чтобы различать микросхемы одинаковых номеров разработки по вспомогательным параметрам, после обозначения номера разработки используются буквы в алфавитном порядке дли разбраковки микросхем по электрическим параметрам подобно тому; как вводится буква в условное обозначение транзисторов одинакового типа. Это аналогично тому, как транзисторам КТ315, отличающимся некоторыми параметрами (статическим коэффициентом передачи тока, допустимым напряжением питания и др.), присваиваются буквы А, Б, В и т. д.

К дополнительным элементам условного обозначения микросхем относятся буквы, проставленные перед основной его частью (номером серии). Первая буква К указывает на то, что данная микросхема предназначена для установки в устройства широкого применения. Микросхемы, предназначенные для экспорта, перед буквой К обозначены буквой Э. Они отличаются шагом между выводами, равным 1,27 или 2,54 мм в соответствии с дюймовой системой мер. Следующая буква показывает тип корпуса микросхемы, ее расшифровка приведена в табл. 2.

Таблица 2. Условные обозначения корпусов микросхем

Обозначение Тип корпуса

А Пластмассовый, планарный (выводы расположены в одной плоскости)

Е Металлополимерный, с параллельным двухрядным расположением выводов

И Стеклокерамический, планарный

М Металлокерамический, керамический или стеклокерамический с параллельным двухрядным расположением выводов

Н Кристаллоноситель, не имеющий выводов

Р Пластмассовый, с параллельным двухрядным расположением выводов

С Стеклокерамический, с параллельным двухрядным расположением выводов

Ф Микроминиатюрный

Выпускаются также бескорпусные полупроводниковые микросхемы для использования в гибридных микросхемах или в микромодулях. В условном обозначении бескорпусных микросхем перед номером серии содержится буква Б, а в конце условного обозначения через дефис — цифра, указывающая модификацию выводов: 1 — гибкие выводы, 2 — ленточные выводы; 3 — жесткие выводы; 4 — неразделенные на общей пластине; 5 — разделенные; 6 — контактные площадки.

Так, например, согласно установленной системе, обозначение микросхемы типа КР140УД7 расшифровывается как интегральный полупроводниковый операционный усилитель, предназначенный для установки в аппаратуру широкого применения, в пластмассовом корпусе с двухрядным параллельным расположением выводов, седьмого номера разработки. Обозначение микросхемы КМ155ИЕ8 указывает, что имеется в виду полупроводниковый цифровой счетчик для аппаратуры широкого применения в металлокерамическом корпусе с двухрядным параллельным расположением выводов восьмого номера разработки.

Необходимо заметить, что обозначения ИМС, выпущенных до введения ГОСТ 18682-73, отличаются от приведенных, использовалось также большое число ныне устаревших корпусов. Огромное количество микросхем выпускается множеством разных фирм всего мира со своими системами обозначений, привести которые нет возможности.

Литература

1. Гончар А. Простейшие охранные устройства // Радиолюбитель. — 1996. - № 12. — С. 10.

2. Куренков Л. Входное устройство охранной сигнализации // Радиолюбитель. — 1994. - № 3. _ С. 38.

3. Воробьев А. Электрошоковое средство защиты // Радиолюбитель. — 1994. - № 3. — С. 46.

4. Александров И. Сторожевое устройство // Радио. — 1990. -№ 9. -С. 33.

5. Шустов М. Звукосигнальные охранные устройства // Радиолюбитель. — 1997. - № 1. — С. 28.

6. Никольский Л. Охранное устройство с индикацией состояния шлейфа // Радио. — 1996. - № 9. — С. 44–45.

7. Осоцкий Ю. Простые радиомикрофоны // Радио. — 1997.-М» 7. — С. 19.

8. Цуканов Е. Низковольтный радиомикрофон // Радиолюбитель. — 1998. - № 2. — С. 25.

9. Шустов М. УКВ радиомикрофоны // Радиолюбитель. — 1995. - № 8. — С. 14.

10. Кургузов А. Радиомикрофон // Радиолюбитель. — 1999.-№ 6.-С. 15.

11. Абрамов А. Радиомикрофон с кварцевой стабилизацией частоты передатчика // Радио. — 1995. - № 9. — С. 27; Радио. — 1996. - № 5. — С. 61.

12. Рузматов В. Радиомикрофон с рамочной антенной // Радио. — 1995. -№ 7. — С. 17.

13. Зирюкин Ю. Детекторный радиоприемник // Радио. — 1994. - № 2. — С. 36.

14. Юсупов И. Приемники из минимума деталей // Радиолюбитель. — 1998. - № 1. — С. 12–13.

15. Кокачев В. Миниатюрный приемник на двух транзисторах // Радио. — 1965. - № 1. — С. 33–34 и с. 1, 4 вкладки.

16. Алексеев Д. Простой УКВ ЧМ приемник // Радио. — 1990.-№ 11.-С. 48.

17. Прокопцев Ю. Простой и удобный // Радио. — 1994. - № 4.-С. 29.

18. Иванов Б. Простые переговорные устройства // Радио. -1997. -№.11. -С. 40.

19. Прокопцев Ю. Переговорное устройство <<Кто там?» // Радио. -1992. - № 9. — С. 52.

20. Мозговой Д. Переговорное устройство с управлением по питанию // Радиолюбитель. — 1997. - № 9. — С. 25.

21. Иванов Б. Переговорное устройство из головных телефонов // Радио. — 1984. - № 2. — С. 49 и с. 4 вкладки.

22. Буданцев А. Два варианта включения ЛДС // Радио. — 1998.-№ 10.-С. 78.

23. Продеус А. Лампа больше не мигает // Радиолюбитель. — 1992. - № 8. — С. 28.

24. Кривошеин В. Включение ламп освещения // Радиолюбитель. — 1994. - № 7. — С. 30.

25. Виноградов Ю. Так боятся ли комары ультразвука? // Радио. — 1994.-№ 7. — С. 25–26.

26. Бородай В. Ультразвуковой генератор для отпугивания крыс // Радиолюбитель. — 1996. - № 7. — С. 19.

27. Шитов А. Вариант отпугивателя грызунов // Радио. — 1997.-№ 7.-С. 38–39.

28. Шустов М. Устройство для поиска биологически активных точек и воздействия на них // Радиолюбитель. — 1991. - № 9. — С. 7.

29. Члиянц Г. Бытовой электрофорез // Радиолюбитель. — 1992.-№ 2.-С. 32.

30. Machalik. Прибор для локальной магнитотерапии // Радио. — 1995. - № 12. — С. 58.

* * *




Поделиться книгой:

На главную
Назад