Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Чем мир держится? - Роман Григорьевич Подольный на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Тяготение равно повелевает падением тел, находящихся на Земле, и движением небесных тел. Чтобы найти общий, единый «для неба и земли» закон всемирного тяготения, надо было сначала выяснить — по отдельности— казавшиеся не связанными между собой закономерности падения камня и движения светил.

Выполнение первой из этих задач выпало на долю Галилео Галилея.

Для истории исследования тяготения важны прежде всего не астрономические наблюдения и открытия великого астронома, хотя именно они составили его славу, не горы на Луне, не спутники Юпитера и многое другое, но его умение ставить опыты на Земле, вырывая у природы истину.

Ученый, сверстник Галилея. Был Галилея не глупее. Он знал, что вертится Земля, Но у него была семья.

Так писал Евгений Евтушенко в стихотворении «Карьера». Поэт, в общем, точен. После Коперника не так уж мало ученых разбиралось в том, что вокруг чего вертится. Галилей был достаточно смел, чтобы вести пропаганду идей Коперника до той самой минуты, когда перед ним замаячил костер. Он отрекся, но после стольких лет борьбы, что само отречение — с точки зрения церкви— уже запоздало. Народная память задним числом оправдала борца, вложив ему в уста знаменитое: «А все-таки она вертится!»

Нисколько не умаляя значения Галилея в истории науки, мы вправе посчитать защиту и пропаганду гелиоцентрической системы при всей важности этого дела только мелкой деталью его биографии. Да и важна ока оказалась постольку, поскольку за популяризатором стоял его авторитет как ученого и талант как писателя. Как Ньютон велик и без анекдота про пресловутое яблоко, так Галилей велик и без преследований со стороны церкви.

Для темы этой книги всего важнее три направления в работах Галилея.

Первое связано с изучением падения тел и движения маятников.

Второе — с развитием принципа относительности (впрочем, о принципе относительности и вкладе в эту идею Галилея лучше поговорить позже, когда речь пойдет о научных событиях, в ходе которых этот принцип стал одной из основ теории тяготения).

На третьем направлении был открыт закон инерции, закон, по которому тело сохраняет состояние покоя или равномерного движения, пока не вмешается внешняя сила. Правда, это формулировка более поздняя, ньютоновская, но предтечей Ньютона был Галилей. Вот как сам великий итальянец изложил этот закон в конце своей жизни: «Степень скорости, обнаруживаемая телом, ненарушимо лежит в самой его природе, в то время как причины ускорения или замедления являются внешними».

Два самых ярких с внешней стороны эпизода научной жизни Галилея (если оставить в стороне его преследования церковью) связаны с двумя зданиями города Пизы. С высоты знаменитой Пизанской башни он бросал «пробные тела» (выражаясь языком современной физики) разного состава и массы и обнаружил, что все они падают с почти одинаковой скоростью; небольшая же разница зависит от сопротивления воздуха, которое, как мы знаем, сам Аристотель советовал принимать во внимание. Результат этих опытов известен нам всем по школьным урокам физики: все тела падают равномерно-ускоренно, с одним и тем же (если исключить влияние среды) ускорением.

С законами, управляющими движением маятника, мы все тоже познакомились в школе; кроме того, впереди у нас специальная глава об определении силы тяжести с помощью маятников.

Поэтому здесь уместно ограничиться цитатой из рассказа Вивиани, ученика и первого биографа Галилея.

«В 1583 г., имея около двадцати лет от роду, Галилей находился в Пизе, где, следуя совету отца, изучал философию и медицину. Однажды, находясь в соборе этого города, он, со свойственной ему любознательностью и смекалкой, решил наблюдать за движением люстры, подвешенной к самому верху, не окажется ли продолжительность ее размахов, как вдоль больших дуг, так и вдоль средних и малых, одинаковой; ибо ему казалось, что продолжительность прохождения большой дуги может сократиться за счет большей скорости… И пока люстра размеренно двигалась, он сделал грубую прикидку— его обычное выражение — того, как происходит ее движение взад и вперед, с помощью биений собственного пульса…»

Эта «грубая прикидка» дала ученым один из самых совершенных приборов для определения времени, силы тяжести и многого другого.

Наблюдательность юноши была поразительна: все, что попадало в поле его зрения, подлежало исследованию, все равно, находилось оно на земле или на небе.

Важнейшей из своих заслуг перед наукой Галилей считал создание учения о падении тел. Об этом говорит он сам устами героев своей написанной в форме диалогов книги «Беседы и математические доказательства, касающиеся двух новых отраслей науки»: «Я твердо верю, что как немногие свойства круга, установленные в третьей книге „Элементов“ Евклида (говоря для примера), послужили исходным пунктом для обнаружения множества других, более скрытых соотношений, так и то, что изложено и доказано в настоящем кратком трактате, попав в руки других пытливых исследователей, укажет им путь ко многим удивительным открытиям; мне думается, что так оно и будет, так как этот предмет своей значительностью превосходит все другие явления природы».

С одной стороны, Галилей здесь сам себя сравнивает с Евклидом, с другой — возлагает надежды на будущих пытливых исследователей; все это с уверенным достоинством. Но обратим внимание: он уверенно объявляет падение тел самым значительным из явлений природы. Однако оговаривает в этой книге, что полагает неуместным или невозможным вдаваться в исследование проблемы, какая причина вызывает падение.

В поисках причины тяготения Галилей не пошел намного дальше Аристотеля. Только-только рождавшаяся опытная наука часто брала на веру то, чего проверить еще не могла.

«Небесную часть» работы по созданию фундамента будущего великого закона выполнил прежде всего Иоганн Кеплер.

Причем в данном случае на примере Галилея отлично видна правота пословицы «На всякого мудреца довольно простоты». Галилей и Кеплер были большими друзьями и высоко пенили, как правило, научные достижения друг друга. Переписка этих двух предтеч Ньютона— один из важнейших документальных источников об их эпохе. Но вот Кеплер делает самое великое из своих открытий: приходит к выводу, что планеты движутся вокруг Солнца не по кругам, а по эллипсам, и формулирует три закона такого движения планет, три закона, которые получили имя Кеплера и обессмертили его.

Эти законы были проявлением в конечном счете закона всемирного тяготения; до сих пор законы Кеплера в обобщенной и уточненной форме применяются в небесной механике, когда исследуются орбиты двух гравитационно связанных небесных тел. Словом, это было действительно экстраординарное открытие; даже сама формулировка законов Кеплера оказала в дальнейшем влияние на формулировку Ньютоном его законов.

Кеплеровское открытие отнюдь не осталось незамеченным. Одни ученые восхищались, другие оспаривали. И только один крупный астроном молчал. Это был сам Галилей. Между тем Кеплер сделал свои выводы и предал их гласности как раз в то время, когда именно астрономия была главным занятием Галилея. Он не мог не знать законов Кеплера. Но ни в одном его напечатанном произведении, ни в одной рукописи, оставшейся неопубликованной, ни в одном письме великий итальянец словом не обмолвился об эпохальном открытии своего современника, коллеги и друга. Он был слишком предан кругу как идеальной форме; обращение круга в эллипс было для Галилея тем же, чем для его собственных идейных противников обращение Земли из центра мира в обыкновенную планету. Он не мог принять это. Но от идейных противников Галилея самого его отличала внутренняя честность. Принять не мог и не мог опровергнуть, а потому молчал. Не считал себя вправе с высоты общих правил обрушиваться на конкретные исследования. Будто и не было для него величайшего астрономического события эпохи — из тех, что не связаны с работами самого Галилея[2].

Галилей и Кеплер — два этих имени навечно остались стоять рядом в истории науки. Их письма доносят до нас тепло дружеских отношений людей, протягивающих друг другу руки через страны, измученные войнами и эпидемиями, религиозной враждой и преследованиями. Какие же это разные люди!

Галилей — рационалист до мозга костей, человек трезвого ума, здравомыслящий в лучшем и высшем смысле этого слова.

Кеплер — человек увлекающийся, для него астрология не была просто отхожим промыслом, как для многих астрономов его времени, вечно нуждавшихся в деньгах. Он брался предсказывать по положению планет не только судьбы людей, но и погоду, то и дело попадал тут впросак и потом долго и нудно оправдывался с помощью новых астрологических соображений. Оправдывался, пожалуй, не столько перед невольно обманутыми им поклонниками, сколько перед самим собой. А точнее, пожалуй, оправдывал астрологию.

Он сопоставлял орбиты планет вокруг Солнца с правильными многогранниками (интересующихся подробностями отсылаю к книге К. Левитина «Геометрическая рапсодия», вышедшей в издательстве «Знание» в 1976 году). А позднее пытался объяснить закономерности расстояний между орбитами планет, исходя из интервалов музыкальных тональностей. Работу, посвященную этой теме, он назвал «Гармония мира». Он мог использовать в качестве тяговой силы для планет, вращающихся вокруг пашей дневной звезды, не более и не менее как ангелов.

Для Кеплера все планеты были существами одушевленными, он полагал, что планета «имеет ощущение величины углов». Солнце для него — движущая душа Солнечной системы; именно Солнце (когда была отброшена гипотеза об ангелах) стало, по Кеплеру, двигать планеты вокруг себя. При этом, опираясь на открытие англичанина Вильяма Гильберта, обнаружившего, что Земля — большой магнит, Кеплер создает гипотезу о том, что и Солнце и все планеты — шарообразные магниты. Магнитное взаимодействие, однако, объясняет не движение планет вокруг Солнца — тут решающая роль самого светила для Кеплера аксиома, — а изменения расстояния от планеты до Солнца на разных участках орбиты.

Надо сказать, уже сама мысль о том, что движение планет совершается под воздействием какой-то внешней силы, была глубоко новаторской, в той же или почти той же мере, как превращение круговых орбит в эллиптические. И в каком бы фантастическом обличии эта сила ни выступала, само появление представления о ней было важным подступом к будущему закону всемирного тяготения.

Кеплер говорит и о существовании собственно тяготения. Но находит, что оно действует только между покоящимися телами.

Зато иногда он дает формулировки, куда более четкие, чем Галилей. Вот, например: «Тяжелые тела (в особенности, если мы помещаем Землю в центре мира) не устремляются к центру мира так таковому, по как центру сродственного шарообразного тела, именно Земли. Поэтому где бы ни находилась Земля, или куда бы она ни переместилась… всегда к ней устремляются тяжелые тела. Если бы два камня были помещены вблизи друг от друга в каком-либо месте мира, вне круга действия третьего сродственного тела, то эти камни сошлись бы в промежуточной точке, причем каждый из них приблизился бы к другому на такое расстояние, каким является громада второго камня сравнительно с первой. Если бы Земля и Луна не удерживались своей естественной силон или любой ей равнозначной каждая на своей орбите, то Земля приблизилась бы к Луне на 1/54 часть расстояния, а Луна опустилась бы к Земле на остальные 53 части его, и здесь бы они соединились; все это, однако, в предположении, что плотность той и другой равны и одинаковы. Если бы Земля перестала притягивать свои воды, то все воды морей поднялись бы и втекли в тело Луны».

По поводу таких мыслей Кеплера покойный советский астроном Н. И. Идельсон писал: «Кто станет отрицать теперь, что в этих тезисах заложены положения, которые вошли затем в стройную архитектонику ньютоновской динамики? Но самое существенное здесь то, что у Кеплера все эти положения создаются почти вне всякого контакта с опытом, они налагаются на природу как некоторые умозрительные выводы, как предпосылки будущих опытов вообще».

Это суровый, но справедливый вывод. Впрочем, нельзя недооценивать ту эвристическую, как сейчас говорят, роль, которую играли для Кеплера его неверные посылки. «Шесть аксиом» планетного движения, одна из которых была приведена, по меньшей мере наполовину носят мистический характер, но они помогли ему создать три бесспорно верных и бесспорно материалистических закона.

Не в первый и не в последний раз в истории науки ученый ухитряется делать верный вывод, опираясь, кроме верных посылок, и на явно неверные. Известно, что спустя триста лет для Эйнштейна в его работе над теорией относительности важнейшую эвристическую роль играл «принцип Маха», утверждавший, что все природные явления — результат взаимодействия тел. Прошли десятилетня, и сам Эйнштейн увидел неполноту этого принципа, неприменимость его в новой физике, опирающейся на понятие поля, а все-таки в свое время «принцип Маха» ему помог.

Вот так многие явно ошибочные взгляды Кеплера, даже астрологические его убеждения кое в чем способствовали его астрономическим открытиям. Из этого не следует, конечно, что астрология всегда полезна — тут скорее применим тот шахматный принцип, который гласит, что игроку в партии лучше руководствоваться плохим планом, чем не иметь никакого.

Многое в особенностях мышления Кеплера можно объяснить влиянием эпохи.

Мистицизм был присущ средневековому мышлению, астрономы, как правило, были по совместительству и астрологами, а алхимики часто одушевляли в своих рассуждениях химические элементы и соединения, с которыми работали, — не то что далекие планеты и Солнце, как Кеплер. В этом смысле великий астроном был ученым средневековья (увы, не последним), в то время как Галилей— первым ученым нового времени. Можно даже, пожалуй, сказать, что отдельные характерные черты рас-суждений Кеплера восходят к еще более древнему, чем средневековье, мифологическому мышлению.

Древнегреческие мыслители отбросили мифы, в которые они перестали верить, а Кеплер два с лишним тысячелетия спустя вернулся к антропоморфизации, очеловечиванию сил природы. Это один из многих исторических парадоксов: эпоха, наконец-то создающая новую науку, берет порою на вооружение тот подход к природе, который, казалось бы, устарел много веков назад и был отброшен учеными, знавшими несравненно меньше своих коллег конца XVI — начала XVII веков.

Но, может быть, в том и заключается объяснение парадокса, что общий запас знаний человечества о явлениях природы многократно вырос, между тем, с одной стороны, обрушилось мироздание, построенное античными философами и, с другой — исследователи только еще учились формулировать законы по-новому, с должным вниманием к математической стороне дела. Так не было ли для Кеплера одушевление природы, по сути, чем-то вроде строительных лесов или, как говорят сегодня, эвристическим приемом? Только сам-то он считал эти леса неотъемлемой частью возводимого им здания повой астрономии.

Леса мифологизации в физике отработали свое и были окончательно отставлены и сожжены не одними только преемниками, по частью и современниками Кеплера, в том числе Галилеем.

Вот что утверждает Галилей (на триста лет раньше, чем это стало тривиальной истиной): «Философия написана в той величественной книге, которая постоянно лежит открытой у нас перед глазами (я имею в виду Вселенную), но которую невозможно понять, если не научиться предварительно ее языку и не узнать те письмена, которыми она написана. Ее язык — язык математики, и эти письмена суть треугольники и другие геометрические фигуры, без помощи которых невозможно понять в ней по-человечески хотя бы одно слово; без них мы можем только кружиться впустую по темному лабиринту».

…Без «человеческих эмоций» никогда не бывало, нет и быть не может человеческого искания истины.

В. И. Ленин

И вот тут мы подошли к еще одному поразительному парадоксу. Галилей, издевающийся равно над схоластикой, астрологией и «учеными», которые отказываются заглянуть в телескоп, гневно возражающий (до своего судебного процесса) против требований, чтобы о гелиоцентрической системе Коперника говорили не как о реальности, а как об удобной для астрономических расчетов абстракции, — этот самый Галилей, как мы видели, не смог принять превращения круга в эллипс. В результате не принял и кеплеровских законов. Для него этот собрат был слишком свободомыслящ, разумеется, в науке.

Он то пишет одному из коллег, что Кеплер зашел «что называется, слишком далеко», что его «фантазии» подорвут авторитет системы Коперника. То прямо говорит (в другом письме, написанном через четыре года после смерти Кеплера): «Я всегда считал Кеплера человеком свободного (пожалуй, даже слишком) и острого мышления, но мой метод рассуждения решительно отличен от его метода; разумеется, может оказаться, что в наших работах об одних и тех же предметах, однако только в отношении движений небесных тел, мы могли встретиться в некоторых, хотя и немногих построениях… по этого не будет обнаружено и в одной сотой части моих мыслей».

…Какова сила истины: в то время, как вы пытаетесь ее опровергнуть, сами ваши нападки возвышают ее и придают ей большую ценность.

Галилео Галилей

Галилея, наверно, страшно раздражала мистическая и метафизическая мешанина, сопровождавшая в роли неизбежной шутовской свиты подлинно королевские идеи его великого современника. При этом он порою выплескивал вместе с водой и ребенка. Как возмущала гениального итальянца мысль Кеплера, что приливы и отливы вызываются Луной! Он видел в этом отрыжку астрологии, хотя Кеплер опирался тут на точные наблюдения, даже если к самой идее пришел под влиянием своей любимой лженауки.

Кеплер не считал, что мышление может быть слишком свободным. Вот высший комплимент, которым он удостоил память Коперника: он был человеком «высшего гения и, что в этих (астрономических) вопросах особенно важно, свободного мышления».

Высшим гением, выходит, обладать мало…

Именно за свободу мышления, наверное, Маркс назвал Кеплера (вместе со Спартаком) одним из своих любимых героев.

Кеплер сохранил куда больше лженаучных и даже донаучных предрассудков, чем Галилей, зато умел лучше справляться со своеобразными научными предрассудками. Как ни странно, отвергнуть идею круга как идеальной и единственно возможной планетной орбиты было труднее, чем поменять в системе мира местами Солнце и Землю. В последнем случае ведь можно было сослаться и опереться на какую-никакую, но все же достаточно древнюю традицию, напоминать другим (и, главное, себе), что такие-то и такие-то древние греки тоже так думали.

Спор между кругом и эллипсом начал Кеплер и решал его в пользу эллипса вопреки «авторитету всех философов».

Галилей так полагался на свой рассудок, что оказался не только великим ученым, но и первым в ряду борцов против «безумных идей», которые противопоставляли этим идеям не догму, как враги самого Галилея, а здравый смысл. Вот как он возражает против связи приливов и Луны: «Признать, что тут действуют Луна и Солнце и что они вызывают подобные явления — все это совершенно претит моему рассудку». Конечно, он говорит о рассудке, но не случайно здесь употреблено столь эмоциональное слово «претит».

И новый парадокс!

В жизни и даже пропаганде коперниковского учения Галилей был гораздо смелее Кеплера, выступал (до своего процесса) решительнее, а когда он однажды «договорился» до идеи о множественности миров, Кеплер счел нужным осторожненько, экивоками напомнить в письме коллеге об участи Джордано Бруно.

Пожалуй, эти два титана были предшественниками Ньютона не только в научном плане. Он соединил в фундаменте своей теории всемирного тяготения достижения их мысли, а в себе некоторые разноречивые черты их характеров. Блестящий математик, еще более великий, чем Кеплер, он опирался на опыт в еще большей степени, чем Галилей. Суровый рационалист, как тот же Галилей, Ньютон время от времени словно сбрасывал с себя груз логики, и тогда в худшем случае допускал… чуть ли нс божественное происхождение тяготения, зато в лучшем— передачу силы притяжения от тела к телу без посредников. Идею, которой возмущались многие его современники (а иногда и он сам), которую Галилей объявил бы тяжелейшим научным грехом, но без нее не мог быть сформулирован закон всемирного тяготения.

Нередко укоряют великих людей прошлого: мол, они открыли не все, что, как кажется на современный взгляд, могли открыть. Еще бы один шажок вперед, бросок мысли, дополнительный расчет, добавочное обобщение— и новый важный закон появился бы на пятьдесят — сто лет раньше.

Не будем забывать: каждый раз между двумя научными законами, отделенными друг от друга временем, лежит не только конкретный путь «от мысли к мысли», но и кропотливая работа многих исследователей.

Это очень хорошо видно на примере Галилея. Он делает гигантский прорыв на фронте борьбы с незнанием — прорыв на широком участке. Если продолжать дальше сравнение, то прежде чем развить прорыв, наука должна закрепиться на занятом плацдарме, подтянуть тылы, пополнить боеприпасы, заменить устаревшее вооружение. Галилей— великий борец против многих положений Аристотеля. Однако причиной падения тел для него остается стремление всех тел собраться в одни центр — почти по Аристотелю. Справедливости ради нужно сказать, однако, что Галилей говорил и о множественности центров тяготения.

Луна, полагал Галилей, остановись она, упала бы на Землю с тем же ускорением, что и камень, брошенный с Пизанской башни. Он не думал, что расстояние от центра Земли может сказаться на ускорении падения. Чтобы это увидеть, надо было признать за законом тяготения некоторый набор свойств, характерный и для законов изменения других явлений.

Знали же, например, что действие магнита с расстоянием быстро ослабевает.

Роберт Гук, английский физик и химик, старший современник Ньютона, сумел сделать этот шаг. Он пришел к выводу, что тяготение с расстоянием ослабевает. Увы, он пытался проверять свою совершенно справедливую мысль, проводя опыты с маятниками разной длины на башнях Вестминстерского аббатства, а вышина башен была — при тогдашних приборах — слишком мала для обнаружения разницы в силе тяжести. Он же категорически утверждал, что все небесные тела обладают тяготением, иначе они разлетелись бы по прямым линиям во все стороны, а не были бы «привязаны» к своим орбитам. Он пришел в конце концов и к выводу о том, что тяготение ослабевает пропорционально квадрату расстояния, а потом весь остаток жизни доказывал, что именно ему, Роберту Гуку, принадлежит приоритет в создании закона всемирного тяготения.

Мы точно знаем, что о таком ослаблении тяготения говорилось и до Ньютона и до Гука. Итальянец Альфонсо Борелли утверждал это в печати еще в 1665 году, когда Ньютон только еще размышлял над своим законом. И все же одно дело в науке — сказать, а другое — доказать. Борелли опирался лишь на наблюдения за движением спутников Юпитера. Роберт Гук выдвинул общую идею, которую не смог доказать математически по той простой причине, что он не умел составлять требовавшиеся в данном случае уравнения. С Вселенной— Галилей прав — надо говорить на ее языке. Иначе ты, может быть, и поймешь общий смысл ее речений, но «переводчиком» стать не сможешь.

Закон открыт!

«И в том же году я начал думать о тяготении, простирающемся до орбиты Луны… Все это было в 1665 и 1666 гг. — в годы чумы, ибо в те дни я был на заре своей поры изобретений и математика и философия волновали меня более, чем когда-либо после…» — писал уже постаревший Исаак Ньютон.

Всю науку о природе тогда называли натуральной философией. Но, видно, не случайно Ньютон здесь опустил определение к слову «философия». Потому что для установления связи между падением на землю пресловутого яблока и движением Луны вокруг Земли требовалось и чрезвычайно широкое, именно философское, а не только физическое обобщение.

Один из друзей Ньютона, человек по имени Стекли, остался в истории, поскольку оставил нам историю ньютоновского яблока: «После обеда погода была жаркая; мы перешли в сад и пили чай под тенью нескольких яблонь. Были только мы вдвоем. Между прочим, сэр Исаак сказал мне, что точно в такой же обстановке он находился, когда впервые ему пришла в голову мысль о тяготении. Она была вызвана падением яблока, когда он сидел, погрузившись в думы. Почему яблоко всегда падает отвесно, подумал он про себя, почему не в сторону, а всегда к центру Земли? Должна существовать притягательная сила в материи, сосредоточенная в центре Земли. Если материя тянет другую материю, то должна существовать пропорциональность ее количеству. Поэтому яблоко притягивает Землю так же, как Земля — яблоко. Должна, следовательно, существовать сила, подобная той, которую мы называем тяжестью, простирающаяся по всей Вселенной».

Мысль, которая создала первую подлинно научную систему мира. Стоит сказать, что для Ньютона тяготение было не просто одним из свойств материи, а главным ее свойством, ключом к решению загадок Вселенной. Потому что «такие свойства тел, которые не могут быть ни усиляемы, ни ослабляемы, которые оказываются присущими всем телам, над которыми возможно проводить испытания, должны быть почитаемы за свойства всех тел вообще». Главный труд своей жизни великий ученый назвал «Математические начала натуральной философии». В нем Ньютон, опираясь на соединение открытых им законов механики и закона всемирного тяготения, провозгласил, что задача науки объяснить мир в целом, исходя из начал механики. Вот отрывок из авторского предисловия к первому изданию «Начал».

«Вся трудность… как будет видно, и состоит в том, чтобы по явлениям движения распознать силы природы, а затем по этим силам изъяснить остальные явления. Для этой цели предназначены общие предложения, изложенные в книгах первой и второй. В третьей же книге мы даем пример вышеупомянутого приложения, объясняя систему мира, ибо здесь из небесных явлений, при помощи предположений, доказанных в предыдущих книгах, математически выводятся силы тяготения тел к Солнцу и отдельным планетам. Затем по этим силам, также при помощи математических предложений, выводятся движения планет, комет, Луны и моря. Было бы желательно вывести из начал механики[3] и остальные явления природы, рассуждая подобным же образом, но многое заставляет меня предполагать, что все эти явления обусловливаются некоторыми силами, с которыми частицы тел, вследствие причин покуда неизвестных, или стремятся друг к другу и сцепляются в правильные фигуры, или же взаимно отталкиваются и удаляются друг от друга».

Обратим внимание на то, как настаивает Ньютон на желательности вывести «из начал механики» все явления природы.

Всеобщность тяготения так же поражала воображение человека, открывшего эту всеобщность, как поражает она воображение человечества до сих пор. В этом свойстве, присущем всему без исключения, Ньютону виделся корень многих других явлений, более того, в определенном смысле корень всех основных свойств материн. Великий англичанин положил начало поискам в этом направлении — поискам, которые продолжаются по сей день.

Тысячи астрономов изучали звездное небо, пути планет и Луны. Миллиарды людей каждый день сталкивались с тем, что все могущее упасть — падает. Ньютон первый объявил, что то и другое происходит по одному и тому же закону.

Сначала он «просто» хотел узнать, Земля ли — единственное место, где действует сила тяжести. И в пару к самому прославленному в мире яблоку он взял ближайшее к нашей планете небесное тело — Луну. И предположил, что сила, удерживающая Луну на ее орбите вокруг Земли, — та же самая, что притягивает тела, находящиеся на поверхности Земли и вблизи от нее.

Известен был (уже немало тысяч лет) период обращения Луны — 27,3 суток. Ускорение свободного падения на Земле тоже было известно — 9,8 метра на секунду в квадрате — знаменитая цифра, с которой мы довольно рано встречаемся на школьных уроках физики. Теперь оставалось вычислить центростремительное ускорение нашего спутника, направленное к центру Земли. Оно оказалось равно 0,0027 метра на секунду в квадрате. То есть примерно в три тысячи шестьсот раз меньше ускорения свободного падения. А расстояние до Луны от центра Земли как раз в шестьдесят раз (602 = 3600) больше, чем от центра Земли до поверхности самой планеты. Изменение силы тяжести ослабевало пропорционально квадрату расстояния между притягивающимися телами.

«Итак, — торжествовал Ньютон, — сила, которою Луна удерживается на своей орбите, если ее опустить до поверхности Земли, становится равной силе тяжести у нас, поэтому она и есть та сила, которую мы называем тяжестью, или тяготением».

Впервые мысль об единой природе тяжести на Земле и тяготения в космосе была доказана строгим математическим расчетом.

Это и было зафиксировано в законе всемирного тяготения. Очень серьезным аргументом в пользу именно такого воздействия расстояния на силу тяготения была аналогия с освещенностью. Исаак Ньютон много занимался исследованием света и знал, что освещенность поверхности лучами от какого-либо источника света обратно пропорциональна квадрату расстояния от этого источника.

Формой развития естествознания, поскольку оно мыслит, является гипотеза.

Фридрих Энгельс

Сам Ньютон считал величайшим достоинством своих теорий строгую опору на опыт (на самом деле далеко не всегда она была такой строгой, как казалось ученому). Вот его задиристое заявление: «Все, что не выводится из наблюдений, следует называть гипотезой; гипотезам же, либо метафизическим, либо физическим, либо скрытых свойств, либо механическим, нет места в экспериментальной философии».

Приглядимся поближе к этой фразе. Во-первых, сразу ясно, что сегодня мы понимаем термин «гипотеза» иначе, чем Ньютон, поэтому его знаменитое «гипотез не строю» (или «не измышляю» — в зависимости от перевода) не должно служить заветом или упреком для современных физиков. Сам Ньютон, безусловно, тем и занимался, что строил гипотезы и проверял их. Во-вторых, что гораздо важнее, здесь Ньютон кидает камешки, а вернее — целые глыбы, в огороды своих предшественников. Это Кеплер объяснял орбиты в Солнечной системе скрытыми свойствами Солнца и планет; это Галилей любил выдвигать «механические гипотезы»… В науке последователь разрушает часть наследства, полученного от тех, по чьему пути он идет, — это неизбежно.

Главное, значит, для Ньютона наблюдения. Что же, верно. Но чего бы стоили наблюдения сами по себе, если бы он не нашел для их обработки соответствующего математического метода. Больше того, он фактически и заявляет время от времени, что подменяет физику математикой. Категорически утверждает, что «исследует не виды сил и свойств их, а лишь их величины и математические соотношения между ними». (Между прочим, схожие фразы встречаются и в научных трудах, выходящих в наши дни первым изданием. Только относятся эти труды к лингвистике, антропологии, истории, куда математика лишь начинает проникать).

Переход на язык математики позволял строго доказывать свою правоту оппонентам. Но дело было не только в этом. В физике накопилось столько определений понятия «сила», столько предполагаемых разновидностей сил, что отказ от разбирательства, какие силы что собой представляют, переход к исследованию одних лишь величин да соотношений их позволяли Ньютону сделать свое учение единообразным, стройным. Он выполнил, наконец, тот завет Галилея о правилах чтения книги по имени Вселенная, которому сам Галилей был лишь частично верен.

Ньютон сменил непрочный фундамент под законами Кеплера, очистил их от мистической шелухи, отпугивавшей Галилея (хотя, подчеркнем еще раз, сами законы, вероятно, отпугивали Галилея еще больше, чем их обоснование), показал связь между законами Кеплера и Галилеевой силой тяжести, сделал три закона Кеплера следствиями одного закона всемирного тяготения, оправдал кеплеровскую теорию приливов.

Дмитрий Иванович Менделеев особенно ценил в законе всемирного тяготения то, что его созданием Ньютон показал возможность «с единой точки зрения охватить весь механизм мировых явлений». Нельзя недооценивать силу этого закона и как примера, поданного Ньютоном будущим ученым, включая, конечно, и Менделеева.

Итак, союз математики, философии и физики, опирающихся на факты, привел к рождению нового закона.

Вот он:


Здесь в числителе произведение m1•m2 масс взаимодействующих тел, в знаменателе квадрат расстояния между ними; G — коэффициент в этой формуле, так называемая гравитационная константа, она же постоянная тяготения.

Не все было, правда, в порядке и с Луной. Но ученые понимали, что та слишком близко к Земле, а взаимосвязи между соседями, живущими почти рядом, гораздо, как известно, богаче и сложнее, чем между теми, кто разделен большими расстояниями.

Тут следует заметить, что закон Ньютона не был теоретическим в современном смысле этого слова. Формула Ньютона «просто» представляла собой математическое описание опытного факта. Так что Ньютон имел право — во всяком случае по поводу закона всемирного тяготения — сказать о себе, что он в науке строит достоверности (а не какие-то там гипотезы!).

В конце предыдущей главы рассказывалось о том, как некоторые физики с разных сторон подбирались к закону всемирного тяготения, как Гук пришел к закону «обратных квадратов» и т. п. Казалось бы, идея носилась в воздухе, наука созрела для того, чтобы ее освоить. Между тем дальнейшая история закона всемирного тяготения, сформулированного Ньютоном, ясно показывает, что дело обстояло совсем не так. Единодушного восторга ученые отнюдь не выразили. Одни не признавали закон из-за его чрезмерной простоты, другие — из-за чрезмерной сложности пути, по которому Ньютон пришел к своему великому закону.

Во времена Ньютона его современники немало помучались, пытаясь постигнуть вновь провозглашенный закон природы.

Только один пример. Прошло уже много времени с «годов чумы», Ньютон уже опубликовал свое открытие (а для того, чтобы он на это решился, понадобилось целых восемнадцать лет! Нет, не любил спешить с выводами и публикациями человек, которым гордится человечество)[4], и вот его любимый ученик Котс, опора и надежда ученого, сам уже профессор, впоследствии, кстати, автор предисловия ко второму изданию «Математических начал натуральной философии», пишет учителю, что еще способен понять, как это Земля притягивается к Солнцу, но вот что и Солнце притягивается к Земле — это выше его разумения. Право же, обидно и грустно, наверное, было Ньютону читать такое письмо. Правда, позже Котс не только понял, наконец, в чем тут дело, но и дал в своем предисловии ко второму изданию «Начал» такое изящное разъяснение вопроса: «Что тяготение между Землею и телами есть действие взаимное и соответственно равное, обнаруживается следующим рассуждением. Вообразим, что весь объем Земли подразделен на две каких бы то ни было части, равные или неравные между собою, тогда, если бы их тяготения друг к другу не были бы между собою равны, то меньшее уступило бы большему и по соединении частей они стали бы двигаться по прямой линии, уходя в бесконечность, в ту сторону, куда направлено большее усилие, что совершенно противоречит опыту». Великолепный образчик мысленного эксперимента, как принято сегодня называть такие рассуждения!

На свете есть вещи поважнее самых прекрасных открытий, — это знание метода, которым они были сделаны.

Готфрид Лейбниц

Здесь, пожалуй, самое место небольшому отступлению, которое можно назвать, например, так:

Время признания

Как скоро оказалось общепризнанным в ученом мире открытие Исаака Ньютона? Ответ должен быть таким: последнее конкретное возражение против закона всемирного тяготения, принадлежащее крупному ученому, было опубликовано в 1745 году. Французский математик и астроном Алексис-Клод Клеро (между прочим, со своим первым научным докладом в Парижской академии наук он выступил, когда ему было всего двенадцать лет) утверждал, что некоторые детали вычисленной им орбиты Луны требуют исправления закона всемирного тяготения. Впрочем, потом он перепроверил свой результат и обнаружил ошибку, на этот раз собственную.

Христиан Гюйгенс, которого сам Ньютон называл великим ученым, изобретатель часов с маятником, сделавший чрезвычайно много и для уяснения того, по каким законам происходит падение тел и для прояснения роли центробежной силы вращения Земли, — этот самый Гюйгенс сначала называл закон всемирного тяготения абсурдным, а чуть позже — маловероятным. Спустя почти шестьдесят лет после того, как Ньютон опубликовал свой закон, величайший математик эпохи Леонард Эйлер выражал сомнения в универсальности и даже точности этого закона.

Журнал «Земля и Вселенная» как-то перепечатал из английского астрономического журнала «Отчет о заседании, которого на самом деле никогда не было».

Некий молодой астроном, репутация которого была далеко не прочной, сделал на этом вымышленном заседании доклад о выведенном им новом законе. Сам доклад не приводится. Мы знакомимся только с выступлениями ученых, обсуждавших идеи юного коллеги, — обсуждавших и осуждавших.



Поделиться книгой:

На главную
Назад