Когда разовьется скоростная авиация в высших слоях атмосферы (в так называемой стратосфере), самолеты будут иметь скорость около 3000 км в час, т. е. скорость пуль, летчикам придется иметь дело с явлениями, напоминающими рассмотренное сейчас. А именно, каждый предмет, попадающийся на пути такого сверхбыстроходного самолета, превратится для него в разрушительный снаряд. Наткнуться на горсть пуль, просто уроненных с другого самолета, даже не летящего навстречу, будет все равно, что подвергаться обстрелу из пулемета: падающие пули ударятся об аэроплан с такой же силой, с какой вонзились бы в эту машину пули из пулемета. Так как относительные скорости в обоих случаях одинаковы (самолет и пуля сближаются со скоростью около 800 м в секунду), то разрушительные последствия столкновений будут одинаковы.
Наоборот, если пуля летит вслед аэроплану, несущемуся с равной скоростью, то для летчика она, как мы уже знаем, безвредна. Тем, что тела, движущиеся с почти одинаковой скоростью в одном направлении, приходят в соприкосновение без удара, искусно воспользовался в 1935 г. машинист Борщев, приняв движущийся состав из 36 вагонов на свой поезд без удара и тем предотвратив железнодорожную катастрофу. Произошло это на Южной дороге, на перегоне Ельников – Ольшанка, при следующих обстоятельствах. Впереди поезда, который вел Борщев, шел другой. За недостатком паров передний поезд остановился; его машинист с паровозом и несколькими вагонами отправился вперед, на станцию, оставив остальные 36 вагонов на пути. Вагоны, под которые не было подложено башмаков, покатились под уклон назад со скоростью 15 км в час, грозя налететь на поезд Борщева. Заметив опасность, находчивый машинист остановил свой поезд и повел его назад, постепенно развив скорость также 15 км в час. Благодаря такому маневру ему удалось весь 36-вагонный состав принять на свой поезд без малейшего повреждения.
Наконец, на том же принципе основан прибор, чрезвычайно облегчающий письмо в движущемся поезде. Писать в вагоне на ходу поезда трудно лишь потому, что толчки на стыках рельсов передаются бумаге и кончику пера не одновременно. Если устроить так, чтобы бумага и перо получали сотрясение в одно и то же время, они друг относительно друга будут в покое и письмо на ходу поезда не составит никакого затруднения.
Рис. 22. Приспособление, позволяющее удобно писать в движущемся поезде.
Это и достигается благодаря прибору, изображенному на рис. 22. Рука с пером пристегивается к дощечке
На платформе весов
Десятичные весы только в том случае верно показывают вес вашего тела, когда вы стоите на их платформе совершенно неподвижно. Вы нагибаетесь – и весы в момент сгибания показывают уменьшенный вес. Почему? Потому что мускулы, пригибающие верхнюю часть туловища, подтягивают в то же время нижнюю часть тела вверх, уменьшая давление, оказываемое ею на опору. Напротив, в тот момент, когда вы прекращаете нагибание туловища усилием мышц, расталкивающих обе части тела врозь, весы показывают заметно увеличенный вес соответственно усиленному давлению нижней части тела на платформу.
Даже поднятие руки должно вызвать колебание чувствительных весов, соответствующее небольшому увеличению кажущегося веса вашего тела. Мускулы, поднимающие руку вверх, опираются на плечо и, следовательно, отталкивают его вместе с туловищем вниз: давление на платформу возрастает. Останавливая поднимаемую руку, мы приводим в действие противоположные мышцы, которые подтягивают плечо вверх, стремясь сблизить его с концом руки, – и вес тела, его давление на опору, уменьшается.
Наоборот, опуская руку вниз, мы во время этого движения вызываем уменьшение веса своего тела, а в момент остановки руки – увеличение веса. Словом, действием внутренних сил мы можем увеличивать или уменьшать вес нашего тела, разумея под весом давление на опору.
Где вещи тяжелее?
Сила, с какой тела притягиваются земным шаром, убывает по мере возвышения над земной поверхностью. Если бы мы подняли килограммовую гирю на высоту 6400 км, т. е. удалили ее от центра земного шара на два его радиуса, то сила притяжения ослабела бы в 2², т. е. в 4 раза, и гиря на пружинном безмене вытянула бы всего 250 г вместо 1000. Согласно закону тяготения земной шар притягивает внешние тела так, как если бы вся его масса сосредоточена была в центре, а сила этого притяжения убывает обратно квадрату расстояния. В нашем случае расстояние гири от центра Земли удвоилось, и оттого притяжение ослабело в 2², т. е. вчетверо. Удалив гирю на 12800 км от земной поверхности, т. е. на тройное расстояние от центра Земли, мы ослабили бы притяжение в 3², т. е. в 9 раз; 1000-граммовая гиря весила бы тогда всего 111 г, и т. д.
Рис. 23. Почему с углублением в Землю сила тяжести ослабевает.
Естественно рождается мысль, что, углубляясь с гирей в недра Земли, т. е. приближая тело к центру нашей планеты, мы должны наблюдать усиление притяжения: гиря в глубине Земли должна весить больше. Эта догадка неверна: с углублением в Землю тела не увеличиваются в весе, а, напротив, уменьшаются.
Объясняется это тем, что в таком случае притягивающие частицы Земли расположены уже не по одну сторону тела, а по разные его стороны. Взгляните на рис. 23. Вы видите, что гиря, помещенная в глубине Земли, притягивается вниз частицами, расположенными ниже гири, но в то же время притягивается вверх теми частицами, которые лежат выше нее. Можно доказать, что в конечном итоге имеет значение притягивающее действие только шара, радиус которого равен расстоянию от центра Земли до местонахождения тела. Поэтому вес тела по мере углубления в Землю должен быстро уменьшаться. Достигнув центра Земли, тело совсем утратит вес, сделается невесомым, так как окружающие частицы влекут его там во все стороны с одинаковой силой.
Итак, всего больше тело весит на самой поверхности Земли; с удалением от нее ввысь или вглубь вес его уменьшается[2].
Сколько весит тело, когда оно падает?
Заметили ли вы, какое странное ощущение испытываете вы в тот момент, когда начинаете спускаться на лифте? Ненормальная легкость, вроде той, какую испытывает человек, летящий в пропасть… Это – не что иное, как
Привесьте гирю к крючку пружинных весов и следите, куда двинется указатель, если весы с гирей быстро опустить вниз (для удобства поместите кусочек пробки в прорезь весов и заметьте изменение его положения). Вы убедитесь, что во время падения указатель показывает не полный вес гири, а гораздо меньше! Если бы весы падали свободно и вы имели возможность во время падения следить за их указателем, вы заметили бы, что гиря при падении вовсе ничего не весит: указатель находится у нуля.
Самое тяжелое тело становится совершенно невесомым в течение всего того времени, пока оно падает, Легко понять, почему это так. «Весом» тела мы называем силу, с которой тело тянет точку подвеса или давит на свою опору. Но
Еще основатель механики, Галилей, в XVII веке писал[3]: «Мы ощущаем груз на наших плечах, когда стараемся мешать его падению. Но если станем двигаться вниз с такой же скоростью, как и груз, лежащей на нашей спине, то как же может он давить и обременять нас? Это подобно тому, как если бы мы захотели поразить копьем[4] кого-либо, кто бежит впереди нас с такой же скоростью, с какой движемся и мы».
Следующий легко исполнимый опыт наглядно подтверждает правильность этих рассуждений.
Рис. 24. Опыт, иллюстрирующий невесомость падающего тела.
На одну чашку торговых весов положите щипцы для раскалывания орехов так, чтобы одно колено их покоилось на чашке, другое же привяжите за конец ниткой к крючку коромысла (рис. 24). На другую чашку поместите столько груза, чтобы весы были в равновесии. Поднесите к нитке зажженную спичку; нитка перегорит и верхнее колено щипцов упадет на чашку.
Что же произойдет в этот момент с весами? Опустится ли чашка с щипцами в то время, пока колено еще падает, поднимется она или останется в равновесии?
Теперь, когда вы знаете уже, что падающее тело не имеет веса, вы можете заранее дать правильный ответ на этот вопрос: чашка должна подняться на мгновение
В самом деле: верхнее колено щипцов, падая, хотя и остается в соединении с нижним, все же давит на него меньше, чем в неподвижном состоянии. Вес щипцов на мгновение уменьшается, и чашка, естественно, поднимается вверх.
Из пушки на Луну
В 1865–1870 гг. появился во Франции фантастический роман Жюля Верна «Из пушки на Луну», в котором высказана необычайная мысль: послать на Луну исполинский пушечный снаряд-вагон с живыми людьми! Жюль Верн представил свой проект в столь правдоподобном виде, что у большинства читателей, наверное, возникал вопрос: нельзя ли в самом деле осуществить эту мысль? Об этом интересно побеседовать.
Сначала рассмотрим, можно ли – хотя бы теоретически – выстрелить из пушки так, чтобы снаряд никогда не упал назад, на Землю. Теория допускает такую возможность. В самом деле, почему снаряд, горизонтально выброшенный пушкой, в конце концов падает на Землю? Потому что Земля, притягивая снаряд, искривляет его путь: он летит не по прямой линии, а по кривой, направленной к Земле, и поэтому рано или поздно встречается с почвой. Земная поверхность, правда, тоже искривлена, но путь снаряда изгибается гораздо круче. Если же кривизну пути снаряда ослабить и сделать ее одинаковой с искривлением поверхности земного шара, то такой снаряд никогда не сможет упасть на Землю! Он будет двигаться по кривой, концентрической с окружностью земного шара; другими словами, сделается его спутником, как бы второй Луной.
Но как добиться, чтобы снаряд, выброшенный пушкой, шел по пути, менее искривленному, чем земная поверхность? Для этого необходимо только сообщить ему достаточную скорость. Обратите внимание на рис. 25, изображающий разрез части земного шара.
Рис. 25. Вычисление скорости снаряда, который должен навсегда покинуть Землю.
На горе, высотой которой будем пренебрегать, в точке
Остается вычислить отрезок
(
Сделав вычисление, находим, что путь AB равен примерно 8 км.
Итак, если бы не было воздуха, который сильно мешает быстрому движению, снаряд, выброшенный горизонтально из пушки со скоростью 8 км/с,
А если выбросить снаряд из пушки с еще большей скоростью, – куда полетит он? В небесной механике доказывается, что при скорости в 8, 9, даже 10 км/с снаряд, вылетев из жерла пушки, должен описывать вокруг земного шара эллипс тем более вытянутый, чем больше начальная скорость. При скорости же снаряда 11,2 км/с он вместо эллипса опишет уже незамкнутую кривую – параболу, навсегда удаляясь от Земли (рис. 26).
Рис. 26. Судьба пушечного снаряда, выпущенного с начальной скоростью 8 км/с и более.
Мы видим, следовательно, что теоретически мыслимо полететь на Луну внутри снаряда, выброшенного с достаточно большой скоростью[5].
(Предыдущее рассуждение имело в виду атмосферу, не препятствующую движению снарядов.
В реальных условиях наличие сопротивляющейся атмосферы чрезвычайно затруднило бы получение таких высоких скоростей, а быть может, сделало бы их совершенно недостижимыми.)
Как Жюль Верн описал путешествие на Луну и как оно должно было бы происходить
Кто читал упомянутый сейчас роман Жюля Верна, тому памятен интересный момент путешествия, когда снаряд пролетел через точку, где притяжение Земли и Луны одинаково. Здесь произошло нечто поистине сказочное: все предметы внутри снаряда утратили свой вес, а сами путешественники, подпрыгнув, повисли в воздухе без опоры.
Описано это совершенно верно, но романист упустил из виду, что то же самое должно было наблюдаться также и до и после перелета через точку равного притяжения. Легко показать, что путешественники и все предметы внутри снаряда должны стать невесомыми с
Это кажется невероятным, но, я уверен, вы сейчас будет удивляться тому, что сами не заметили ранее столь крупного упущения.
Возьмем пример из романа Жюля Верна. Без сомнения, вы не забыли, как пассажиры выбросили наружу труп собаки и как они с изумлением заметили, что он вовсе не падает на Землю, а продолжает нестись вперед вместе со снарядом. Романист правильно описал это явление и дал ему верное объяснение. Действительно, в пустоте, как известно, все тела падают с одинаковой скоростью: притяжение Земли сообщает всем телам одинаковое ускорение. В данном случае и снаряд, и труп собаки должны были под действием земного притяжения приобрести одинаковую скорость падения (одинаковое ускорение); вернее, та скорость, которая сообщена была им при вылете из пушки, должна была под действием тяжести уменьшаться одинаково. Следовательно, скорости снаряда и трупа во всех точках пути должны оставаться равными, поэтому труп собаки, выброшенный из снаряда, продолжал следовать за ним, нисколько не отставая.
Но вот о чем не подумал романист: если труп собаки не падает к Земле, находясь
Этого романист не заметил: он думал, что предметы внутри свободно несущегося снаряда, находящегося под действием одних лишь сил притяжения, будут продолжать давить на свои опоры, как давили тогда, когда снаряд был неподвижен. Жюль Верн упустил из виду, что если и тело, и опора движутся в пространстве с одинаковым ускорением, сообщаемым действием сил притяжения (другие внешние силы – сила тяги, сила сопротивления воздуха – отсутствуют), то давить друг на друга они не могут.
Итак, с того момента путешествия, когда на снаряд перестали действовать газы, пассажиры не имели никакого веса и могли свободно витать в воздухе внутри снаряда; точно так же и все предметы в нем должны были казаться совершенно невесомыми. По этому признаку пассажиры легко могли определить, мчатся ли они в пространстве или продолжают неподвижно оставаться в пушке. Между тем романист рассказывает, как в первые полчаса своего небесного путешествия пассажиры тщетно ломали голову над вопросом: летят ли они или нет?
«– Николь, движемся ли мы?
Николь и Ардан переглянулись: они не чувствовали колебаний снаряда.
– Действительно! Движемся ли мы? – повторил Ардан.
– Или спокойно лежим на почве Флориды? – спросил Николь.
– Или на дне Мексиканского залива? – прибавил Мишель».
Такие сомнения возможны у пассажиров парохода, но немыслимы у пассажиров свободно несущегося снаряда: первые сохраняют свой вес, вторые же не могут не заметить, что сделались совершенно невесомыми.
Странное явление должен был представлять собой этот фантастический вагон-снаряд! Крошечный мир, где тела лишены веса, где, выпущенные из рук, они спокойно остаются на месте, где предметы сохраняют равновесие во всяком положении, где вода не выливается из опрокинутой бутылки… Все это упустил из виду автор «Путешествия на Луну», а между тем какой простор могли бы дать фантазии романиста эти изумительные возможности!
Верно взвесить на неверных весах
Что важнее для правильного взвешивания: весы или гири?
Вы ошибаетесь, если думаете, что одинаково важно и то и другое: можно правильно взвесить и не имея верных весов, когда под рукой есть верные гири. Существует несколько способов верно взвешивать на неверных весах. Рассмотрим из них два.
Первый способ предложен нами великим химиком Д. И. Менделеевым. Взвешивание начинают с того, что на одну из чашек кладут какой-нибудь груз, – безразлично какой, лишь бы он был тяжелее тела, подлежащего взвешиванию. Груз этот уравновешивают гирями на другой чашке. После этого на чашку с гирями кладут взвешиваемое тело и снимают с нее столько гирь, сколько требуется, чтобы восстановить нарушенное равновесие. Вес снятых гирь, очевидно, равен весу тела; оно заменяет их теперь на одной и той же чашке и, значит, имеет одинаковый с ними вес.
Этот прием, который называют «способом постоянной нагрузки», особенно удобен, когда приходится отвешивать одно за другим несколько тел: первоначальная нагрузка остается и ею пользуются для всех отвешиваний.
Другой прием, названный по имени предложившего его ученого «способом Борда», выполняется так. Поместите предмет, подлежащий взвешиванию, на одну чашку весов, а на другую насыпайте песок или дробь до тех пор, пока весы не придут в равновесие. Затем, сняв с чашки взвешиваемый предмет (песок не трогайте), кладите на нее гири до тех пор, пока весы снова не уравновесятся. Ясно, что теперь вес гирь равен весу замененного ими предмета. Отсюда другое название способа – «взвешивание заменой».
Для пружинных весов, имеющих только одну чашку, также применим этот простой прием, если у вас, кроме того, есть верные гири. Здесь нет надобности запасаться песком или дробью. Положите взвешиваемую вещь на чашку и заметьте, у какого деления остановится указатель. Затем, сняв вещь, поставьте на чашку столько гирь, сколько нужно, чтобы указатель остановился у прежнего деления. Вес этих гирь, очевидно, должен равняться весу замененной ими вещи.
Сильнее самого себя
Какой груз вы можете поднять рукой? Положим, что 10 кг. Вы думаете, что эти 10 кг определяет силу мускулов вашей руки? Ошибаетесь: мускулы гораздо сильнее! Проследите за действием, например, так называемой двуглавой мышцы вашей руки (рис. 27). Она прикреплена близ точки опоры рычага, каким является кость предплечья, а груз действует на другой конец этого живого рычага. Расстояние от груза до точки опоры, т. е. до сустава, почти в 8 раз больше, чем расстояние от конца мышцы до опоры. Значит, если груз составляет 10 кг, то мускул тянет с силой, в 8 раз большей. Развивая силу в 8 раз большую, чем наша рука, мускул мог бы непосредственно поднять не 10 кг, а 80 кг.
Рис. 27. Предплечье С человека – рычаг второго рода. Действующая сила приложена к точке I; опора рычага находится в точке О сочленения; преодолеваемое же сопротивление (груз R) приложено в точке В. Расстояние ВО больше расстояния IO приблизительно в 8 раз. (Рисунок взят из старинного сочинения Борелли, флорентийского ученого XVII века, «О движении животных», где законы механики впервые прилагаются к физиологии.)
Мы вправе без преувеличения сказать, что каждый человек гораздо сильнее самого себя, т. е. что наши мускулы развивают силу, значительно большую той, которая проявляется в наших действиях.
Целесообразно ли такое устройство? На первый взгляд как будто нет, – мы видим здесь потерю силы, ничем не вознаграждаемую. Однако вспомним старинное «золотое правило» механики: что теряется в силе, выигрывается в перемещении. Тут и происходит выигрыш в скорости: наши руки движутся в 8 раз быстрее, чем управляющие ими мышцы. Тот способ прикрепления мускулов, который мы видим в теле животных, обеспечивает конечностям проворство движении, более важное в борьбе за существование, нежели сила. Мы были бы крайне медлительными существами, если бы наши руки и ноги не были устроены по этому принципу.
Почему заостренные предметы колючи?
Задумывались ли вы над вопросом: отчего игла так легко пронизывает предмет насквозь? Отчего сукно или картон легко проткнуть тонкой иглой и трудно пробить тупым гвоздем? В обоих случаях действует, казалось бы, одинаковая сила.
Сила одинакова, но
Каждый скажет, что борона с 20 зубьями глубже разрыхлит землю, чем борона того же веса, но с 60 зубьями. Почему? Потому что
Когда речь идет о давлении, всегда необходимо, кроме силы, принимать во внимание также и площадь, на которую эта сила действует. Когда нам говорят, что кто-либо получает 1000 рублей зарплаты, то мы не знаем еще, много это или мало: нужно знать – в год или в месяц? Точно так же и действие силы зависит от того, распределяется ли она на квадратный сантиметр или сосредоточивается на сотой доле квадратного миллиметра.
Человек на лыжах ходит по рыхлому снегу, а без лыж проваливается. Почему? Потому что в первом случае давление его тела распределяется на гораздо большую поверхность, чем во втором. Если поверхность лыж, например, в 20 раз больше поверхности наших подошв, то на лыжах мы давим на снег в 20 раз слабее, чем стоя на снегу прямо ногами. Рыхлый снег выдерживает первое давление, но не выдерживает второго.
По той же причине лошадям, работающим на болоте, подвязывают особые «башмаки» к копытам, чтобы увеличить площадь опоры ног и тем уменьшить давление на болотистую почву: ноги лошадей при этом не увязают в болоте. Так же поступают и люди в некоторых болотистых местностях.
По тонкому льду люди передвигаются ползком, чтобы распределить вес своего тела на большую площадь.
Наконец, характерная особенность танков и гусеничных тракторов не увязать в рыхлом грунте, несмотря на свой значительный вес, объясняется опять-таки распределением веса на большую поверхность опоры. Гусеничная машина весом 8 и более тонн оказывает на 1 кв. см грунта давление не более 600 г. С этой точки зрения интересен автомобиль на гусеничном ходу для перевозки грузов на болотах. Такой грузовик, везущий 2 тонны груза, оказывает на грунт давление всего 160 г на 1 кв. см; благодаря этому он хорошо ходит на торфяном болоте и по топким или песчаным местностям.
В этом случае большая площадь опоры так же выгодна технически, как малая площадь в случае иглы.
Из сказанного ясно, что острие прокалывает лишь благодаря незначительности площади, по которой распределяется действие силы. Совершенно по той же причине острый нож лучше режет, нежели тупой: сила сосредоточивается на меньшем пространстве.
Итак, заостренные предметы оттого хорошо колют и режут, что на их остриях и лезвиях сосредоточивается большие давление.
Наподобие Левиафана
Почему на простом табурете сидеть жестко, в то время как на стуле, тоже деревянном, нисколько не жестко? Почему мягко лежать в веревочном гамаке, который сплетен из довольно твердых шнурков? Почему не жестко лежать на проволочной сетке, устраиваемой в кроватях взамен пружинных матрасов?
Нетрудно догадаться. Сидение простого табурета плоско; наше тело соприкасается с ним лишь по небольшой поверхности, на которой и сосредоточивается вся тяжесть туловища. У стула же сиденье вогнутое; оно соприкасается с телом по большей поверхности; по этой поверхности и распределяется вес туловища: на единицу поверхности приходится меньший груз, меньшее давление.
Итак, все дело здесь в более равномерном распределении давления. Когда мы нежимся на мягкой постели, в ней образуются углубления, соответствующие неровностям нашего тела. Давление распределяется здесь по нижней поверхности тела довольно равномерно, так что на каждый квадратный сантиметр приходится всего несколько граммов. Неудивительно, что в этих условиях мы чувствуем себя хорошо.