Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Мусорная ДНК. Путешествие в темную материю генома - Несса Кэри на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Рис. 7.1. Стандартные кариотипы, женский и мужской, показывают все хромосомы, имеющиеся в клетке. Вверху: женский кариотип, внизу: мужской. Единственное отличие — в последней паре хромосом. У женщин две крупные X-хромосомы. У мужчин одна крупная X-хромосома и одна маленькая Y-хромосома. (Wessex Regional Genetics Centre, Wellcome Images).

Несмотря на свои небольшие размеры, Y-хромосома оказывает огромное влияние на организм. Именно она определяет пол развивающегося эмбриона. В этой хромосоме содержится небольшое число генов, но они играют важнейшую роль в задании половой принадлежности. Собственно, половую принадлежность главным образом контролирует всего один ген[17],2: он запускает создание семенников. А это, в свою очередь, побуждает организм вырабатывать гормон тестостерон, что и приводит к маскулинизации эмбриона. Любопытно: как показало одно недавнее исследование, этого гена и еще одного гена вполне достаточно не только для создания мышей-самцов, но и для того, чтобы они вырабатывали работоспособную сперму и становились отцами мышат3.

Напротив, X-хромосома обладает большими размерами и содержит свыше 1000 генов4. Это может порождать проблемы. У мужских особей всего одна копия X-хромосомы, а значит, всего одна копия каждого из ее генов. Однако у самок эти цифры вдвое больше. Так что теоретически самки могли бы вырабатывать вдвое больше продуктов, кодируемых X-хромосомой, чем самцы. Трисомные заболевания, описанные в главе 6, показывают, что даже 50%-ный рост экспрессии генов одной маленькой хромосомы чрезвычайно вредит процессам развития организма. Каким же образом женский организм справляется со 100%-ным (по сравнению с мужскими особями) ростом экспрессии более 1000 генов?

У женщин есть выключатель

Дело в том, что женскому организму и не нужно с ним справляться. В клетках женщин экспрессия белков, кодируемых X-хромосомой, не отличается по своему уровню от аналогичной экспрессии в клетках мужчин. Женский организм достигает этого при помощи остроумного механизма, отключающего одну X-хромосому в каждой клетке. Этот механизм называется X-инактивацией (инактивацией X-хромосомы). Он играет важнейшую роль в человеческой жизни. Кроме того, этот процесс открыл для нас новые, совершенно неожиданные области биологии, где до сих пор ведутся активные исследования.

Вот одно из наиболее странных открытий, которые ученые совершили на этом пути. Оказывается, наши клетки умеют сами определять количество X-хромосом. В мужских клетках содержится по одной X-хромосоме и по одной Y-хромосоме, и они никогда не инактивируют свою единственную X-хромосому. Однако иногда мужские особи рождаются с двумя X-хромосомами и одной Y-хромосомой. Они все равно являются мужскими, так как за маскулинизацию отвечает Y-хромосома. Однако их клетки инактивируют лишнюю X-хромосому — точно так же, как поступают со своей второй X-хромосомой женские клетки.

С женскими особями происходит похожая история. Иногда женщины появляются на свет с тремя X-хромосомами в каждой клетке. В таком случае клетки отключают две X-хромосомы, а не одну. А если женщина рождается всего с одной X-хромосомой? Тогда клетка не отключает никаких X-хромосом.

Наши клетки умеют не только считать, но и помнить. Когда женский организм производит яйцеклетки, он обычно снабжает их лишь одной хромосомой из каждой пары. Это относится и к X-хромосомам. Мужской организм вырабатывает сперматозоиды, каждый из которых содержит либо X-, либо Y-хромосому. Когда сперматозоид, содержащий X-хромосому, сливается с яйцеклеткой, образуется одноклеточная зигота с двумя X-хромосомами, причем обе они активны. Однако на самой ранней стадии развития, всего после нескольких циклов деления, в каждой клетке эмбриона инактивируется одна из X-хромосом. Иногда это X-хромосома, унаследованная от отца, иногда — X-хромосома, унаследованная от матери. Каждая дочерняя клетка, возникающая при последующих циклах деления, отключает такую же хромосому, что и клетка материнская. А значит, среди примерно 50 триллионов клеток взрослой женщины в среднем примерно половина будет экспрессировать X-хромосому, полученную от яйцеклетки, а другая половина будет экспрессировать X-хромосому, полученную от сперматозоида.

Когда X-хромосома инактивируется, она приобретает весьма необычную физическую конформацию. ДНК при этом становится невероятно компактной. Представьте, что вы с вашим другом держитесь за противоположные концы полотенца. Вы начинаете крутить свой край по часовой стрелке, а ваш друг проделывает то же самое со своим краем. Скоро полотенце скручивается посередине, и вы сближаетесь. А теперь представьте, что полотенце у вас длиной метров пять, и вы скручиваете его, пока не образуется плотнейший комок диаметром всего один миллиметр. Примерно столь же плотно оказывается уложена и X-хромосома. Она образует плотную структуру, которую можно легко увидеть, разглядывая ядро женской клетки под микроскопом, тогда как все прочие хромосомы длинны, волокнисты и почти не видны. Такая уплотненная X-хромосома называется тельцем Барра.

Чтобы попытаться понять, как происходит инактивация X-хромосом, ученые изучали необычные линии клеток и необычные генетические линии мышей. Они сосредоточились на тех случаях, когда части X-хромосомы оказывались утрачены или же когда фрагменты X-хромосомы перескакивали на другие хромосомы. Как выяснилось, некоторые клетки, утратившие некую часть одной из своих X-хромосомы, по-прежнему сохраняли способность ее инактивировать (это показывает наличие тельца Барра). Однако клетки, утратившие другую часть X-хромосомы, оказались неспособны формировать тельца Барра, а значит, они не инактивировали хромосому.

Когда фрагменты X-хромосомы пересаживались на другие хромосомы, иногда эти аномальные хромосомы инактивировались, а иногда — нет. Все зависело от того, какой именно фрагмент X-хромосомы передавался.

Эти данные позволили ученым сузить область поиска участка X-хромосомы, играющего ключевую роль в ее инактивации. Вполне понятно, что этот участок назвали центром X-инактивации. В 1991 году одна из научных групп сообщила, что этот участок содержит в себе ген, который ученые окрестили Xist[18]. Лишь ген Xist, находящийся на неактивной хромосоме, экспрессировал Xist-РНК5,6. Вполне логично: X-инактивация — процесс асимметричный. В каждой паре эквивалентных X-хромосом одна инактивирована, а другая — нет. Поэтому представлялось закономерным, что соответствующим процессом управляет сценарий, при котором одна хромосома экспрессирует ген, а другая — нет.

Очень большой кусок мусора

Разумеется, напрашивался следующий вопрос: как работает ген Xist? Первым делом ученые попытались спрогнозировать состав и структуру белка, который кодируется этим геном. Обычно это довольно прямолинейная процедура. Узнав структуру молекулы Xist-РНК, оставалось ввести эти данные в несложную компьютерную программу, которая и должна предсказать аминокислотную последовательность, кодируемую этим геном. Xist-РНК — штука очень длинная, около 17 тысяч нуклеотидных оснований. Каждую аминокислоту кодирует группа из трех оснований, так что 17000-нуклеотидная РНК теоретически могла бы кодировать белок из более чем 5700 аминокислот. Но оказалось, что на деле самая длинная последовательность, вроде бы кодируемая Xist-РНК, содержит чуть меньше 300 аминокислот. И это несмотря на то, что Xist-РНК прошла сплайсинг (мы описывали этот процесс в главе 2), а значит, потеряла все «мешающие» мусорные последовательности.

«Проблема» заключалась в том, что эта Xist-РНК первоначально пестрела последовательностями, которые не кодируют аминокислоты, но которые действуют как стоп-сигналы, когда начинают формироваться белковые цепочки. Представьте, что вы строите высокую башню из «Лего». Она растет себе ввысь, пока вам не дают элемент крыши, в верхней части которого нет выступов или отверстий для закрепления следующего фрагмента. Когда вы поставите этот элемент, ваша башня больше не сможет увеличиваться.

Ученые задумались. Если Xist все же кодирует белок, тогда зачем же клетка с такими усилиями создает РНК длиной 17 тысяч нуклеотидных оснований[19] лишь для того, чтобы производить белок, который мог бы кодироваться РНК примерно в 20 раз меньшей длины? Генетики довольно скоро сообразили: тут происходит нечто иное и весьма странное.

ДНК находится в ядре клетки. Она копируется, образуя РНК. Затем эта РНК отправляется за пределы ядра, в те структуры, где действует как матрица для сборки белков. Но анализ показал, что Xist-РНК не покидает ядра. Она не кодирует никакой белок, даже короткий7,8.

Xist-РНК стала одним из первых примеров молекул РНК, действующих «самостоятельно», а не как носитель информации о белке. Это отличная демонстрация того, что мусорная ДНК (то есть ДНК, не приводящая к синтезу белка) отнюдь не бесполезный хлам. Она чрезвычайно важна сама по себе, поскольку без нее не может происходить X-инактивация.

Странности Xist-РНК не ограничиваются тем, что она не покидает ядра. Она даже не отделяется от X-хромосомы, которая ее вырабатывает. По сути, она прикрепляется к неактивной X-хромосоме и затем распространяется по ней. Вырабатывается все больше и больше Xist-РНК, и эта РНК постепенно покрывает неактивную X-хромосому. Этот процесс почему-то называется закрашиванием. Никто пока толком не знает физических основ этого процесса, в ходе которого Xist-РНК ползет вдоль хромосомы, подобно виноградной лозе, стремительно карабкающейся по стене со скоростью одна миля в минуту. Со времени этого открытия прошло больше 20 лет, но мы по-прежнему теряемся в догадках, как же все происходит. Мы точно знаем, что дело тут не в самой нуклеотидной последовательности X-хромосомы. Если центр X-инактивации переносится на одну из аутосом клетки, эта аутосома может инактивироваться, как если бы она была X-хромосомой9.

Итак, Xist требуется для начала X-инактивации. Но у него есть помощники, поддерживающие этот процесс и делающие его более интенсивным. «Закрашивая» X-хромосому, Xist действует как участок, к которому могут прикрепляться белки ядра. Они соединяются с инактивируемой X-хромосомой и привлекают все новые и новые белки, что еще сильнее глушит экспрессию. Единственным геном, который не покрывается Xist-РНК и этими белками, остается сам ген Xist. Так он становится маяком экспрессии во мраке инактивированной X-хромосомы10.

Слева направо, справа налево

Итак, мы столкнулись с ситуацией, когда кусок «мусорной» ДНК (то есть фрагмент, не кодирующий белки) играет жизненно важную роль для функционирования организмов половины человеческих существ. Недавно ученые обнаружили, что для X-инактивации требуется по меньшей мере еще один фрагмент мусорной ДНК. Тут может возникнуть путаница: он кодируется в том же самом месте X-хромосомы, что и Xist. Как мы знаем, молекула ДНК состоит из двух нитей (вспомним знаменитое изображение двойной спирали). Клеточная аппаратура, копирующая ДНК для образования РНК, всегда читает ДНК в одном направлении, то есть (назовем это так) от начала до конца определенной ДНК-последовательности. Однако две нити ДНК идут «в противоположных направлениях» друг относительно друга, словно две линии фуникулера на старинных морских курортах и горнолыжных базах. А значит, участок ДНК может нести два набора информации, просто эта информация записана «в противоположных направлениях».

Возьмите, к примеру, слово ТОРГ, которое мы получаем, читая буквы слева направо. Те же самые буквы можно прочесть справа налево. Тогда мы получим слово ГРОТ. Буквы одни и те же, но они дают другое слово с другим значением.

Фрагмент мусорной ДНК, необходимый для X-инактивации в придачу к Xist, носит остроумное название Tsix (то есть Xist, записанный задом наперед). Он находится в той же области ДНК, что и Xist, но на противоположной нити. Tsix кодирует РНК длиной 40 тысяч оснований (она более чем вдвое длиннее по сравнению с Xist-РНК). Подобно Xist-РНК, Tsix-РНК никогда не покидает ядра.

Хотя Tsix и Xist кодируются в одной и той же части X-хромосомы, они не экспрессируются вместе. Если X-хромосома экспрессирует ген Tsix, это препятствует той же самой хромосоме экспрессировать ген Xist. А значит, Tsix должен экспрессироваться активной X-хромосомой, в отличие от Xist, который всегда экспрессируется неактивной.

Эта взаимоисключающая экспрессия Tsix и Xist имеет ключевое значение на одной из стадий раннего развития организма. X-хромосома яйцеклетки утрачивает все белковые маркеры, которые показывают, что она инактивирована (если речь идет об инактивированной версии), а X-хромосома сперматозоида вообще никогда не инактивируется. После слияния яйцеклетки со сперматозоидом и 6-7 циклов деления получится эмбрион, состоящий примерно из сотни клеток. На этой стадии каждая клетка в женском эмбрионе отключает одну из своих X-хромосом случайным образом. Для этого требуется мимолетное, но интенсивное физическое взаимодействие между парой X-хромосом клетки. Всего часа на два эти хромосомы приходят в физическое соприкосновение. В результате одна из них оказывается инактивированной. Соприкосновение происходит лишь на небольшом участке X-хромосом — в центре X-инактивации, который кодирует и Xist-РНК, и Tsix-РНК11.

Момент, длящийся вечно

Это праматерь всех мимолетных связей. В эти два часа возникают хромосомные решения, которых организм будет придерживаться всю оставшуюся жизнь. Не только в ходе развития плода, но и вплоть до самой смерти женщины, даже если эта смерть наступит через 100 с лишним лет. Эти решения затрагивают не сотню клеток, а триллионы — все клетки, которые появятся в результате их деления. Во всех дочерних клетках будет инактивироваться одна и та же X-хромосома.

Пока еще не совсем ясно, что же происходит в эти часы интимной связи X-хромосом на стадии раннего развития. Существующая ныне теория утверждает, что идет перераспределение мусорной РНК между этими двумя хромосомами, в результате чего одна из них наделяется всей Xist-РНК и становится неактивной X-хромосомой. Возможно (мы пока не знаем механизмов), одна из хромосом экспрессирует либо чуть больше, либо чуть меньше Xist или какого-то другого ключевого компонента. Но мы точно знаем, что процесс начинается, как только уровни содержания Tsix в хромосомах станут падать. Возможно, после падения этих уровней ниже какого-то критического порогового значения Xist может начать экспрессироваться одной из X-хромосом.

Обычно в экспрессии генов проявляется так называемый стохастический элемент. Иными словами, здесь частенько наблюдается случайная изменчивость уровня экспрессии. Если одна из хромосом экспрессирует чуть большее количество одного ключевого компонента (или нескольких таких компонентов), этого может оказаться достаточно для построения «самоусиливающейся» сети белков и молекул РНК. Поскольку такая неравномерность экспрессии, в сущности, стохастична (обусловлена случайным «шумом»), инактивация в данной сотне клеток тоже будет носить, по существу, случайный характер.

Вот одно сравнение. Представьте себе, что вы пришли вечером домой и вам страшно захотелось два тоста с сыром. Но как только вы начали готовить сей изысканный ужин, вам стало ясно, что сыра у вас в холодильнике недостаточно. Как вы поступите? Сделаете два тоста, каждый из которых будет содержать слишком малое количество сыра? Или уложите весь имеющийся сыр на один кусок хлеба, чтобы получить концентрированную дозу желанного молочного продукта? Вероятно, большинство предпочтет второй путь. В каком-то смысле пара X-хромосом делает то же самое, когда в эмбрионе происходит случайная инактивация. Эволюция предпочла не тот процесс, при котором у каждой из хромосом количество ключевого компонента чуть ниже критического, а тот процесс, когда этот компонент мигрирует к хромосоме, у которой его изначально чуть больше. Чем больше у вас имеется, тем больше вы получаете.

X-инактивация целиком зависит от «мусорной» ДНК, так что слово «мусорная» здесь не очень-то подходяще. Процесс играет жизненно важную роль в организме самок млекопитающих. Он необходим для нормального функционирования клеток и поддержания здорового состояния. Кроме того, он оказывает влияние на различные болезни и отклонения. Полномасштабный синдром ломкой X-хромосомы, приводящий к умственной отсталости (см. главу 1), затрагивает лишь мальчиков, поскольку соответствующий ген несет X-хромосома. У женщин, как мы знаем, две X-хромосомы. Даже если одна из них несет в себе мутацию, другая (нормальная) будет вырабатывать достаточно белка, чтобы носительница мутации смогла избежать самых опасных симптомов. Но у мужчин лишь одна X-хромосома и одна Y-хромосома, которая очень мала и не несет в себе большого количества генов, не предопределяющих пол. А значит, у мужчин нет и компенсаторного гена, способного сгладить воздействие мутации X-хромосомы при синдроме ломкой X-хромосомы.

То же самое относится к целому ряду генетических заболеваний, при которых именно X-хромосома несет в себе мутантный ген. Мальчики с большей вероятностью проявляют симптомы генетических заболеваний, связанных с X-хромосомой, чем девочки. Организм мальчика просто не может компенсировать действие неисправного гена единственной X-хромосомы. Соответствующие расстройства могут быть самыми разными, от сравнительно безобидных вроде дальтонизма (той его разновидности, при которой у человека нарушено восприятие красной и зеленой части спектра) до гораздо более серьезных недугов. В их числе — гемофилия В, нарушение в процессах свертывания крови. Носителем этого заболевания являлась, например, королева Виктория. Один из ее сыновей, Леопольд, серьезно страдал от него и умер в 31 год от кровоизлияния в мозг. Поскольку по меньшей мере две дочери Виктории также были носительницами этой болезни и поскольку королевские семейства Европы часто соединялись узами брака, эта мутация передалась и множеству других династий (самый известный пример — династия Романовых)12.

Хотя организм носительницы гемофильной мутации вырабатывает лишь 50% нормального количества фактора свертывания, этого хватает, чтобы защититься от симптомов болезни. Одна из причин — то, что фактор свертывания попадает из клеток, где он синтезируется, в кровеносную систему, где его концентрация становится достаточно высокой, чтобы защищать организм от кровотечений, в каких бы местах они ни происходили.

Впрочем, в некоторых обстоятельствах наличие у женщины двух X-хромосом еще не дает ей гарантии защиты от генетического заболевания, связанного с X-хромосомами. Синдром Ретта — разрушительное психоневрологическое заболевание, иногда представляющее собой, по сути, весьма острую форму аутизма. Новорожденные девочки с этим синдромом кажутся совершенно здоровыми, и в течение первых 6-18 месяцев жизни они благополучно проходят все этапы нормального развития. Но затем начинается деградация. Девочки утрачивают все разговорные навыки, которыми успели овладеть. У них появляются бессмысленные повторяющиеся движения рук. При этом целенаправленные движения (скажем, указание на предмет) исчезают. Остаток жизни они страдают от острой неспособности к обучению13.

Причина синдрома Ретта — мутации одного из генов X-хромосомы, кодирующих белки[20],14. У женщин с этим синдромом одна нормальная копия этого гена и одна мутантная, не способная вырабатывать функционирующий белок. Если считать, что X-инактивация происходит случайным образом, можно ожидать, что в среднем половина клеток мозга будет экспрессировать нормальное количество нужного белка, а остальные клетки вообще не будут его экспрессировать. Клинические исследования с очевидностью показывают: если половина клеток мозга не в состоянии экспрессировать данный белок, это приведет к серьезным проблемам.

Синдром Ретта поражает в основном лишь девочек. Это необычно для X-заболеваний, поскольку в таких случаях недуг обычно поражает мальчиков, а девочки лишь являются его носителями. Можно задаться вопросом: как же мальчики защищаются от воздействий реттовской мутации? На самом деле они вовсе от него не защищаются. Мы почти никогда не обнаруживаем мальчиков с синдромом Ретта, поскольку мужские эмбрионы, пораженные этой болезнью, не развиваются как следует и попросту не доживают до родов.

Не следует недооценивать везение (и невезение)

Ученые, занимаясь своими исследованиями, размышляют о самых разных вещах, но очень редко — о роли, которую в жизни играет случай, удача, судьба. Если они и задумываются об этом, то обычно употребляют научные термины вроде «случайных флуктуаций» или «стохастических вариаций». А жаль. Иногда «везение» — образ куда более подходящий.

Мышечная дистрофия Дюшенна — серьезное заболевание, постепенно уничтожающее мускулы (см. главу 3). Мальчики с этим недугом в начале жизни чувствуют себя нормально, однако уже в детские годы их мышцы начинают характерным образом деградировать. Так, среди ножных мышц первыми тают мышцы бедер. В качестве компенсации организм развивает огромные икроножные мышцы, но спустя какое-то время увядают и они. К подростковым годам эти дети обычно пересаживаются в инвалидную коляску. Средняя продолжительность жизни у них — всего лишь 27 лет. Ранняя смертность во многом вызвана тем, что в конце концов разрушаются мышцы, задействованные в процессах дыхания16.

Мышечную дистрофию Дюшенна вызывает мутация гена X-хромосомы, кодирующего крупный белок под названием дистрофин16. Этот белок, похоже, действует как своего рода амортизатор для мышечных клеток. Из-за мутации мужской организм не в состоянии его вырабатывать, что в конечном счете приводит к разрушению мышцы. Организм женщин, являющихся носителями заболевания, обычно вырабатывает 50% нормального количества действующего дистрофина. Как правило, этого достаточно — благодаря одному необычному анатомическому свойству организма. По мере нашего развития индивидуальные мышечные клетки сливаются, создавая большую суперклетку с большим количеством отдельных ядер. А значит, каждая суперклетка имеет доступ к множеству копий необходимых генов, ведь ядер в ней много. Поэтому мышцы носительниц заболевания содержат (в общей сложности) достаточно дистрофина для нормальной работы. Это не та ситуация, когда в одной клетке достаточно белка, а в другой его нет вообще.

Врачи наблюдали необычный случай: у одной женщины проявлялись все классические симптомы дюшенновской мышечной дистрофии. Такие случаи чрезвычайно редки, но у нас есть способы их предсказания. Так, следует обеспокоиться, если мать женщины — лишь носительница заболевания, а отец по-настоящему от него страдал, но прожил достаточно долго, чтобы успеть зачать ребенка. В таком случае женщина явно унаследует мутантный ген от отца (поскольку у него лишь одна X-хромосома, а она поражена болезнью). Существует 50%-ная вероятность того, что та или иная яйцеклетка, которую вырабатывает организм матери-носительницы, также будет содержать мутантный ген, управляющий синтезом дистрофина. В этом случае обе X-хромосомы женщины будет обладать мутантной копией данного гена, и ее организм не сможет синтезировать необходимый белок.

Однако врачи, лечившие пациентку, изучили информацию о ее семье и выяснили, что отец женщины не страдал мышечной дистрофией Дюшенна. Потребовалось другое объяснение. Иногда при выработке яйцеклеток или сперматозоидов мутации возникают довольно-таки спонтанно. Ген, кодирующий дистрофин, очень большой, так что он (исключительно в силу размеров, то есть, по существу, довольно случайного фактора) подвергается повышенному риску мутации по сравнению с большинством других генов человеческого генома. Дело в том, что мутация — это, по сути, игра с числами. Иными словами, количественные параметры имеют здесь очень большое значение. Чем крупнее ген, тем больше вероятность того, что он претерпит мутацию. Итак, вот один из механизмов, посредством которых женщина может унаследовать мышечную дистрофию Дюшенна: если ей достается мутантная хромосома от матери-носительницы и новая мутация, которая произошла в сперматозоиде, оплодотворившем яйцеклетку.

Что ж, вообще-то это неплохая гипотеза для объяснения того, почему пациентка получила заболевание. Но тут возникла одна проблема. У пациентки имелась сестра. Сестра-близнец. Более того, идентичный близнец — однояйцевый (монозиготный), то есть выросший в результате слияния той же яйцеклетки и того же сперматозоида. И эта сестра-близнец отличалась завидным здоровьем и не демонстрировала никаких симптомов дюшенновской мышечной дистрофии. Две генетически идентичные женщины. При этом у одной есть наследственное генетическое заболевание, а у другой — нет. Как такое может быть?

Вернемся к той сотне клеток, которые подвергаются X-инактивации на ранней стадии развития эмбриона. Чисто случайным образом примерно 50% из них отключают одну X-хромосому, а остальные отключают другую. Такой же характер X-инактивации передается и всем их дочерним клеткам, до конца жизни хозяина клеток.

Сестре с дюшенновской мышечной дистрофией просто катастрофически не повезло на этой стадии развития. По чистой случайности все клетки, которые в конечном счете должны были превратиться в мышечную ткань, выключили нормальную копию X-хромосомы. Речь идет о той копии, которую женщина унаследовала от отца. А значит, в ее мышечных клетках осталась включенной лишь та X-хромосома, которую она унаследовала от матери — носительницы заболевания. Иными словами, осталась включенной мутантная X-хромосома. Поэтому мышечные клетки женщины не смогли экспрессировать дистрофин, и у нее появились симптомы, которые обычно наблюдаются лишь у мужчин.

А когда развивалась ее сестра (которая, напомним, ее генетически идентичный близнец), некоторые из клеток, которые затем станут мышечной тканью, отключали нормальную X-хромосому, а некоторые — мутантную. Поэтому мышцы сестры экспрессировали достаточно дистрофина, чтобы поддерживать себя в здоровом состоянии. Вот сестра и стала, подобно собственной матери, носительницей заболевания, не проявляющей его симптомов17.

Неужели причина всего этого — просто флуктуация в распределении Xist-РНК, длинного фрагмента РНК, порожденного мусорной ДНК? Флуктуация длилась не больше двух часов. Она произошла в объеме пространства диаметром значительно меньше одной миллионной диаметра человеческого волоса. И тем не менее она предопределила, кто выиграет, а кто проиграет в этой лотерее, где выигрыш — здоровье.

Полосы и пятна везения

Быть может, еще удивительнее то, что некоторые из любителей кошек ежедневно наблюдают (и гладят) последствия X-инактивации. У черепаховых или трехцветных пятнистых кошек (по разные стороны Атлантики их называют по-разному) ярко выраженный узор из черных и рыжих пятен. Ген, контролирующий такую раскраску, может существовать в двух формах. Отдельная X-хромосома несет в себе либо рыжую, либо черную версию.

Если инактивируется X-хромосома, несущая черный цвет, то экспрессируется рыжая версия на другой хромосоме — и наоборот. Когда размер кошачьего эмбриона составляет примерно сотню клеток, в каждой клетке инактивируется одна или другая X-хромосома. Как и в других подобных случаях, все соответствующие дочерние клетки будут отключать ту же самую X-хромосому. В итоге некоторые из дочерних клеток породят клетки, которые создают пигмент шерсти. Все больше и больше таких клеток делятся и развиваются, но они остаются поблизости друг от друга. Таким образом, подобные дочерние клетки склонны держаться вместе — в кластерах (или, если угодно, пятнах). Благодаря определенной картине X-инактивации дочерних клеток будут возникать пятна рыжего меха и пятна черного меха. Этот процесс показан на рис. 7.2.


Рис. 7.2. Схема показывает, как появляются пятна рыжего или черного меха у черепаховых кошек (женского пола) в зависимости от инактивации X-хромосом, происходящей случайным образом. Гены, отвечающие за окраску шерсти, находятся в X-хромосоме. Если черная версия гена располагается в хромосоме, инактивируемой на ранней стадии развития эмбриона, все потомки этой клетки будут экспрессировать лишь рыжую версию гена. Обратная ситуация возникает, если инактивируется X-хромосома, несущая ген рыжести.

В 2002 году ученые весьма впечатляюще продемонстрировали, насколько случайным является процесс X-инактивации. Они клонировали трехцветную кошку. Взяв клетки взрослой кошки, они выполнили стандартную (но все равно ужасно сложную и хитроумную) процедуру клонирования. Для этого они взяли ядро из клетки взрослой кошки и поместили его в кошачью яйцеклетку, из которой предварительно удалили ее собственные хромосомы. Затем эту яйцеклетку подсадили кошке, игравшей роль суррогатной матери. Вскоре у этой кошки родился красивый и энергичный котенок женского пола. И что бы вы думали? Юная кошечка вовсе не оказалась генетически тождественной той, которую клонировали18.

Когда такую процедуру осуществляют для клонирования животных, яйцеклетка обращается с новым ядром так, как если бы оно являлось естественным продуктом слияния какой-то яйцеклетки с каким-то сперматозоидом, очутившимся в ней обычным путем. Она извлекает из ДНК столько информации, сколько возможно, тем самым снова обретая базовую генетическую последовательность. Это происходит не так эффективно, как с обычной яйцеклеткой и сперматозоидом, в чем и состоит одна из причин, по которым доля успешных клонирований такого типа пока еще очень низка. Но иногда (как в данном случае) процесс идет как планировалось, и на свет все-таки появляется клонированное животное.

Когда ядро кошки-матери поместили внутрь яйцеклетки другой кошки, эта яйцеклетка внесла свои изменения в полученные таким путем хромосомы. В частности, удалила инактивирующие белки одной из X-хромосом и отключила экспрессию Xist. Так что в течение краткого периода на ранней стадии развития обе копии X-хромосомы являлись активными. Эмбрион развивался дальше. На стадии, когда он состоял примерно из сотни клеток, он подвергся обычному процессу случайной инактивации X-хромосомы в каждой клетке. Характер инактивации X-хромосом стандартным путем передавался дочерним клеткам. Поэтому юная кошка стала обладать иным узором рыжих и черных пятен по сравнению со своей клональной «матерью».

Какова мораль этой истории? Если у вас есть трехцветная кошка, которую вы считаете необычайно красивой, не скупитесь на фотографии и видео. После ее смерти можете даже вызвать таксидермиста, чтобы он сделал чучело. Но если к вам постучится странствующий клонировщик, гоните его прочь. Он не поможет вам увековечить уникальное животное.

Глава 8. Длинная игра

Не один год Xist-РНК считалась аномалией, странным молекулярным «выбросом», оказывающим чрезвычайно необычное влияние на экспрессию генов. Даже когда открыли Tsix, все равно многие считали возможным полагать, будто мусорные РНК участвуют лишь в жизненно необходимом, но уникальном процессе X-инактивации. Только в последние годы ученые начали осознавать, что человеческий геном экспрессирует тысячи молекул такого типа, и что они играют неожиданно важную роль в нормальном функционировании клеток.

Сегодня мы относим Xist- и Tsix-РНК к обширному классу длинных некодирующих РНК. Этот термин не очень точен: конечно же, имеются в виду РНК, которые не кодируют белки. Как мы увидим, длинные некодирующие РНК преспокойно кодируют другие функциональные молекулы. И эти функциональные молекулы сами представляют собой длинные некодирующие РНК.

Длинные некодирующие РНК определяются как молекулы, длина которых превышает 200 нуклеотидных оснований (цифра взята довольно-таки произвольно) и которые не кодируют белки, что отличает их от информационной РНК. Двести оснований — нижний предел размера. Самые крупные из таких некодирующих РНК могут насчитывать по сотне тысяч оснований. Подобных РНК множество, хотя ученые расходятся во мнении относительно их общего числа. По различным оценкам, в геноме человека их содержится от 10 тысяч до 32 тысяч1,2,3,4. Но хотя длинных некодирующих РНК существует много, уровень их экспрессии обычно не так высок, как у классических информационных РНК, кодирующих белки — как правило, менее 10% от уровня экспрессии средней информационной РНК5.

Такая сравнительно низкая экспрессия любой из длинных некодирующих РНК — одна из причин, по которым на них до недавних пор не обращали особого внимания. В сущности, при анализе экспрессии молекул клеточной РНК длинные некодирующие РНК раньше просто не удавалось надежно детектировать, поскольку методы анализа не отличались достаточной чувствительностью. Но теперь ученые знают о существовании таких РНК, а следовательно, могли бы полагать, что сумеют полностью проанализировать геном любого организма (в том числе и человеческого) и предсказать существование таких РНК, просто исходя из вида ДНК-последовательности. В конце концов, генетики отлично научились делать такие предсказания для генов, кодирующих белки.

Однако для длинных некодирующих РНК это не так-то просто по целому ряду причин. Известно, как идентифицировать предполагаемые гены, кодирующие белки, поскольку такие гены обладают некоторыми удобными свойствами. Возле начала и конца таких генов есть определенные последовательности, которые помогают нам их искать. Кроме того, они кодируют предсказанные нами аминокислотные звенья, что еще больше укрепляет нас в уверенности: мы имеем дело с геном, кодирующим белок. Наконец, большинство генов, кодирующих белки, окажутся похожими, если рассматривать определенный ген у разных видов. А значит, выявив «классический» ген у животного вроде иглобрюха, легко будет в дальнейшем использовать найденную последовательность как основу для анализа человеческого генома с целью выяснения, имеется ли похожий ген у нас самих.

Но длинные некодирующие РНК не имеют таких ярко выраженных нуклеотидных индикаторов (в отличие от генов, кодирующих белки). Кроме того, у разных видов они сильно отличаются. Таким образом, знание нуклеотидной последовательности длинной некодирующей РНК какого-то другого вида едва ли поможет нам идентифицировать функционально схожую с ней последовательность в геноме человека. Менее 6% из представителей одного специфического класса длинных некодирующих РНК рыбы данио-рерио, популярного модельного животного, явно имеют аналогичные последовательности у мышей и человека6. Лишь примерно 12% представителей того же класса длинных некодирующих РНК, обнаруживаемых у человека и мышей, можно найти у каких-то других животных7,8. Такое сравнительно слабое сохранение длинных некодирующих РНК в разных видах подтвердилось в ходе недавнего исследования, где сравнивалась экспрессия длинных некодирующих РНК из различных тканей разных видов четвероногих. Четвероногие (тетраподы) — все сухопутные позвоночные, в том числе и те, что «вернулись в море» (скажем, киты или дельфины). Исследователи сообщают, что 11 тысяч длинных некодирующих РНК обнаруживаются лишь у приматов. Лишь 2500 таких РНК являются общими для всех тетрапод, и только 400 из них можно отнести к древним, то есть (по определению авторов исследования) к таким, которые возникли свыше 300 миллионов лет назад, примерно в ту эпоху, когда разошлись эволюционные пути амфибий и других тетрапод. Авторы полагают, что эти древние длинные некодирующие РНК — как раз те, которые во всех организмах регулируются наиболее активно, и что они, вероятно, играют роль главным образом на ранних стадиях развития организма9. На самых ранних стадиях эмбриогенеза большинство позвоночных выглядят очень похоже. Так что логично предположить: в самом начале нашей жизни мы и все наши близкие и дальние эволюционные родичи используем схожие пути и механизмы развития.

Несходство длинных некодирующих РНК у разных видов (наблюдающееся почти повсеместно) заставило некоторых авторов счесть, что такие РНК вообще не играют важной роли. Ведь если бы они имели большое значение, то меньше бы менялись в ходе эволюции и развития видов. На самом же деле последовательности, которые содержат код для этих «мусорных» РНК, эволюционируют гораздо стремительнее, чем последовательности, кодирующие белки.

Что ж, логично. Однако здесь все-таки есть чрезмерное упрощение. Возможно, длинные некодирующие РНК и длинны по количеству содержащихся в них нуклеотидных оснований, но это не обязательно значит, что они представляют собой какие-то вытянутые волокна, плавающие в клетке. Дело в том, что длинные молекулы РНК способны складываться, образуя трехмерные структуры. Нуклеотидные основания РНК образуют пары, почти по тем же правилам, которым следуют две соединяющиеся нити ДНК. Но РНК — молекула однонитевая, поэтому ее нуклеотидные основания спариваются лишь на сравнительно коротких отрезках. В итоге молекула изгибается, принимая сложные, но стабильные формы. Эти трехмерные структуры могут играть очень важную роль в функционировании длинной некодирующей РНК. Вполне возможно, что сама такая трехмерная структура во многом схожа у разных видов, даже если ее нуклеотидная последовательность у них сильно отличается10. Это показано на рис. 8.1. К сожалению, трудно строить предсказания насчет схожести таких структур, основываясь на данных о нуклеотидной последовательности. Но такая методика все же полезна для нахождения функционально устойчивых длинных некодирующих РНК.


Рис. 8.1. Схема показывает, как две однонитевые молекулы длинной некодирующей РНК с различными нуклеотидными последовательностями могут образовывать структуру одной и той же формы. Структура определяется правилами образования пар. Нуклеотид А связывается только с У, а нуклеотид Ц — только с Г (они показаны квадратиками с различной окраской или узором). Перед вами упрощенная схема. На самом деле длинные некодирующие РНК могут обладать множеством участков, способных формировать сложные структуры. Кроме того, эти структуры трехмерны (здесь они для простоты изображены как плоские).

Бревна или щепки?

Из-за трудностей, которые возникают при выявлении длинных некодирующих РНК в нуклеотидной последовательности человеческого генома, большинство исследователей сейчас склоняются к более прагматичному подходу их идентификации — детектируют сами эти молекулы непосредственно в клетках. Однако в научном сообществе нет единого мнения насчет интерпретации результатов таких изысканий. Ярые сторонники мусорных последовательностей могли бы заявить: если какая-то последовательность экспрессируется как длинная некодирующая молекула РНК, эта молекула экспрессируется так по какой-то причине. Другие ученые настроены более скептически. Они утверждают, что такая экспрессия длинных некодирующих РНК — просто «сопутствующее событие». Иными словами, они считают, что экспрессия длинных некодирующих РНК — просто своего рода побочный эффект, возникающий при включении «настоящего» гена.

Что же имеется в виду под «сопутствующим событием»? Допустим, мы отпиливаем сучья бензопилой. Основная цель нашей деятельности — получить бревна, чтобы построить дом или приготовить дрова для печки. Мы не стараемся получить щепки или опилки, но они все равно возникают в результате работы бензопилы. Незачем тратить силы, пытаясь избежать щепок. Они, в общем-то, не мешают выполнению нашей основной задачи. А если мы все-таки найдем способ от них избавиться, это может снизить эффективность производства бревен. А кроме того, ведь мы можем случайно натолкнуться на метод использования щепок и опилок (побочного продукта нашего производства). К примеру, для мульчирования почвы в цветочном горшке или при устройстве логова для ручной змеи.

Вот и «мусорные скептики» заявляют: экспрессия длинных некодирующих РНК попросту означает, что при экспрессии генов, происходящей на каком-то участке, уменьшается подавление экспрессии другого генетического материала. В рамках этой модели производство длинных некодирующих РНК — всего лишь неизбежное следствие важного процесса. Неизбежное, но, в общем-то, несущественное и безвредное. Между тем «мусорные энтузиасты» возражают: такая модель не объясняет некоторых особенностей экспрессии длинной некодирующей РНК. Например, различные типы таких РНК экспрессируются при анализе образцов тканей различных областей мозга11. Сторонники важной роли длинных некодирующих РНК заявляют: это свидетельствует о существенном значении таких молекул, иначе зачем бы разным зонам мозга включать разные длинные некодирующие РНК? Скептики возражают: различные длинные некодирующие РНК обнаруживаются лишь из-за того, что разные области мозга включают разные «классические» гены, кодирующие белки. Иными словами, опилки при разделывании дуба и сосны получаются разные, ничего удивительного.

Пока еще рано делать выводы. Получаемые сегодня данные позволяют дать один совет сторонникам двух этих крайних точек зрения: «Вам не мешало бы немного отдохнуть от споров». Скорее всего, истина где-то посередине. Существует только один по-настоящему надежный способ проверить гипотезу, согласно которой длинные некодирующие РНК выполняют какие-то функции в клетке. Этот способ состоит в том, чтобы проверить каждую из таких РНК в подходящем типе клеток. Подход представляется весьма разумным. Впрочем, он не столь прямолинеен, как может показаться. Отчасти причина этого кроется просто-напросто в цифрах. Если мы возьмемся детектировать сотни или даже тысячи различных длинных некодирующих РНК в клетке или в ткани, придется волей-неволей принимать решения, что же именно анализировать. Но для этого нужно предварительно иметь гипотезу насчет того, что эта конкретная длинная некодирующая РНК делает в клетке. Без такой гипотезы мы не будем знать, какие эффекты нам искать.

Есть и еще одна трудность. Многие из этих длинных некодирующих РНК находятся в той же области, что и «классические» гены, кодирующие белки. Иногда они могут находиться в той же самой позиции, просто на противоположной нити, как мы видели на примерю Xist и Tsix (см. главу 7). Другие такие РНК могут находиться на «мусорных» участках, лежащих между двумя областями одного и того же гена, кодирующими аминокислоты. (Впервые мы встретились с таким явлением, обсуждая атаксию Фридрейха в главе 2.) Существует масса способов расположения длинных некодирующих РНК. Это вызывает существенные экспериментальные затруднения при попытке исследовать функции нуклеотидных последовательностей.

Обычно функции генов проверяются при помощи их целенаправленного мутирования. Можно применять самые разные мутации, но чаще всего используются такие, которые либо выключают изучаемый ген, либо приводят к тому, что уровень его экспрессии начинает превышать норму. Но поскольку такое большое количество длинных некодирующих РНК пространственно перекрываются с генами, кодирующими белки, трудно внести мутацию в одно, не внося при этом мутацию в другое. А значит, перед нами встает очередная проблема: как определить, чем обусловлены наблюдаемые эффекты — изменением в длинной некодирующей РНК или изменением в гене, кодирующем белок?

Вот довольно легкомысленная аналогия. Один аспирант изучал слух лягушек. Он смастерил экспериментальную систему, которая позволяла ему определять, слышит ли лягушка (у которой он хирургическим путем кое-что удалил) громкий звук, в данном случае — пистолетный выстрел. Однажды он прибежал к своей научной руководительнице, радостно крича, что выяснил, как слышат лягушки. «Они слышат лапками!» — объявил он наставнице, которая восприняла эту новость с веселым удивлением. Когда она осведомилась, почему он так в этом уверен, молодой ученый ответил: «Всё просто. Обычно если я стреляю, лягушка слышит этот звук и подпрыгивает от испуга. Но когда я удалил ей лапки, они перестала подпрыгивать, когда я делаю выстрел. А значит, она слышит лапками[21].

Разумеется, теоретически вполне возможно, что некоторые неожиданные эффекты, иногда наблюдаемые при внесении мутаций в гены, кодирующие белки, обусловлены не выявленными нами изменениями в расположенных близ этих генов длинных некодирующих РНК, о присутствии которых мы даже не подозревали, когда проводили эксперимент.

Из-за такого потенциального взаимовлияния длинных некодирующих РНК и генов, кодирующих белки, многие ученые решили сосредоточить усилия на наборе длинных некодирующих РНК, которые не располагаются в этих областях. Выбор здесь велик: в такую категорию попадает как минимум 3500 длинных некодирующих РНК. Многие авторы склонны относить эти «более отдаленные от генов» длинные некодирующие РНК к отдельному классу. Они получили свое наименование[22],12. Впрочем, стоит иметь в виду, что при этом мы классифицируем такие молекулы по тому, что они не делают: они не располагаются в областях, где сидят гены, кодирующие белки. Вероятно, тем самым мы сгребаем большое количество длинных некодирующих РНК в один класс, хотя многие его представители могут сильно отличаться друг от друга по функциям.

Стремление поспешно создавать категории и классификации — давняя проблема в геномном анализе. Ученые ограничивают себя рамками определений, не обретя достаточного понимания биологических процессов. Представьте, что вы никогда в жизни не смотрели кино. И вдруг в течение недели вы увидели «Цилиндр», «Поющих под дождем», «Хорошего, плохого, злого», «Ровно в полдень», «Звуки музыки», «Великолепную семерку», «Кабаре», «Железную хватку», «Непрощенного» и «Вестсайдскую историю». Если вас попросят разбить эти фильмы на категории, вы можете сказать, что они относятся к двум жанрам — мюзиклам и вестернам. Отлично. Но что произойдет на следующей неделе, когда вы познакомитесь с «Дневником Бриджит Джонс» и «Гравитацией»? Или с такими картинами, как «Золото Калифорнии», «Семь невест для семерых братьев» или «Джейн-Катастрофа» — фильмами, где есть и песни с танцами, и ковбои? Вы не сумеете втиснуть эти картины в жанровые определения, которые сами же поспешили создать, еще толком не изучив кинематографического ландшафта. По той же причине не следует создавать чересчур большого количества отдельных классов длинных некодирующих РНК. Лучше сосредоточиться на реальных экспериментальных данных и на том, что они позволяют выяснить.

Хорошее начало жизни — половина дела

Необходимо в течение всей жизни должным образом контролировать экспрессию генов. Такой контроль имеет принципиально важное значение на самых ранних стадиях развития, поскольку малейшее отклонение от нормального течения событий в ходе первых клеточных делений может приводить к серьезнейшим последствиям. Особенно это важно для зиготы — клетки, которая образуется при слиянии яйцеклетки со сперматозоидом. Зиготу и первые клетки, возникающие в результате ее деления, называют тотипотентными клетками. Они способны создавать все клетки эмбриона и плаценты. Исследователи и рады бы работать с этими клетками, но таких клеток слишком мало. Большинство работ выполняется с эмбриональными стволовыми клетками (ЭС-клетками). Много лет назад они произошли от реальных эмбрионов. Но нам больше не нужны эмбрионы, чтобы получать такие клетки: их можно культивировать в лаборатории. ЭС-клетки образуются на чуть более поздней стадии развития эмбриона и уже не обладают такими неограниченными возможностями, как зигота. Их называют плюрипотентными: они обладают потенциалом, позволяющим формировать клетки любого типа, кроме плацентарных.

В правильно подобранных и тщательно контролируемых лабораторных условиях ЭС-клетки делятся, создавая новые плюрипотентные стволовые клетки. Однако сравнительно небольшие изменения условий в культуре приводят к потере этой плюрипотентности. И тогда ЭС-клетки начинают дифференцироваться на более специализированные клеточные типы. Одно из самых резких и заметных изменений происходит, когда ЭС-клетки в процессе дифференциации превращаются в сердечные и вдруг начинают синхронно сокращаться в чашке Петри. Обычно ЭС-клетки могут идти по различным путям развития в зависимости от того, как с ними обращаются.

Ученые манипулировали такими искусственно культивируемыми ЭС-клетками, намеренно прекращая экспрессию примерно 150 из длинных некодирующих РНК, которые расположены вдалеке от каких бы то ни было известных нам генов, кодирующих белки. В ходе каждого эксперимента подавляли экспрессию всего одной длинной некодирующей РНК. Обнаружилось, что в десятках случаев достаточно выключить всего одну длинную некодирующую РНК. чтобы ЭС-клетки утратили плюрипотентность и дифференцировались, давая клетки иных типов. Экспериментаторы проанализировали, какие гены экспрессируются до и после такого подавления длинных некодирующих РНК. Выяснилось, что свыше 90% этих РНК прямо или косвенно контролируют экспрессию генов, кодирующих белки. Во многих случаях отключение одной длинной некодирующей РНК влияло на экспрессию сотен генов, кодирующих белки. Причем почти всегда речь шла о генах, расположенных вдали от подавляемой РНК, а не вблизи.

Те же исследователи провели и обратный эксперимент. Они подвергли ЭС-клетки воздействию вещества, которое (как было известно заранее) вызывает дифференциацию. Затем проанализировали экспрессию в интересующем их классе длинных некодирующих РНК. Выяснилось, что экспрессия примерно 75% этих РНК падала по мере того, как клетки утрачивали плюрипотентность и проявляли готовность к дифференциации. Эти два набора данных вполне согласуются с гипотезой, в которой утверждается, что уровни экспрессии определенных длинных некодирующих РНК действуют как «сторожа», поддерживающие ЭС-клетки в плюрипотентном состоянии13. Похоже, эти некодирующие РНК все-таки выполняют в клетке какую-то функцию — по крайней мере, на ранних стадиях развития организма.

Некоторые длинные некодирующие РНК могут оказывать влияние и на более поздние стадии развития. Мы уже встречались с Hox-генами в главе 4 — они играют важную роль при формировании частей тела. Именно мутация этих генов у дрозофил может приводить к необычным последствиям: скажем, на головке мушки вырастают лапки. Hox-гены располагаются в геноме кластерами. Эти области необычайно богаты длинными некодирующими РНК, однако в них мало древних вирусных повторяющихся последовательностей. Ученым очень хотелось выяснить, влияют ли длинные некодирующие РНК на деятельность Hox-генов, расположенных на том же участке генома. Для этого исследователи применили методику, уменьшающую экспрессию определенной длинной некодирующей РНК в области расположения Hox-генов у зародышей цыплят. Уменьшение экспрессии этой РНК привело к тому, что развитие конечностей у зародышей пошло не так, как полагается. Кости ближе к концам конечностей оказались аномально короткими14. Похожий результат: подавление экспрессии другой длинной некодирующей РНК в аналогичном геномном регионе мышей привело к неправильному формированию костей позвоночника и запястий15. Эти результаты говорят о том, что длинные некодирующие РНК играют важную роль как регуляторы экспрессии Hox-генов, а следовательно, и как регуляторы развития конечностей.

Длинные РНК и рак

Онкологические процессы можно считать в каком-то смысле оборотной стороной процессов развития. Одна из проблем при раковых заболеваниях — в том, что зрелые клетки могут меняться, вновь обретая некоторые характеристики менее специализированных клеток, и их способность к неуправляемому делению возрастает. Если вспомнить, какую важную роль играют длинные некодирующие РНК в плюрипотентности и развитии организма, мы вряд ли удивимся, узнав, что некоторые из них теперь связывают с онкологическими процессами.

В рамках одного из масштабных исследований анализировалась экспрессия длинных некодирующих РНК в более чем 1300 отдельных злокачественных опухолях четырех типов рака (простаты, яичников, разновидности опухоли мозга (глиобластомы) и особой формы рака легких). У пациентов, умиравших от этих болезней, обнаружили примерно сотню длинных некодирующих РНК с высокими уровнями экспрессии. Девять из этих РНК демонстрировали связь с онкологическими заболеваниями вне зависимости от того, какой тип рака исследовался. А значит, они могли бы, вероятно, служить более общими индикаторами, позволяющими предсказывать шансы пациента выжить16.

Для трех из этих типов рака (рак простаты оказался исключением) в ходе того же исследования обнаружилось, что можно выявить длинные некодирующие РНК, отличающие один подкласс опухолей от другого. К примеру, у рака яичников существует целый ряд разновидностей, выделяемых в зависимости от того, какие типы клеток затрагивает болезнь. Это влияет как на «историю» развития опухоли у пациента, так и на прогнозы, которые делают врачи, и на выбор методик лечения. Возможно, в будущем анализ экспрессии определенных длинных некодирующих РНК в пробах биоматериала, взятого из опухолей, поможет медикам выбирать оптимальную стратегию лечения каждого отдельного пациента.

Количество работ, где сообщается о связи между экспрессией длинных некодирующих РНК и раком, постоянно растет. Генетические исследования онкозаболеваний также приводят к интригующим результатам. Причина некоторых их разновидностей — единичная, но очень сильная мутация, наследуемая в пределах одной семьи. Возможно, наиболее известный пример здесь — мутантный ген BRCA1, чрезвычайно увеличивающий риск развития агрессивной формы рака груди у женщин. Именно знание о том, что у нее есть мутация данного гена, побудило актрису Анджелину Джоли пойти на двойную мастэктомию в 2013 году. Такие сильные мутации отдельного гена довольно редки при раковых процессах, но ряд исследований показал, что целый ряд онкологических заболеваний несет в себе генетический компонент. Проблема в том, что когда ученые стали выяснять, где именно возникают генетические вариации, связываемые с повышенным риском рака, обнаружилось, что такие изменения часто происходят к областях генома, где нет генов, кодирующих белки. Среди более чем 300 изученных вариаций такого типа, связываемых с онкологическими процессами, лишь 3,3% меняли аминокислотный состав белка, зато свыше 40% располагались в зонах между обычными, «классическими» генами, кодирующими белки. Возможно, такие вариации влияли не на гены, кодирующие белки, а на длинные некодирующие РНК. Недавние исследования подтвердили это предположение для некоторых из таких вариаций по меньшей мере в случае двух разновидностей рака (папиллярного рака щитовидной железы и рака простаты)17.

Последние результаты исследований свидетельствуют о том, что в некоторых случаях длинные некодирующие РНК не просто как-то связаны с онкологическими процессами, а сами реально меняют поведение раковых клеток. И это вселяет в наши души некоторый оптимизм.

Так, существует длинная некодирующая РНК, чья экспрессия повышается при раке простаты. Эта сверхэкспрессия вызывает понижение экспрессии важнейших белков, которые обычно удерживают клетку от слишком быстрого размножения18,19. А значит, сверхэкспрессия этой длинной некодирующей РНК производит такое же действие, какое произвели бы мы, сняв с ручного тормоза автомобиль, припаркованный на склоне холма. Длинная некодирующая РНК, вызывающая деформации скелета, если ее отключают у развивающихся мышей, претерпевает сверхэкспрессию при многих разновидностях рака, в том числе при раке печени20, колоректальной области21, поджелудочной железы22, груди23. Выявив ее сверхэкспрессию, медики дают пациентам неблагоприятный прогноз. Исследования раковых клеток, культивируемых в лабораторных условиях, позволяют предположить, что эта длинная некодирующая РНК, возможно, увеличивает риск метастаз — миграции больных клеток в другие области организма.

Едва ли не самые убедительные свидетельства активной роли длинных некодирующих РНК в онкологических процессах удается получить при изучении рака простаты. Вначале рост новообразований зависит от уровня мужского гормона тестостерона. Тестостерон связывается со специфическим рецептором, что приводит к активированию различных генов, способствующих размножению клетки. Такое связывание тестостерона напоминает нажатие на педаль газа. На первой стадии рак простаты лечат при помощи препаратов, останавливающих связывание гормона с его рецептором, как если бы между вашей ногой и акселератором вставили какой-то предмет, мешающий нажимать на газ.



Поделиться книгой:

На главную
Назад