Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Мусорная ДНК. Путешествие в темную материю генома - Несса Кэри на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Казалось очень странным, что удаление небольшой части хромосомы способно вызывать два таких разных заболевания. Загадка стала проясняться, когда ученые показали: важно даже не само отсутствие этого маленького участка хромосомы 15. Важно то, почему он отсутствует. Как выяснилось, 70% изученных детей с синдромом Прадера-Вилли унаследовали аномальную хромосому 15 от мутантных клеток сперматозоидов. А 70% детей с синдромом Ангельмана унаследовали аномальную хромосому от мутантных яйцеклеток. Чуть позже исследователи установили, что 25% изученных детей с синдромом Прадера-Вилли обладали двумя совершенно нетронутыми хромосомами 15, в которых не наблюдалось никакой нехватки генетического материала. Дело в том, что эти пациенты наследовали обе копии хромосомы 15 от матери, а не по одной копии от каждого из родителей[29]. Меньшая доля страдающих синдромом Ангельмана имела по две нормальные копии хромосомы 15, причем обе копии наследовались от отца.

Такие картины наследования обретают смысл, только если привлечь концепцию импринтинга (см. рис. 10.3). Во всех аномальных ситуациях в клетках пациента отсутствует контролирующая импринтинг зона, которую ему следовало получить от одного из родителей. Результат — аномальные уровни экспрессии генов, которые в обычных условиях находились бы под жестким «родительским контролем». Это приводит к патологиям, в том числе к недостаточному или чрезмерному развитию органов и тканей.

Исследователи сумели еще больше сузить круг проблем, которые могли бы приводить к этим заболеваниям. Для этого они проанализировали гены, управляемые зонами, контролирующими импринтинг. Выяснилось, что среди обследованных пациентов, страдающих синдромом Ангельмана, примерно 10% унаследовали всю нужную ДНК от каждого из родителей. Однако у них имеется мутация в ДНК, унаследованной от матери. Она происходит не в ОКИ, а в гене, управляемом ОКИ. Это ген, кодирующий белок. Обычно данный ген экспрессируется лишь на хромосоме, наследуемой от матери. На хромосоме, наследуемой от отца, этот ген глушится импринтингом. Если ген, полученный от матери, не в состоянии вырабатывать белок из-за мутации, это означает, что такая клетка вообще не может синтезировать данный белок, что и приводит к патологии[30].

С синдромом Прадера-Вилли еще более необычная ситуация. Удалось выявить небольшое количество пациентов, у которых отсутствует лишь один из генов, находящихся на этом важнейшем участке хромосомы 15. Этот ген не кодирует белок, однако он кодирует целый набор некодирующих РНК. Все эти РНК обладают сходными функциями21,22,23: они вовлечены в процессы регуляции еще одного класса РНК, не кодирующих белки. Похоже, отсутствие одного-единственного гена, не кодирующего белок, имеет определяющее значения для развития большинства симптомов, характерных для синдрома Прадера-Вилли.


Рис. 10.3. Обычно мы наследуем одну копию хромосомы 15 по материнской линии, а одну — по отцовской. Если обе копии наследуются по материнской линии, у ребенка возникает синдром Прадера-Вилли. То же самое происходит, если копия хромосомы 15, наследуемая от отца, утратила импринтированный участок, несущий в себе отцовскую картину эпигенетических модификаций. В сущности, к синдрому Прадера-Вилли приводит нехватка отцовски-специфической информации. Синдром Ангельмана обусловлен дефектом того же самого участка хромосомы 15, но в данном случае заболевание вызвано нехваткой матерински-специфической информации.

Из всего этого можно сделать далеко идущие выводы. Итак, одна из зон мусорной ДНК (область, контролирующая импринтинг) управляет экспрессией фрагмента мусорной ДНК, который, в свою очередь, кодирует длинную некодирующую РНК. Эта длинная некодирующая РНК, в свою очередь, оказывает определяющее воздействие на регуляцию экспрессии гена, который кодирует целый набор некодирующих РНК. А роль этих некодирующих РНК — в том, чтобы осуществлять регуляцию других РНК, не кодирующих белки. Зная обо всем этом, как-то трудно утверждать, будто мусорная ДНК не обладает никакой функцией.

Синдром Прадера-Вилли и синдром Ангельмана — не единственные заболевания человека, при которых дефекты импринтинга приводят к аномалиям в росте и развитии, а также к ряду других сопутствующих проблем — например, сложностям при обучении. Еще одна взаимосвязанная пара болезней — синдром Сильвера-Рассела24 (проявляется как карликовость) и синдром Беквита-Видемана25 (проявляется как гигантизм). Для некоторых пациентов причиной болезни (той или другой) становятся «родительские» неполадки на одном и том же участке хромосомы 11. Этот импринтинговый локус устроен особенно сложно. Здесь задействовано множество генов и больше одной ОКИ.

Схожие взаимосвязи можно выявить и на других хромосомах. Дети, наследующие обе копии хромосомы 14 от матери, страдают задержкой роста в пренатальный и постнатальный период, однако позже у них развивается ожирение26. Но если обе копии хромосомы 14 ребенок получает от отца, развивается ненормально большая плацента, и дитя появляется на свет с самыми разными проблемами, в том числе с дефектами брюшной стенки27,28.

У большинства этих заболеваний есть столь же редкие разновидности, возникающие из-за эпигенетических погрешностей. Небольшое количество пациентов наследует правильную ДНК от нужного родителя. Эта ДНК не является мутантной. И тем не менее у пациентов возникает импринтинговое заболевание. В этих редких ситуациях обычно нарушаются процессы закрепления и поддержания импринтинга в зиготе и на ранних стадиях развития, что может приводить к неправильному метилированию (или неправильному неметилированию) ОКИ. В результате эта ОКИ отключается или включается тогда, когда не должна этого делать. Вот еще одно подтверждение того, какую важную роль играет общение между мусорной ДНК и эпигенетической аппаратурой.

Влияние катастрофического события

В 1978 году родилась девочка по имени Луиза Браун. Увидев ее, вы бы решили, что это самый обыкновенный ребенок. Несомненно, родители считали ее самым необыкновенным ребенком в мире. Да и какие родители не думают так о своих детях? Однако в данном случае супруги Браун были правы. О рождении их дочери возвещали первые полосы газет всего мира. Дело в том, что она стала первым «ребенком из пробирки».

Яйцеклетку ее матери оплодотворил сперматозоид ее отца не в обычных условиях, а в лабораторной чашке. Затем эту яйцеклетку вновь поместили в утробу матери. Такой процедурой воспользовались из-за того, что фаллопиевы трубы миссис Браун оказались заблокированными, и она не могла зачать дитя естественным путем. Успешное появление на свет Луизы Браун открыло новую эру в лечении бесплодия. По оценкам специалистов, с тех пор более 5 миллионов детей родились благодаря вспомогательным репродуктивным технологиям29.

Некоторые заявляли, что применение вспомогательных репродуктивных технологий может повысить распространенность импринтинговых заболеваний, особенно синдромов Беквита-Видемана, Сильвера-Рассела и Ангельмана. Такая озабоченность возникла из-за того, что эмбрионы при этом выращиваются в лаборатории как раз в тот определяющий период, когда складывается картина импринтинга. Как ни странно, мы до сих пор не знаем, действительно ли это такая большая проблема. Позвольте, ведь эти 5 миллионов детей — отличная база для анализа? Однако не следует забывать, что болезни, связанные с импринтингом, встречаются редко: при обычных родах — в одном из нескольких тысяч или даже десятков тысяч случаев. При анализе столь редких событий статистические данные легко интерпретировать неверно.

Помните «Конкорд», одну из всего-навсего двух моделей сверхзвуковых самолетов, когда-либо обслуживавших коммерческие рейсы? Не одно десятилетие «Конкорд» считался самым безопасным самолетом в мире, поскольку с ним никогда не случалось авиакатастроф со смертельным исходом. Но после трагического инцидента в парижском аэропорту «Шарль де Голль» в 2000 году, когда погибло 109 пассажиров и членов экипажа, он стал, статистически выражаясь, одним из самых небезопасных самолетов в мире. Разумеется, это произошло лишь из-за того, что «Конкорд» совершал полеты гораздо реже, чем большинство авиалайнеров, и количество перевозимых пассажиров также оказывалось малым (внутренняя часть этого самолета отличалась неожиданно миниатюрными размерами). А следовательно, одно-единственное событие смогло оказать колоссальное влияние на статистические данные, подсчитываемые слишком прямолинейно, без учета многих обстоятельств.

То же самое и с импринтинговыми заболеваниями. Если в обычных условиях вы ожидаете увидеть 50 случаев болезни на каждые 6 миллионов родившихся младенцев, как вы интерпретируете 55 случаев среди рожденных при посредстве вспомогательных репродуктивных технологий? Привело ли к этому десятипроцентному росту заболеваемости дополнительное медицинское вмешательство? А может, это просто статистический шум?[31] Следует также иметь в виду, что бесплодие само по себе способно вызывать некоторое усиление импринтинговых проблем, и применение вспомогательных репродуктивных технологий лишь их выявляет. Вполне возможно, что для сперматозоидов или яйцеклеток людей с пониженной фертильностью выше вероятность импринтинговых дефектов. Однако не исключено, что такие дефекты удалось выявить только из-за того, что эти люди смогли обзавестись потомством благодаря современным медицинским технологиям. В прошлом они бы вообще не смогли иметь детей, так что мы и не увидели бы воздействий, которые оказывает на потомство этот дефект импринтинга30. Вот вам одна из запутанных ситуаций в биологии, когда восприятие видимой нами картины может искажаться из-за явлений, не попадающих в поле нашего зрения.

Глава 11. Особое задание для мусора

Вполне возможно, что самая чудесная и притягательная особенность биологии — ее замечательная непоследовательность. Биологические системы возникали и эволюционировали потрясающе изобретательными путями, узурпируя существующие процессы, при малейшей возможности переориентируя их на выполнение других, совершенно новых задач. А значит, почти всякий раз, когда нам кажется, будто мы нащупали в природе какую-то стойкую тему, обнаруживаются исключения из правил. Более того, иногда вообще очень трудно разобраться, где норма, а где отклонение.

Возьмем мусорную ДНК и молекулы РНК, не кодирующие белки. Почти все, о чем мы говорили до сих пор, вроде бы позволяет нам вывести примерно такую гипотезу:

Когда мусорная ДНК кодирует РНК, не кодирующую белок (то есть мусорную РНК), эта РНК служит лишь своего рода подпоркой, направляющей деятельность белков в определенные участки генома.

Эта гипотеза наверняка должна согласовываться с теми ролями, которые играют в организме длинные некодирующие РНК. Они работают как застежка-липучка, расположенная между эпигенетическими белками и ДНК или гистонами. Такие белки часто действуют в комплексе, причем как минимум одним из членов комплекса зачастую оказывается фермент, то есть белок, ускоряющий химическую реакцию. Это может быть реакция, пристраивающая эпигенетические модификации к ДНК или гистонам (либо убирающая такие модификации) — или же добавляющая еще одно нуклеотидное основание к растущей молекуле информационной РНК.

Во всех этих ситуациях белок — своего рода глагол в молекулярном предложении. Это молекула действия.

При всей привлекательности такой модели у нее имеется один обидный недостаток. Встречается ситуация, где все роли перевернуты. В этой обратной ситуации белки относительно молчаливы, а вот мусорная РНК сама действует как фермент, вызывая химические изменения в другой молекуле.

Звучит странно. Есть даже искушение предположить, что это просто единичное исключение, редкая причуда природы. Пусть так. Но это, знаете ли, весьма примечательное исключение: молекулы мусорной РНК, обладающие такой функцией, составляют примерно 80% от всех молекул РНК, находящихся в клетке человека в любой момент времени1. Мы уже не одно десятилетие знаем о существовании этих необычных РНК. Тем удивительнее, что мы до сих пор придерживались столь белкоцентрического взгляда на наш геномный ландшафт.

Молекулы РНК, наделенные этой странной функцией, называются рибосомными РНК, или рРНК. Нетрудно догадаться, что в основном они располагаются в клеточных структурах, именуемых рибосомами. Эти структуры находятся не в ядре, а в цитоплазме. Рибосомы — структуры, где информация, содержащаяся в молекулах информационной РНК, конвертируется в связанные друг с другом цепочки аминокислот, в результате чего и синтезируются белковые молекулы. Если вспомнить нашу аналогию с вязанием, которую мы использовали в первых двух главах книги, рибосомы — это все те дамы-вязальщицы, которые превращают информацию, напечатанную на бумаге, в теплые носки и теплые перчатки для бойцов, сражающихся где-то за морем2.

По массе рРНК составляет около 60% общей массы рибосомы. Остальные 40% приходятся на белки. Молекулы рРНК группируются в две основные субструктуры. В одной содержится три типа рРНК и примерно 50 различных белков. В другой субструктуре лишь один тип рРНК и около 30 белков. Рибосому иногда рассматривают как единый макромолекулярный комплекс, поскольку она представляет собой весьма крупный и структурированный конгломерат из множества различных компонентов. Можно считать ее чем-то вроде большого робота, синтезирующего белки.

Когда на основе генов, кодирующих белки, вырабатываются молекулы информационной РНК, эти молекулы выводятся за пределы ядра и направляются в ту область клетки, где и расположены рибосомные роботы. Молекулы информационной РНК постепенно пропускаются через рибосому. Так генетические инструкции, которые несет информационная РНК, считываются рибосомой. В результате появляется череда аминокислот, соединенных вместе в нужном порядке. Именно рибосомная РНК осуществляет реакцию, посредством которой та или иная аминокислота соединяется со своей соседкой. В результате получается длинная и стабильная белковая молекула.

Информационная РНК пропускается сквозь одну рибосому, и в это же время другая рибосома может прикрепляться к началу того же послания, также создавая белковые цепочки. Вот почему одна молекула информационной РНК может использоваться как матрица для изготовления множества копий одного и того же белка. Этот процесс схематически показан на рис. 11.1.


Рис. 11.1. Молекула информационной РНК движется сквозь рибосому слева направо. Рибосома при этом выстраивает белковую цепочку. Когда начало информационной РНК появляется из рибосомы, которая с ней работает, оно может встретиться с другой рибосомой. В результате одной и той же молекулой информационной РНК могут единовременно заниматься несколько рибосом. Все эти рибосомы будут синтезировать полноразмерные белки.

Аминокислоты доставляются к рибосомам другим типом мусорной РНК — транспортной РНК, или тРНК. Это довольно маленькие некодирующие РНК, их длина составляет примерно 75-95 нуклеотидных оснований3. Но они способны складываться, создавая затейливую трехмерную структуру, которую обычно называют «лист клевера». К одному концу тРНК прикреплена определенная аминокислота. На другом конце находится петелька из трех нуклеотидных оснований. Этот триплет может соединяться с определенной последовательностью молекулы РНК. В сущности, тут используются такие же правила, как и при образовании нуклеотидных пар ДНК.

Молекулы тРНК служат своего рода посредниками между нуклеотидной последовательностью, которую несет информационная РНК (а изначально — ДНК), и синтезируемым белком. Молекулы тРНК обеспечивают выстраивание аминокислот в должном порядке, благодаря чему как раз и возникает соответствующий белок. Схематически это показано на рис. 11.2. Когда две аминокислоты удерживаются рядом друг с другом на рибосоме, рибосомная РНК может провести химическую реакцию, которая присоединяет хвост одной аминокислоты к голове соседней. Так и формируется белковая цепочка.


Рис. 11.2. По мере того, как информационная РНК движется сквозь рибосомы, молекулы транспортной РНК подводят нужные аминокислоты на нужные места в цепочке (на основании правил образования пар нуклеотидных оснований). Аппаратура рибосомной РНК соединяет соседние аминокислоты, образуя белковую цепочку.

Некоторые из триплетов, расположенных на информационной РНК, не соответствуют никаким триплетам транспортной РНК. Их называют стоп-сигналами. Когда рибосома считывает такой сигнал, она не может поместить тРНК в нужное место, в результате чего рибосома отсоединяется от информационной РНК, и белок прекращает расти. Это те самые элементы крыши из конструктора «Лего», о которых мы говорили в главе 7. Затем рибосома находит другую молекулу информационной РНК для трансляции ее в белок — или же возвращается к началу первой молекулы.

Хотя в основе всей этой сложнейшей процедуры лежит деятельность гигантского комплекса, в состав которого входят 4 типа рибосомной РНК и около 80 белков, процесс добавления новых аминокислот к растущему белку идет весьма быстро. Нелегко точно измерить его скорость в человеческих клетках, но вот у бактерий каждая рибосома может пристраивать аминокислоты к растущему белку со скоростью около 200 аминокислот в секунду. Возможно, процесс идет не так стремительно, как в человеческих клетках. Но эти 200 аминокислот все равно достраиваются примерно за вдесятеро меньшее время по сравнению с тем, какое понадобилось бы нам для скрепления друг с другом всего пары элементов «Лего» при строительстве нашей игрушечной башни. И не забудьте, что рибосома скрепляет друг с другом не первые попавшиеся кирпичики «Лего». Представьте, что нам нужно всякий раз выбирать лишь по 2 из 20 типов строительных блоков (существует 20 различных аминокислот) и затем скреплять такие блоки друг с другом в нужном порядке, проделывая эту операцию много раз в секунду. Непростая задача.

Наши клетки вынуждены ежесекундно производить миллионы белковых молекул, так что нам нужно, чтобы наши рибосомы действовали очень эффективно. Кроме того, для удовлетворения спроса на белки требуется очень много рибосом — до 10 миллионов миниатюрных роботов в отдельной клетке4. Чтобы создавать достаточное количество рибосом, наши клетки обзавелись множеством копий рРНК-генов. Вместо того, чтобы зависеть от процесса создания рРНК по классической схеме, когда один ген наследуется от каждого из родителей, мы наследуем около 400 рРНК-генов, распределенных по 5 различным хромосомам5. Согласитесь, огромное богатство. Благодаря этому, в частности, у нас не очень-то высока вероятность заболеваний, вызываемых мутациями этих генов. Ведь если одна из копий мутирует, всегда есть масса запасных. Поэтому наш организм, скорее всего, сумеет компенсировать дефект благодаря всем нормальным версиям гена, кодирующим ту же самую молекулу рРНК. Иное дело — мутации генов, кодирующих белки: такие гены также присутствуют в рибосомах. Мы пока не успели детально изучить функции многих из этих генов. Некоторые, судя по всему, вообще не играют важной роли в функционировании рибосом. Но есть здесь и такие гены, мутация которых все-таки вызывает заболевания.

Два наиболее известных примера — анемия Даймонда-Блекфена и синдром Тричера Коллинза. Их причиной служат наследуемые мутации двух разных генов, кодирующих белки. Следствие такой мутации в обоих случаях — уменьшение количества рибосом. Номы еще не до конца понимаем, как именно это влияет на функционирование клеток. Ведь если единственный важный фактор — снижение числа рибосом, клинические последствия будут одинаковы в обоих случаях. Однако это не так. Главный симптом анемии Даймонда-Блекфена — нарушение процессов выработки красных кровяных телец. Основные симптомы при синдроме Тричера Коллинза — деформации головы и лица, приводящие к проблемам с дыханием, глотанием и слухом6.

Поскольку нам требуется много рибосом, а значит, и много рРНК-генов, логично предположить, что нам нужно и много тРНК-генов, чтобы обеспечивать нас большим количеством молекул транспортной РНК для доставки аминокислот к рибосомам. В человеческом геноме около 500 тРНК-генов, распределенных почти по всем хромосомам7. Это дает такие же преимущества, как и наличие множества копий рРНК-генов.

Возможно, между рРНК и импринтингом существует некое странное и интригующее перекрывание. Как уже говорилось в главе 10, среди больных синдромом Прадера-Вилли есть небольшое количество пациентов, у которых заболевание затрагивает лишь одну зону мусорной ДНК. Эта зона кодирует целый набор некодирующих РНК. Такие РНК называются малыми ядрышковыми РНК[32]. Эти некодирующие РНК мигрируют к области ядра, которая называется ядрышком и которая играет очень важную роль в биологии рибосом. Ядрышко — то место, где происходит сборка зрелых рибосом (см. рис. 11.3).


Рис. 11.3. Молекулы информационной РНК для рибосомных белков создаются в ядре и затем доставляются к существующим рибосомам цитоплазмы. Новые рибосомные белки переносятся обратно, в определенную область ядра. Там они соединяются с молекулами рибосомной РНК, создавая новые рибосомы, которые затем выводятся в цитоплазму, чтобы действовать в ней.

В ядрышке эти рРНК и белки модифицируются. Затем из них в процессе сборки создаются зрелые «нетронутые» рибосомы, которые выводятся обратно в цитоплазму. Они готовы осуществлять свои функции роботов, создающих белки. Малые ядрышковые РНК требуются для того, чтобы определенные модификации должным образом происходили в молекулах рРНК. Подобно тому, как ДНК и гистоны можно модифицировать, пристраивая к ним метильную группу, молекулы рРНК также можно метилировать. Вероятно, малые ядрышковые РНК облегчают этот процесс, находя на рРНК участки, где могут образовывать нуклеотидные пары. Опять-таки, в основе этого — связывание соответствующих нуклеотидных оснований двух нуклеиновых молекул. После того, как соединение произошло, малые ядрышковые РНК привлекают ферменты, способствующие пристраиванию метильных групп к молекулам рРНК. Вероятно, это чем-то похоже на то, как длинные некодирующие РНК привлекают ферменты, модифицирующие гистоны[33]. Пока еще не вполне ясно, почему эти модификации важны для рРНК. Согласно одной из гипотез, они помогают стабилизировать взаимодействия между молекулами рРНК и рибосомными белками.

Есть искушение предположить, что причиной симптомов, возникающих при синдроме Прадера-Вилли, как раз и является неправильный контроль рРНК-модификаций со стороны малых ядрышковых РНК. Но пока это лишь версия. Проблема в том, что теперь мы понимаем: малые ядрышковые РНК могут также таргетировать и многие другие типы молекул РНК. Поэтому нельзя с уверенностью сказать, в каком из процессов у больных детей происходят нарушения.

Рибосомы — чрезвычайно древние образования. Их можно обнаружить в весьма примитивных организмах, к примеру, даже у бактерий — крошечных одноклеточных, в клетках которых нет ядра, а значит, ДНК у них не отделена от цитоплазмы. Специалисты по эволюционной биологии часто используют ДНК-последовательности генов, кодирующих различные рРНК, чтобы проследить, как отделялись друг от друга виды, со временем оказавшиеся на разных ветвях эволюционного древа.

Бактерии отделились от более сложных организмов примерно 2 миллиарда лет назад8. Поэтому, хотя мы все-таки обнаруживаем рРНК-гены у этих наших одноклеточных родичей (очень дальних), эти гены сильно отличаются от наших. Оказывается, это очень хорошо! Некоторые из наиболее распространенных и наиболее успешно действующих антибиотиков работают благодаря ингибированию бактериальных рибосом9. В числе этих препаратов — тетрациклин и эритромицин. Они нарушают деятельность бактериальных рибосом, но не человеческих. Мы сегодня так привыкли использовать антибиотики, что подчас забываем, какую важную роль они сыграли в развитии медицины. Начиная с момента своего триумфального появления в 1940-е годы, антибиотики сохранили жизни миллионов людей. И многих из них удалось спасти благодаря тому, что у разных видов по-разному устроено то, что пуристы назвали бы мусорной ДНК. Не правда ли, забавно?

Мы зависим от тех, кто нас захватил

Еще забавнее то, что каждый из нас колонизирован организмами, появившимися (в эволюционном смысле), вероятно, примерно тогда же, когда наши прародители отделились от предков современных бактерий. Собственно, «колонизирован» — это еще мягко сказано. И наше выживание, и выживание всех других многоклеточных на Земле, от травы до зебр, от китов до червей, в огромной мере зависит от этой колонизации. От нее зависит даже выживание дрожжей, тех самых, которые мы используем для приготовления хлеба и пива.

Миллиарды лет назад в клетки наших самых первых предков вторглись крошечные организмы. На этой стадии, вероятно, не существовало организмов размером более 4 клеток, да и они, эти клетки, не отличались особой специализированностью. Вместо того, чтобы начать войну друг с другом, захваченные клетки и их микроскопические захватчики пришли к компромиссу, от которого выиграли обе стороны. Так завязалась прекрасная дружба, длящаяся уже миллиарды лет.

Эти крошечные организмы постепенно превратились в важнейшие компоненты наших клеток — митохондрии. Они расположены в цитоплазме. По сути, эти субклеточные органеллы — миниатюрные генераторы, вырабатывающие энергию, которая требуется нашему организму для выполнения всех его стандартных функций. Именно митохондрии позволили нам использовать кислород для извлечения полезной энергии из пищевых продуктов. Без них мы оставались бы зловонными четырехклеточными ничтожествами, которым едва-едва хватало бы энергии хоть на что-то полезное.

Почему мы так уверены, что митохондрии — потомки микроорганизмов, некогда живших отдельно от нас? Вот одна из причин такой уверенности: у митохондрий свой собственный геном. Он куда меньше, чем «настоящий» человеческий геном, хранящийся в ядре клетки. Его длина чуть больше 16 500 пар нуклеотидных оснований: сравните с 3 миллиардами пар оснований ядерного генома. В отличие от наших хромосом, митохондриальный геном уложен в кольцевую структуру. В нем лишь 37 генов. Примечательно, что более половины из них не кодируют белки. Двадцать два гена кодируют молекулы митохондриальной тРНК10, а два гена — молекулы митохондриальной рРНК. Это позволяет митохондриям производить рибосомы, которые затем используются для создания белков по инструкциям других генов митохондриальной ДНК[34]’11.

В эволюционном смысле это кажется очень рискованной стратегией. Функционирование митохондрий невероятно важно для всего живого, а функционирование рибосом — еще важнее для функционирования митохондрий. Почему же столь важный процесс не обеспечен системой подстраховки в виде дополнительных копий рибосомных генов в наших клеточных электростанциях?

Дело в том, что митохондриальная ДНК наследуется не так, как ядерная ДНК. В ядре мы наследуем по одному набору хромосом от каждого из родителей. А вот с митохондриальным наследованием дело обстоит иначе. Мы наследуем митохондрии лишь от матери. Может показаться, что это еще более рискованный сценарий. Ведь если мы унаследуем от матери мутантный митохондриальный ген, нам не придется рассчитывать на запасной отцовский.

Но тут (конечно же) есть свои тонкости. Мы получаем от матери не одну митохондрию, а сотни тысяч (возможно, до миллиона). И они не одинаковы с генетической точки зрения, поскольку не все происходят от одной митохондрии клетки-предшественницы. Всякий раз, когда клетка делится, ее митохондрии также делятся — и передаются дочерним клеткам. Даже если в каких-то из этих митохондрий и возникнут мутации, в клетке всегда будет иметься множество других митохондрий — вполне нормальных.

Это не значит, что здесь никогда не случается никаких сбоев. Зачастую проблемы связаны с тРНК-генами митохондриальной ДНК. Это приводит к ослаблению и атрофии мышц12, потере слуха13, гипертонии14, сердечным неполадкам15. Впрочем, у разных пациентов симптомы могут существенно отличаться — даже в пределах одной и той же семьи. Наиболее вероятная причина этого в том, что симптомы, возможно, начинают возникать, лишь когда доля мутантных митохондрий в той или иной ткани достигает какого-то порогового значения. А это, скорее всего, происходит лишь на сравнительно позднем этапе жизни, становясь следствием случайного и неравномерного распределения «хороших» и «плохих» митохондрий при делении клеток.

Неужели всего этого недостаточно, чтобы показать: РНК — не какая-то бедная родственница ДНК, не «низший вид» по сравнению с белками? Тогда задумайтесь вот над чем. Несмотря на то, что ДНК может считаться олицетворением биологии, вся жизнь на Земле, видимо, произошла все-таки не от ДНК, а от РНК.

В начале была РНК (по-видимому)

ДНК — великая молекула. Она хранит в себе массу информации. Благодаря структуре ДНК (знаменитой двойной спирали) эту информацию легко копировать, при этом молекула удивительно стабильна. Но если попытаться заглянуть в далекое прошлое, когда, миллиарды лет тому назад, жизнь на Земле только зарождалась, трудно представить, что это случилось на основе ДНК-генома.

Дело в том, что ДНК великолепно умеет хранить информацию, но при этом совершенно бесполезна, когда речь заходит о создании чего-либо на базе этой информации. ДНК не в состоянии действовать как фермент, а потому не в состоянии сделать даже свою копию. Как же она могла стать исходным генетическим материалом?

Но если мы обратимся к рРНК, молекуле, которая не пользуется особой славой даже среди ученых (ну, среди большинства из них), то мы придем к некоему озарению. Молекула рРНК содержит информацию о нуклеотидной последовательности, однако одновременно является и ферментом! Очень вероятно, что РНК могла выполнять в прошлом целый ряд ферментативных функций, а это могло привести к эволюционному развитию системы самоподдерживающейся и самораспространяющейся генетической информации.

В 2009 году вышла удивительная статья, авторы которой описывали, как они создали именно такую систему. Они генетическим путем сотворили две разновидности молекул РНК, каждая из которых могла вести себя как фермент. Когда в лабораторных условиях к смеси этих молекул добавили необходимое им сырье (в том числе отдельные РНК-основания), эти две разновидности молекул принялись делать копии друг друга. Используя существующие РНК-последовательности как матрицы для новых молекул, они производили идеальные копии. По мере того, как их снабжали сырьем, они штамповали всё новые и новые копии. Система стала самоподдерживающейся. Исследователи пошли еще дальше. Они смешали большее число разновидностей РНК, каждая из которых обладала ферментативным действием. Запустив эксперимент, ученые обнаружили, что численность двух последовательностей быстро превысила численность всех остальных. По сути, складывалась не только самоподдерживающаяся система, но и система, способная на самостоятельный внутренний отбор. Наиболее эффективные пары молекул РНК воссоздавали себя гораздо стремительнее, чем другие пары16. А совсем недавно удалось создать разновидность ферментативной РНК, которая сама создает собственные копии (то есть ей даже не нужна для этого пара)17.

В Великобритании до сих пор можно услышать старинную пословицу «Где грязь, там и медь», означающую, что деньги можно получать из всякой дряни. Может быть, где мусор, там и жизнь?

Глава 12. Включить и усилить

«Бугатти вейрон» — самый дорогой автомобиль для езды по обычным дорогам. Стоит он всего-навсего 1 миллион 700 тысяч долларов. Трудно определить, какая машина самая дешевая. Возможно, на эту честь может претендовать «дачия сандеро»: ее цена — примерно процент от цены «вейрона». Однако у обоих транспортных средств есть много общего. В частности, оба необходимо завести, прежде чем куда-нибудь на них поехать. Если вы не запустите двигатель, у вас ничего не выйдет.

С нашими генами, кодирующими белки, такая же история. Пока их не активируют и не скопируют на информационную РНК, они не будут ничего делать, оставаясь просто инертными фрагментами ДНК, точно так же, как роскошный «вейрон» остается лишь грудой металла и аксессуаров, пока вы не повернете ключ зажигания. Включение гена зависит от участка мусорной ДНК, называемого промотором. Промотор располагается в начале каждого гена, кодирующего белок.

Если представить себе автомобиль традиционного типа, то промотор — это скважина для ключа зажигания. Сам ключ — это комплекс белков, которые соединяются с промотором. Эти белки называются транскрипционными факторами. Они, в свою очередь, связываются с ферментом, который создает информационные РНК, содержащие копии гена. Такая последовательность событий как раз и вызывает экспрессию гена (и управляет ею).

Сравнительно просто выявить промоторы, анализируя ДНК-последовательности. Промоторы всегда встречаются непосредственно перед областями, кодирующими белки. Кроме того, обычно они содержат характерные ДНК-мотивы. Дело в том, что транскрипционные факторы — особый тип белков, способных распознавать определенные ДНК-последовательности и связываться с ними. При анализе эпигенетических модификаций промоторов мы можем выявить некую устойчивую картину. У промоторов имеются определенные наборы эпигенетических модификаций, в зависимости от того, активен ли ген в клетке. Эти эпигенетические модификации — немаловажные регуляторы процессов связывания транскрипционных факторов. Некоторые модификации привлекают транскрипционные факторы и соответствующие ферменты, что приводит к экспрессии гена. Другие же препятствуют связыванию транскрипционных факторов, что очень затрудняет включение гена.

Ученые могут скопировать промотор и встроить его в какой-то другой участок генома или даже в геном другого организма. Такие эксперименты подтвердили, что промоторы обычно действуют, располагаясь непосредственно перед геном. Удалось показать также, что промотор должен «указывать» в нужном направлении. Если вы вставите промотирующую последовательность перед геном, но «задом наперед», она не будет работать. Это как если бы вы вверх ногами вставили ключ в замок зажигания. Действие промоторов зависит от их ориентации.

Промоторы толком не различают гены, которые они контролируют. Они просто включают ближайший ген, если находятся от него на достаточно небольшом расстоянии и «указывают» в нужном направлении. Это позволяет ученым использовать промоторы для управления экспрессией каждого интересующего их гена. Очень удобно для экспериментаторов. Но есть у этих процессов и обратная сторона. При некоторых формах рака основная проблема (на молекулярном уровне) сводится к тому, что ДНК наших хромосом «запутывается», и промотор запускает экспрессию не того гена. Для онкологических заболеваний речь идет о гене, который увеличивает скорость размножения клеток. Впервые такое явление обнаружили, исследуя разновидность рака крови, именуемую лимфомой Бёркитта (вероятно, она по-прежнему остается самым известным примером данного процесса). При этом недуге сильный промотор, находящийся на хромосоме 14, начинает располагаться «выше» гена хромосомы 8, кодирующего белок, способный существенно ускорять размножение клеток[35],1. Последствия могут быть катастрофическими. Белые кровяные тельца (лейкоциты), несущие в себе такую перестановку, растут и делятся очень быстро, в результате чего их доля в крови неуклонно увеличивается. При ранней диагностике заболевания можно вылечить свыше половины пациентов, хотя для этого требуется интенсивная химиотерапия2. У тех, кому поставили диагноз слишком поздно, угасание идет ужасающе быстро, приводя к летальному исходу за какие-то недели.

В здоровых тканях различные промоторы могут проявлять активность лишь в определенных типах клеток — обычно благодаря тому, что они полагаются на транскрипционные факторы, экспрессируемые лишь некоторыми, определенными типами клеток. Кроме того, промоторы обладают различной силой. Что имеется в виду? Сильные промоторы включают гены весьма агрессивным образом, в результате порождая множество копий информационной РНК, формируемой на основе гена, кодирующего белок. Именно это происходит при лимфоме Бёркитта. Слабые промоторы меньше влияют на уровень генетической экспрессии. Сила промотора в клетках млекопитающих зависит от множества параметров и особенностей этих клеток, в том числе от ДНК-последовательности, но также от наличия и доступности транскрипционных факторов, от эпигенетических модификаций и, вероятно, от целого ряда других переменных, которые мы пока не знаем.

Управляя плавно меняющимся откликом

Каждый конкретный промотор в каждом конкретном типе клеток вызывает относительно постоянный уровень генетической экспрессии — по крайней мере, в экспериментальных системах. Однако при обычных обстоятельствах экспрессия генов — явление не пороговое. Гены могут экспрессироваться в разной степени. Сравним это с возможностью придавать машине любую скорость от одной мили в час до максимальной (больше 250 миль в час для «вейрона», меньше половины этой величины для «сандеро»). В клетках такая гибкость достигается благодаря целому ряду взаимодействующих процессов, в том числе и эпигенетических. Однако на нее влияет и еще одна область мусорной ДНК — так называемый энхансер.

По сравнению с промоторами энхансеры — штука очень туманная. Обычно они представляют собой последовательности длиной в несколько сотен пар нуклеотидных оснований, однако такие области почти невозможно идентифицировать лишь при помощи анализа ДНК-последовательности3. Они просто слишком разнообразны. Выявление энхансеров затруднено еще и тем, что они не обязательно функционируют постоянно. Так, удалось выявить набор латентных энхансеров, который начинает регуляцию генетической экспрессии, лишь когда сами эти энхансеры каким-то образом активируются неким стимулом. А значит, вполне возможно, что в геномной последовательности не существует каких-то изначально заданных областей-энхансеров со строго определенной ролью.

Воспалительная реакция — первый рубеж обороны организма при защите, к примеру, от бактериальных инфекций. Клетки, расположенные близ места вторжения захватчиков, выделяют химические вещества и сигнальные молекулы, которые создают для чужаков весьма враждебную среду. Это как если бы срабатывание домашней сигнализации вызывало целый ливень горячей и вонючей жидкости, обрушивающийся на комнату, куда проник незадачливый взломщик.

Ученые, исследующие воспалительный отклик организма, одними из первых сумели показать, что ДНК-последовательности могут при необходимости становиться энхансерами. Выяснилось, что как только воспалительный стимул исчезает, энхансеры не возвращаются в инертное состояние. Они остаются энхансерами, готовыми снова повысить уровень экспрессии соответствующих генов, если клетки вновь встретятся с этим воспалительным стимулом4. По-видимому, не случайно эти энхансеры регулируют деятельность генов, вовлеченных в отклик организма на вторжение чужаков. Такая память, проявляемая в виде экспрессии генов, может позволять организму как можно эффективнее и быстрее побеждать инфекцию. Это большое преимущество.

Эпигенетика и энхансеры: интенсивное общение

Итак, гены могут сохранять память даже после исчезновения стимула. Каким образом? В частности, благодаря эпигенетике. Эпигенетические модификации способны облегчить последующую активацию генов, поддерживая их в сравнительно «неподавленном» состоянии. Это как с врачом, который не уехал в отпуск, а дежурит и ждет вызова. В вышеописанном исследовании ученые показали, что определенные гистонные модификации оставались на «новых» энхансерах и после исчезновения воспалительного стимула, тем самым поддерживая эти энхансеры в состоянии боевой готовности.

Вообще говоря, мы начинаем чуть больше продвигаться в идентификации энхансеров по эпигенетическим модификациям, которые не зависят от соответствующих ДНК-последова-тельностей. Эти модификации могут использоваться как функциональные маркеры, показывающие, как клетки определенного типа используют данный фрагмент ДНК. Удалось показать также, что эти модификации порой меняются при онкологических заболеваниях, создавая различные картины генетической экспрессии, а те могут вносить свой вклад в клеточные трансформации, которые, в свою очередь, как раз и приводят к раковым процессам5.

Но даже если нам все-таки удается найти эпигенетический «автограф», который указывает, что мы, возможно, имеем дело с энхансером, нам все равно мешает еще одна проблема. Мы не знаем, на какой ген, кодирующий белок, он влияет. Это можно попытаться выяснить лишь одним способом — разрушая энхансер при помощи генетических манипуляций и затем оценивая, на какие гены воздействует такая перемена. Дело в том, что энхансеры функционируют не так, как промоторы. Энхансеры работают независимо от своей ориентации. Иными словами, неважно, в какую сторону они «указывают». Есть и еще более резкое различие: энхансеры могут располагаться очень далеко от того кодирующего белок гена, на экспрессию которого они влияют.

Кроме того, энхансеров гораздо больше, чем мы могли бы ожидать. В ходе недавнего широкомасштабного исследования изучались картины гистонной модификации примерно в 150 человеческих клетках. При поиске рисунков модификаций, похожих на энхансерные, оказалось возможным выявить около 400 тысяч кандидатов на роль областей-энхансеров6. Это гораздо больше, чем требовалось бы в случае существования взаимно однозначного соответствия между энхансерами и генами, кодирующими белки. И даже если мы предположим, что длинные некодирующие РНК тоже обладают энхансерами, это число все равно окажется слишком большим.

Не все энхансеры обнаружились в каждом типе клеток. Это вполне согласуется с моделью, в которой один и тот же фрагмент ДНК может обладать разными функциями в разных типах клеток, в зависимости от своих эпигенетических модификаций.

Сегодня нет четких моделей функицонирования энхансеров. Ученые предполагают, что во многих случаях они очень сильно зависят от генетического мусора иного типа — от длинных некодирующих РНК. Собственно, некоторые классы длинных некодирующих РНК могут экспрессироваться на самих энхансерах7. Многие длинные некодирующие РНК участвуют в процессах подавления экспрессии генов. Но теперь немало ученых считают, что существует и обширный класс длинных некодирующих РНК, усиливающих экспрессию генов. Впервые такую гипотезу высказали применительно к длинным некодирующим РНК, которые регулируют соседствующие с ними гены. В ходе ряда экспериментов искусственное усиление экспрессии длинной некодирующей РНК приводило к усилению экспрессии ближайшего к ней гена, кодирующего белок. И наоборот, искусственное подавление экспрессии длинной некодирующей РНК приводило к снижению экспрессии гена, кодирующего белок8.

Дальнейшие подтверждения этой гипотезы удалось получить, анализируя временной характер включения/выключения длинных некодирующих РНК и информационных РНК, которые ими регулируются (как считали ученые). Исследователи подвергали клетки воздействию стимула, который, как они уже знали, вызывает экспрессию определенного гена. Как выяснилось, усиливающая («энхансерная») длинная некодирующая РНК включалась раньше, чем информационная РНК близлежащего гена, кодирующего белок9,10. Это отвечает модели, согласно которой длинная некодирующая РНК, расположенная в области-энхансере, включается в ответ на стимул, а затем, в свою очередь, помогает усилить экспрессию гена, кодирующего белок (или включить этот ген).

Длинная некодирующая РНК способствует такому усилению не сама по себе. Для успешного осуществления процесса необходимо присутствие большого комплекса белков. Такой комплекс называется медиатором. Длинная некодирующая РНК связывается с медиатором, направляя его деятельность на близлежащий ген. Один из белков медиатора способен пристраивать эпигенетические модификации к соседствующему с ним гену, кодирующему белок[36]. Это помогает рекрутировать фермент, создающий копии информационной РНК. Затем эти копии используются как матрицы для производства белка.

Существует неизменная взаимосвязь между медиатором и длинной некодирующей РНК. Искусственно вызванные понижения уровня экспрессии длинной некодирующей РНК или какого-то белка, входящего в состав медиатора, всякий раз приводили к понижению уровня экспрессии ближайшего гена11.

Важность физического взаимодействия между длинными некодирующими РНК и медиатором показали на примере одного из генетических заболеваний человека. Речь идет о синдроме Опица-Каведжиа. Дети, родившиеся с этим недугом, испытывают трудности при обучении, у них пониженный мышечный тонус и непропорционально большая голова12. Они наследуют мутацию одного-единственного гена. Этот ген кодирует белок медиатора, взаимодействующего с молекулами длинной некодирующей РНК[37].

Чем больше ученые анализировали деятельность медиатора, тем интереснее им становились эти исследования. Одной из причин такого интереса явилось то, что медиатор отвечает за действия группы энхансеров, обладающих необычными способностями. Это так называемые суперэнхансеры. Они играют особенно важную роль в эмбриональных стволовых клетках (ЭС-клетках), плюрипотентных клетках человеческого организма, которые способны стать клетками практически любого типа13.

Суперэнхансеры — кластеры энхансеров, действующих сообща. По размерам эти кластеры примерно вдесятеро больше обычных энхансеров, а потому могут связываться с огромным количеством белковых молекул. В этом они значительно превосходят обыкновенные энхансеры. Суперэнхансеры способны резко усиливать экспрессию регулируемых ими генов. Но дело не только в числе белков, с которыми они связываются. Ученых больше интересует, что это за белки.



Поделиться книгой:

На главную
Назад