Наталья Сердцева
Теория относительности Эйнштейна за 1 час
© ИП Сирота, 2017
© ООО «Издательство «Э», 2017
Часть I. Вокруг теории относительности: друзья, коллеги и оппоненты Эйнштейна
Электромагнитная теория Максвелла и ее противоречия с механикой Ньютона
Активное изучение законов электромагнетизма началось в XIX веке, хотя и до этого ученые интересовались такими загадочными явлениями, как электричество и магнетизм. Еще в 1790-е годы естествоиспытатель из Франции Шарль Огюстен Кулон открыл закон электростатической силы и изложил его в виде формулы. Современная формулировка закона Кулона выглядит так: сила взаимодействия двух точечных зарядов в вакууме направлена вдоль прямой, соединяющей эти заряды, пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними. Она является силой притяжения, если знаки зарядов разные, и силой отталкивания, если эти знаки одинаковы.
Приблизительно в это же время итальянец Алессандро Вольта изобрел химическую батарею. Она представляла собой банку с кислотой, в которую были опущены две пластинки, одна из меди, вторая из цинка. Ученый соединил их проволокой, после чего пластина из цинка начала растворяться, а на медной появились газовые пузырьки. Вольта доказал, что по проволоке протекает электрический ток. Позже он усовершенствовал свое изобретение, придав ему форму цилиндра. Эта химическая батарея получила название вольтова столба.
В 1820 году датский физик Ганс Христиан Эрстед сделал очередное впечатляющее открытие, связанное с электричеством: он обнаружил, что ток, пропускаемый через провод, воздействует на стрелку компаса, заставляя ее отклоняться. До этого считалось, что на компас могут воздействовать только магниты. Дальше за дело взялся другой естествоиспытатель, Андре Мари Ампер. Он выяснил и математически доказал, что электрические токи взаимодействуют: притягиваются и отталкиваются за счет сил магнетической природы.
В первой половине XIX века ученые представляли картину мира примерно так: есть точечные частицы, взаимодействующие между собой при помощи центральных сил (они направлены вдоль прямой линии, соединяющей точечные массы), и есть волны, распространяющиеся в материальной среде частиц. При этом взаимодействие частиц, в соответствии с расчетами, было мгновенным и могло происходить на расстоянии. Этот аспект теории казался странным и необъяснимым. «Вне физики наш разум не знает никаких сил, которые оказывали бы действие на расстоянии», – позже написал по этому поводу Альберт Эйнштейн. Такими же необъяснимыми, хотя доказанными и общепринятыми, были законы Ньютона. Его формулы с точностью описывали физические законы, но не объясняли их причины. «Я не измышляю гипотез», – говорил по этому поводу сам ученый.
Дальнейшие исследования показали, что на электромагнитные взаимодействия, кроме расстояния, влияют также ускорение и скорость. Пока электрические заряды находились в состоянии покоя, классические законы движения Ньютона работали, но при движении зарядов и умножении величин в уравнениях векторы силы отклонялись от прямой линии. Становилось очевидным, что существующая теория центральных сил к электромагнитным явлениям неприменима.
Следующий шаг к пониманию явлений электромагнетизма сделал физик из Великобритании Майкл Фарадей. Он предположил, что, раз электричество влияет на магнит – заставляет двигаться намагниченную стрелку компаса, то и магнит может влиять на электричество. Ему удалось обнаружить явление электромагнитной индукции: под действием магнитного потока в замкнутом контуре появляется электрический ток.
Мир электромагнитных явлений разительно отличался от всего, что ранее изучалось физической наукой. Было очевидно, что все в нем существует по другим законам, еще не известным науке. Теория центральных сил, основоположником которой был Ньютон, здесь не работала. Фарадей понимал, что объяснение электромагнетизма взаимодействием частиц на расстоянии неверно.
Незадолго до этого в физику вернулось понятие эфира, введенное еще древними греками. Они считали, что эфир – некая нематериальная субстанция, более тонкая и неуловимая, чем воздух, пронизывает все пространство. Впоследствии эфир был забыт, пока к нему не вернулся Рене Декарт, а за ним и Ньютон. Декарт считал, что эфир заполняет Вселенную и, как воздух, образует завихрения и воронки. Ньютон предполагал, что притяжение Земли к Солнцу обусловлено воздействием эфира, но подробно он это предположение не разрабатывал. Физики XIX века считали эфир реально существующей субстанцией, в которой распространяются световые и звуковые волны – так же, как в воде волны распространяются от брошенного в нее камня.
Джеймс Клерк Максвелл объединил все существующие электромагнитные теории, от Эрстеда до Фарадея, и вывел законы, управляющие полями. Все электромагнитные явления были вписаны в стройную систему уравнений, и хотя Максвелл представлял себе поля в виде механических структур, состоящих из силовых завихрений, точность его уравнений была подтверждена дальнейшим развитием науки.
Максвелл сделал еще одно значительное открытие: он доказал, что свет – это электромагнитная волна. Составляя уравнения, он обнаружил, что электромагнитное движение соответствует математической модели волны, звуковой или любой другой. А скорость распространения этой волны – приблизительно 300 тысяч километров в секунду, то есть такая же, как скорость света. «Скорость поля так близка к скорости света, – записал Максвелл, – что мне кажется, есть серьезные причины сделать вывод: сам свет (включая тепловое излучение и другие виды радиации) обладает электромагнитной природой и распространяется в электромагнитном поле в форме волн, подчиняясь законам электромагнетизма».
А вот что об этом открытии написал спустя несколько десятков лет Альберт Эйнштейн: «Представьте себе, что он почувствовал, когда сформулированные им дифференциальные уравнения показали, что электромагнитные поля распространяются в форме волн и со скоростью света! Мало кому в мире повезло испытать подобное».
До открытия Максвелла свет считали явлением, не имеющим никакого отношения к электричеству или магнетизму. А теперь оказалось, что в природе все взаимосвязано сильнее, чем предполагали ученые до этого момента. Таким образом, уравнения Максвелла стали первой попыткой физиков создать унифицированные научные законы.
Понятие поля было удобным с научной точки зрения, уравнения Максвелла позволили решить многие проблемы и поэтому широко использовались физиками и математиками. А между тем существовала серьезная теоретическая проблема: как совместить постулаты молодой науки электродинамики, описанные уравнениями Максвелла, с проверенной временем механикой Ньютона?
В соответствии с уравнениями Максвелла получалось, что скорость света неизменна и всегда составляет 300 тысяч километров в секунду. По законам Ньютона, существует принцип сложения скоростей. То есть, если поместить светящий фонарик на движущийся объект, скорость света увеличится. В реальности же она не увеличивалась. Возникало неразрешимое противоречие между двумя верными теориями. Как его решить? Физики пытались сделать это при помощи изучения свойств эфира. Считалось, что это его неизученные воздействия вносят путаницу.
Проблему разрешил Альберт Эйнштейн. Для этого ему пришлось создать специальную теорию относительности.
Хендрик Лоренц и специальная теория относительности
Голландский физик Хендрик Лоренц еще во время учебы в Лейденском университете показал себя перспективным молодым ученым. Его докторская диссертация, посвященная преломлению и отражению света, была признана научным сообществом выдающейся работой. Тогда он впервые обратился к электромагнитной теории Максвелла и исследовал один из ее аспектов – следствия, касающиеся световых волн. К этой теории в течение своей научной карьеры он вернется еще не раз.
В 1878 году Лоренц написал статью, где высказал передовое по тем временам предположение, что все материальные тела состоят из электрически заряженных частиц, которые находятся в состоянии колебания и взаимодействуют со световыми волнами. Теория об атомном строении вещества тогда уже существовала, но сторонников среди ученых у нее было немного. Лоренц внес свой вклад в доказательство того, что все состоит из молекул и атомов.
Следующие несколько лет ученый занимался преимущественно кинетической теорией газов. Он исследовал движение молекул, их температуру, кинетическую энергию и соотношение между этими величинами. Потом он снова вернулся к изучению электронов.
В 1902 году Хендрик Лоренц и его коллега по Лейденскому университету Питер Зееман получили Нобелевскую премию «в знак признания выдающегося вклада, который они внесли своими исследованиями влияния магнетизма на излучения». Член Шведской королевской академии наук Ялмар Теель так оценил значение работы Хендрика Лоренца: «Наиболее значительным вкладом в дальнейшее развитие электромагнитной теории света мы обязаны профессору Лоренцу. Если теория Максвелла свободна от каких бы то ни было допущений атомистического характера, то Лоренц начинает с гипотезы о том, что вещество состоит из микроскопических частиц, называемых электронами, которые являются носителями вполне определенных зарядов».
Исследование, за которое ученому присудили Нобелевскую премию, началось с изучения линий спектра в магнитном поле. Нагревая различные газы и пропуская излучаемый ими свет через спектроскоп, можно получить линейчатый спектр – яркие линии на черном фоне, соответствующие определенным частотам. Каждому газу соответствует свой спектр. Лоренц выдвинул гипотезу: частоты света, испускаемого газом, зависят от частот, с которыми колеблются составляющие газ электроны. Его следующее предположение заключалось в том, что на движение электронов может влиять магнитное поле, которое будет изменять частоты их колебаний. Эксперимент Питера Зеемана подтвердил это предположение.
Эффект Зеемана (расщепление спектральных линий в магнитном поле) не удавалось полностью объяснить до того момента, как появилась квантовая теория. Но гипотеза Лоренца об изменении колебания частот электронов позволила физикам понять основу этого эффекта.
На рубеже XIX–XX веков Хендрик Лоренц был одним из ведущих физиков мира, он занимался исследованиями в различных сферах физической науки: термодинамике, механике, оптике, электричестве, магнетизме. Лоренц внес свой вклад в развитие теории относительности и квантовой теории. Работа в этой области началась с изучения свойств эфира. Большинство физиков тогда полагали, что эфир реально существует и что он является средой распространения электромагнитных волн, так же как вода – среда для волн обычных. Неоднократно предпринимались попытки обнаружить эфир эмпирическим путем. Самый известный опыт поставили Альберт Майкельсон и Эдвард Морли, они пытались «поймать» эфирный ветер, который должен был бы ощущаться при движении Земли, с помощью системы, состоящей из источника света, зеркал и детектора. Несмотря на точность приборов, эфирный ветер зарегистрирован не был. Лоренц начал работать над проблемой эфира и «примирения» электромагнитной теории Максвелла с физикой Ньютона еще в 90-е годы XIX века. До него существовали две противоположные теории: эфир полностью неподвижен, и эфир движется вместе с движущимся телом. Поначалу он пытался создать промежуточную теорию, но позже пришел к выводу, что эфир является неподвижной и при этом полностью проницаемой субстанцией.
Чтобы ответить на вопрос, почему же эфир не удается обнаружить экспериментально, Лоренц выдвинул следующую гипотезу: во время движения тела сжимаются в направлении своего движения. В качестве причины этого явления ученый называл влияние эфира, который изменяет межмолекулярные силы. Точно такую же гипотезу в то же самое время выдвинул ирландский физик Джордж Фицджеральд.
Позже Лоренц написал статью «Опыт теории электрических и оптических явлений в движущихся телах», в которой исследовал применение электромагнитной теории к разным системам отсчета (и к явлениям электромагнетизма, и к материальным телам). Он обнаружил, что уравнения Максвелла будут работать для всех систем, если внести в них дополнительную переменную, которую он назвал «местное время». Это была просто вспомогательная величина, которая позволяла сохранить вид уравнений Максвелла, Лоренц в тот момент не думал о пересмотре самого понятия времени, он лишь хотел соединить электромагнитную теорию с ньютоновской механикой.
То, что время вовсе не абсолютная величина, позже доказал Эйнштейн, сформулировав специальную теорию относительности. Он же «отменил» эфир. В свете новых знаний существование этой субстанции стало просто ненужным. Позже Эйнштейн писал: «Что касается механической природы лоренцева эфира, то в шутку можно сказать, что Лоренц оставил ему лишь одно механическое свойство – неподвижность. К этому можно добавить, что все изменение, которое внесла специальная теория относительности в концепцию эфира, состояло в лишении эфира и последнего его механического свойства».
Итогом научной работы ученого стал набор уравнений, получивший название преобразования Лоренца. Эти уравнения используются для перевода координат из одной системы отсчета в другую (одна система отсчета находится в состоянии покоя, другая движется). При этом уравнения Максвелла для обеих систем оставались неизменными, вводилась дополнительная переменная «местное время», и учитывалось сжатие тел за счет воздействия эфира при движении. Таким образом, теория Лоренца примиряла механику Ньютона и электромагнитную теорию.
Но вскоре Эйнштейн предложил другой способ примирения – специальную теорию относительности. Кардинальное отличие этой теории от теории Лоренца заключается в том, что в ней используется принцип относительности, которого у Лоренца не было. Лоренц принял теорию Эйнштейна и использовал ее формальные выкладки в своей научной работе. Но он до конца жизни был уверен, что эфир все же существует, а время может быть «абсолютным» и «местным». Последнее он считал лишь условной переменной, которая используется в формулах, но не имеет отношения к реальности. Ученый был уверен, что замедление времени – это лишь иллюзия, которую создают неизученные свойства эфира. У Лоренца было немало последователей, считавших существование эфира и его эффектов достоверным фактом.
Математик-универсал Анри Пуанкаре об измерении времени
Французского ученого Анри Пуанкаре называли последним математиком-универсалом, он внес вклад практически в каждую область математической науки своего времени. Он совершил значимые открытия в теории вероятностей, дифференциальной геометрии, небесной механике, алгебраическом анализе и т. п. За свою научную карьеру Пуанкаре написал около пяти сотен книг и статей, и каждая из них содержала передовые идеи. Он был одним из основоположников нового раздела математики – топологии, занимающейся изучением свойств пространства. «Он все постиг, все углубил. Обладая необычайно изобретательным умом, он не знал пределов своему вдохновению, неутомимо прокладывая новые пути, и в абстрактном мире математики неоднократно открывал неизведанные области», – говорил о Пуанкаре французский математик и политик Поль Пенлеве.
С его именем связано множество научных терминов, самый известный – гипотеза Пуанкаре. Она была сформулирована ученым в 1904 году и считалась одной из семи задач тысячелетия – так называют математические проблемы, над решением которых несколько десятков лет безуспешно бьются лучшие математики всего мира. В 2002 году гипотезу Пуанкаре подтвердил российский ученый Григорий Перельман, она стала первой и пока единственной из решенных задач тысячелетия.
К многочисленным научным заслугам Анри Пуанкаре можно отнести и создание математического фундамента для теории относительности, как специальной, так и общей. Также, как и его коллега Хендрик Лоренц, он пытался разработать теорию, объясняющую влияние эфира на движение тел в пространстве. Он доработал математическую формулировку преобразований Лоренца, сделал их пригодными для расчетов. Плодом совместной работы Пуанкаре и Лоренца стал новый вариант электронной теории Лоренца, в которой выдвигалось предположение, что механика Ньютона не будет работать при очень высоких скоростях.
В работе «О динамике электрона» Пуанкаре дает развернутое объяснение принципа относительности: для любых физических явлений – механических, электромагнитных, гравитационных – действуют одни и те же законы. Описываются они одними и теми же физическими уравнениями, а для переведения координат из одной системы отсчета в другую используются преобразования Лоренца.
Еще одной революционной идеей данной статьи была гипотеза о существовании четвертого измерения – времени. Вместе с уже известными тремя измерениями пространства это измерение образует единую четырехмерную систему пространство-время. Позже эту идею развили Герман Минковский и Альберт Эйнштейн.
На проходившем в 1900 году конгрессе физиков Анри Пуанкаре сделал смелое заявление. Он сказал, что эфир, также как его воздействие на тела во время движения, никогда не удастся обнаружить экспериментально. Поэтому в расчетах его можно не принимать во внимание. Тем не менее эфир существует. В том же докладе ученый выразил свою уверенность в том, что скорость света постоянна при любых условиях, поэтому уравнения Максвелла более правильны, чем механика Ньютона. Механика справедлива лишь для материальных тел, электромагнитная теория – для любых систем отсчета.
Для того, кто находится в неподвижном состоянии, и того, кто перемещается на большой скорости, время идет по-разному.
Относительно времени Пуанкаре также был настроен революционно. Он утверждал, что абсолютного времени, подобного тому, что использовал в своих расчетах Ньютон, в природе нет. То, что какие-то события считаются происходящими одновременно, – лишь условность, на самом деле у каждого участника событий может быть свое время. «Одновременность двух событий или порядок их следования, равенство двух длительностей должны определяться так, чтобы формулировка естественных законов была по возможности наиболее простой. Другими словами, все эти правила, все эти определения – только плод неосознанного стремления к удобству», – писал Пуанкаре.
Работы Пуанкаре и первые работы Эйнштейна во многом похожи, в первую очередь в отношении используемого обоими учеными математического аппарата. Но Эйнштейн практически сразу отбросил понятие эфира, посчитав его излишним и ненужным. Точно так же он поступил с абсолютным временем и абсолютным пространством. Поэтому его теория и получила название теории относительности: он доказал, что большинство фундаментальных понятий, раньше считавшихся неизменными и абсолютными, на самом деле относительны и могут меняться.
Есть и более существенные отличия между взглядами Эйнштейна и Пуанкаре. То, что Пуанкаре, а до него Лоренц считали эффектами эфира, Эйнштейн объяснил как естественные следствия свойств времени и пространства. Математические модели, иллюстрирующие теории Эйнштейна и Пуанкаре, были во многом идентичны, но их авторы по-разному воспринимали физическую сущность этих моделей. Эйнштейн полностью ушел от ньютоновской механики и создал целостную теорию, описывающую свойства времени и пространства с совершенно иной точки зрения. Пуанкаре же во многом оставался в рамках механики и пытался вписать в свою модель воздействие эфира.
Неодинаковы были взгляды ученых и на то, что следует считать истинным, а что условным. Сокращение размеров движущихся тел под воздействием эфира, в существовании которого был уверен Лоренц, Пуанкаре считал реально существующим. Эйнштейн же относился к сокращению как к условной переменной, присутствующей лишь в формулах. Эйнштейн пришел к пониманию относительности времени: специальная теория относительности утверждает, что время течет по-разному в разных системах отсчета. Пуанкаре называл это время «кажущимся», отличающимся от «истинного».
Пуанкаре выводит принцип относительности из экспериментов и расчетов, Эйнштейн же использует прямо противоположный подход. Он берет этот принцип за основу как аксиому и на нем строит здание своей теории. Вторая аксиома Эйнштейна – постоянство скорости света, 300 тысяч км в секунду. Одним из следствий специальной теории относительности стала та математическая модель, которую совместными усилиями создали Хендрик Лоренц и Анри Пуанкаре. Отказавшись от эфира, Эйнштейн доказал равноправие движущейся и покоящейся систем отсчета. Переход из одной системы в другую был сформулирован в преобразованиях Лоренца.
После того как Эйнштейн опубликовал специальную теорию относительности, Пуанкаре перестал издавать статьи и книги на эту тему. О том, почему это произошло, до сих пор спорят математики, физики и историки. Некоторые из них утверждают, что ученый был обижен на то, что его вклад недооценили. Но более вероятной считается версия, согласно которой Пуанкаре был во многом не согласен с теорией Эйнштейна и пытался найти другой подход к проблеме. Возможно, ему это удалось бы, но помешала тяжелая болезнь, преждевременно оборвавшая его жизнь.
Герман Минковский: пространство четырехмерно
Немецкий математик Герман Минковский написал первую серьезную работу еще во время учебы в Берлинском университете. Студенту, обладающему блестящими математическими способностями, не составило труда решить задачу о разложении числа на сумму пяти квадратов, за которую Парижская академия наук в 1881 году предлагала премию. При этом он не ограничился лишь решением, а дополнительно исследовал общие вопросы теории квадратичных форм. Он использовал сложные алгебраические методы, включая теорию элементарных делителей и ряды Дирихле, что привело в восхищение высокую комиссию. Никто не ожидал такого от семнадцатилетнего юноши. Минковский получил приз от Парижской академии и наставления от выдающихся умов своего времени. «Работайте, пожалуйста, чтобы стать выдающимся математиком», – написал ему академик Мари Энмон Жордан.
Докторскую степень Минковский получил в 21 год, темой его диссертации также была теория квадратичных форм и ее применение в пространстве произвольного числа переменных. Разрабатывая эту тему дальше, в 1896 году математик представил научному сообществу теорему, которая впоследствии получала название теоремы Минковского о выпуклом теле. Она стала основой нового раздела теории чисел – геометрии чисел. Основоположником этого раздела математики считается Герман Минковский.
Большая часть трудов, написанных ученым, посвящена геометрической теории чисел, ему принадлежит немало достижений в этой области. Некоторые ученые и до Минковского (в частности, Петер Густав Дирихле и Шарль Эрмит) использовали геометрические понятия и методы в теории чисел, но он пошел дальше. Минковский первым стал внедрять геометрию чисел практически во все области математики, что позволило ему создать новые методы математических исследований. Многие трудные вопросы, над которыми ученые работали на протяжении десятков лет, приобрели ясность и получили свое разрешение благодаря методам Минковского. «Я преисполнен удивления и восхищения перед Вашими принципами и результатами, они открывают передо мной как бы совсем новый арифметический мир, в нем основные вопросы нашей науки рассматриваются с блестящим успехом, который должны будут признать все математики», – писал Минковскому Шарль Эрмит.
Одновременно с научными исследованиями Минковский занимался преподавательской деятельностью. Он успел поработать в университетах Кенигсберга, Бонна и Цюриха, а в 1902 году его пригласили заведовать кафедрой в Геттингенском университете, где он проработал до конца своей недолгой жизни. Ему удалось вписать славную страницу в летопись этого старинного учебного заведения, об университете и профессоре Минковском заговорили математики всего мира.
В тот период, когда Минковский преподавал в Цюрихе, среди его студентов был молодой Альберт Эйнштейн. Он выбрал курс математики, но редко посещал занятия, предпочитая лекциям профессоров самообразование. Когда коллега Минковского Макс Борн показал ему революционную статью Эйнштейна о специальной теории относительности, профессор был поражен.
Несмотря на нелестное мнение о своем бывшем студенте, Минковский был одним из первых, кто понял и принял теорию относительности. Прочитав статью Эйнштейна, он размножил ее и раздал своим студентам и ассистентам, заявив, что эта статья изменит всю физику и что он сам попытается развить высказанные в ней положения.
В 1908 году, выступая на лекции в Кельне, Минковский произнес пророческие слова: «Отныне пространство само по себе и время само по себе уходят в мир теней, и сохраняет реальность лишь их своеобразный союз… Абсолютная справедливость мирового постулата есть настоящее ядро электромагнитной картины мира. Открытая Лоренцем и развитая Эйнштейном, она предстала перед нами во всем своем блеске».
В той же самой лекции Минковский впервые заговорил о четырехмерном пространстве-времени – теории, которая его прославила и способствовала развитию общей теории относительности Эйнштейна. «Никто еще не наблюдал, – говорил ученый, – какого-либо места иначе, чем в некоторый момент времени, и какое-нибудь время иначе, чем в некотором месте». Он предложил назвать некую точку пространства, соответствующую определенному моменту времени, мировой точкой. Мир в этом случае – совокупность всех существующих мировых точек. Любое тело, какой-то период существующее или существовавшее в пространстве, будет иметь мировую линию – некую кривую, отражающую его движение в четырехмерном пространстве.
«Весь мир представляется разложенным на такие мировые линии, – говорил Минковский, – физические законы могли бы найти свое наисовершеннейшее выражение как взаимоотношения между этими мировыми линиями». Для того чтобы работать с новой моделью пространства, Минковский к обычным трем осям координат х, у и z, обозначающим ширину, глубину и высоту, добавил четвертую величину – время, которое он обозначил традиционной для физики буквой
Четырехмерный мир был создан математиком для того, чтобы решать физические задачи, связанные с высокими скоростями, приближенными к скорости света, – этим уже занимался Альберт Эйнштейн. Он создал специальную теорию относительности и был на пороге нового прорыва – общей теории относительности (в которой специальная теория – лишь частный случай). Четырехмерная модель Минковского стала для Эйнштейна настоящей находкой, позволившей ему продолжить исследования.
Макс Планк, первооткрыватель кванта
Немецкий ученый Макс Планк стал основоположником квантовой физики почти случайно: он работал над теорией теплового излучения и обнаружил, что все математические расчеты приходят в упорядоченное состояние только в том случае, если предположить, что свет излучается не сплошным потоком, а небольшими дискретными частицами. Позже эти частицы были названы квантами. Некоторое время он сам не верил в свое открытие, но развитие физики показало, что он был абсолютно прав.
В первые годы после выпуска из Берлинского университета Планк занимался в основном термодинамикой – разделом физики, изучающим теплоту, механическую энергию и их преобразования. Вся термодинамика зиждется на нескольких фундаментальных законах, и по одному из них – второму началу термодинамики – Макс Планк защитил докторскую диссертацию. Позже он разрабатывал тему применения термодинамики в сфере физической химии и электрической химии, эти исследования принесли ему известность в научных кругах.
В 1887 году Планку выпустил в свет работу «Принцип сохранения энергии», где рассмотрел возникновение и эволюцию в науке этого фундаментального закона природы. Особое внимание он уделил принципу суперпозиции, который гласит: полную энергию системы можно разбить на сумму независимых компонент. «Принцип суперпозиции играет во всей физике чрезвычайно важную роль, – писал Планк, – без него все явления смешались бы друг с другом, и совершенно невозможно было бы установить зависимость отдельных явлений друг от друга; ибо если каждое действие нарушается другим, то, естественно, прекращается возможность познать причинную связь».
Проблемы электромагнитного излучения были очень актуальны на рубеже XIX–XX веков, ими занимались многие передовые ученые. Макс Планк тоже заинтересовался этой областью физики. В то время лаборатория Государственного физико-технического университета в Берлине работала над измерением теплового излучения тел. Любое тело, в котором есть тепло, испускает электромагнитные волны, и при высоком нагреве излучение можно увидеть. Повышение температуры меняет цвет тела сначала на красный, потом на оранжевый и при самых высоких показателях – на белый. Кроме температуры, на излучение влияют структура поверхности тела и его цвет.
Для исследований и измерений в качестве эталона используется такой объект, как абсолютно черное тело, полностью поглощающее лучи и совершенно их не отражающее. Идеального черного тела в природе не существует, но для этой роли подходит замкнутая непрозрачная сферическая оболочка с небольшим отверстием. Приходящее извне излучение падает на отверстие, попадает внутрь полости и многократно отражается от ее стенок. Вероятность того, что оно выйдет наружу, близка к нулю, так что оболочка вполне может выполнять функцию абсолютно черного тела в опытах и экспериментах.
Само черное тело может излучать электромагнитные волны и может, вопреки названию, иметь визуальный цвет. Вопрос о количестве и свойствах излучаемой им энергии получил в физике XIX века наименование проблемы черного тела.
Эксперименты с нагревом абсолютно черного тела, проводимые для подсчета излучаемой им энергии, выявили две закономерности. Во-первых, оказалось, что чем короче длины волн испускаемых лучей, тем больше их накапливается внутри тела. Во-вторых, чем выше частота волны, тем больше ее сохраняется внутри черного тела и тем больше энергии она в себе несет. Соединение этих закономерностей давало странный результат: получалось, что энергия излучения внутри абсолютно черного тела бесконечна. Это противоречащее всем законам физики утверждение ученые окрестили ультрафиолетовой катастрофой (потому что высокочастотные волны находятся в ультрафиолетовой части спектра).
Макс Планк, приступив к работе над проблемой излучения, пытался взглянуть на нее с точки зрения электромагнитной теории Максвелла, соединив ее с теорией теплоты. Но очень скоро он осознал, что классическая физика не может объяснить парадоксы излучения абсолютно черного тела.
В 1900 году Планк создал формулу, которая устраняла все несоответствия. Для того чтобы получить такой результат, он ввел новое понятие, противоречащее всем известным до этого принципам физики. В его формуле энергия колебаний изменяется не непрерывно, как это свойственно любой волне, а дискретно, шагами. Энергия каждого шага равняется некоей постоянной (позже эту постоянную стали называть постоянной Планка), помноженной на частоту. Дискретные порции энергии впоследствии назвали квантами, а формула, выведенная Планком, положила начало новой дисциплине – квантовой физике. С этого момента физика разделилась на «до» и «после». То, что было до открытия кванта, относится теперь к классической физике.
Экспериментальные данные полностью подтвердили расчеты, получаемые при использовании формулы Планка. Формула работала, но ни ее создатель, ни другие ученые в то время не осознавали важности понятия «квант», которое впервые в ней появилось. Планк считал его средством, условной величиной, которая помогла вывести необходимую формулу. Он много раз пытался вернуться в рамки классической науки и «пересоздать» уравнение без кванта, но у него ничего не получалось. Зато получилось, используя формулу, вычислить количество атомов в одном моле вещества и найти электрический заряд электрона. Это были первые шаги квантовой физики.
В 1918 году Максу Планку была присуждена Нобелевская премия «в знак признания его заслуг в деле развития физики благодаря открытию квантов энергии». В тот период уже было понятно, какое революционное значение имело открытие кванта. Сам Планк видел перспективы квантовой теории, но считал, что до ее развития пройдет еще очень много времени. «Введение кванта еще не привело к созданию подлинной квантовой теории», – сказал он в нобелевской лекции.
Последующие десятилетия ознаменовались грандиозными достижениями в квантовой физике, причем сам Планк, также как в первое время Эйнштейн, не хотел принимать новой интерпретации квантовой механики и неоднократно пытался вернуться к законам классической физики и примирить их с закономерностями квантовой теории. Но, как выяснилось, в мире квантов привычные законы не работали. Множество ученых, среди которых известные физики Эрвин Шредингер, Вернер Гейзенберг и Поль Дирак, занялись разработкой математического аппарата квантовой теории и проделали эту работу с успехом.
Вклад Макса Планка в развитие физики трудно переоценить, одного лишь открытия кванта и постоянной Планка хватило бы, чтобы сохранить его имя в истории, но его гению принадлежат и другие достижения. Он был одним из первых ученых, сразу принявших специальную теорию относительности Эйнштейна и посвятивших немало времени и сил ее популяризации. Его работы по этой теме послужили развитию и упрочению теории.
Планк создал новую формулировку второго начала термодинамики, приспособив его для решения задач физической химии. Работая в сфере релятивистской механики, он вывел уравнение динамики релятивистской частицы и заложил основы термодинамики. Он написал несколько трудов, посвященных проблемам оптики и теории дисперсии света. Кроме того, Планк был прекрасным педагогом, его перу принадлежат популярные учебники по физике.
Часть II. Как совершить переворот в науке: жизнь и открытия Эйнштейна
Отстающий ученик: детство будущего гения
Альберт Эйнштейн родился в семье немецких евреев со средним достатком, его отец был коммерсантом, мать занималась домом. Младенец отличался от своих сверстников: его голова была несоразмерно большой, и мать очень переживала, что это какое-то серьезное заболевание. Но врачи никаких отклонений не нашли, и позже пропорции тела пришли в норму. Были у маленького Альберта и другие отличия: он очень долго не разговаривал, держался замкнуто, не очень стремился играть с другими детьми. Сам Эйнштейн утверждал, что уже в три года выстраивал в голове длинные и сложные предложения, но высказать их вслух ему было трудно.
Читать и считать он научился рано и с увлечением занялся изучением научно-популярной литературы. В 10 лет он прочитал «Космос» Александра фон Гумбольта, «Силу и материю» Людвига Бюхнера, многотомную энциклопедию естествознания Аарона Бернштейна. Для него эти книги были также интересны и увлекательны, как для его сверстников приключенческие романы Вальтера Скотта или фантастические произведения Жюля Верна.
Отец Альберта, занимавшийся продажей газового и электрического оборудования, был технически подкованным человеком. От него мальчик узнал много интересного о работе различных приборов, о законах физики, об аксиомах геометрии и химических соединениях. Эти материи вызывали у будущего ученого неподдельный интерес. В пятилетнем возрасте на него произвел неизгладимое впечатление самый обыкновенный компас. Он очень хотел понять, откуда стрелка «знает», где находится север, почему указывает на него из любого положения. Задумавшись над подобным вопросом, Альберт мог часами и даже днями сидеть где-нибудь в уголке и ни с кем не разговаривать.
Учеба в гимназии давалась мальчику непросто, ему всегда было трудно сосредоточиться на том, что неинтересно. А большинство школьных предметов казались ему невыносимо скучными. История, литература и особенно языки были для него непонятной и ненужной китайской грамотой. Эйнштейн и во взрослом возрасте испытывал проблемы с изучением языков, даже международный английский давался ему с огромным трудом. «Школа не годилась для меня, и я не годился для школы. Она была мне скучна. Преподаватели вели себя как фельдфебели. Я хотел знать то, что мне интересно, а они хотели, чтобы я подготовился к экзамену. Больше всего я ненавидел конкурсную систему и особенно спорт…» – вспоминал Эйнштейн.
Ему нравилась математика, но, опять же, не та ее часть, которая преподавалась в школе. Заинтересовавшись расположением фигур на плоскости, он самостоятельно изучил учебник евклидовой геометрии, в то время как его одноклассники решали арифметические примеры. Иногда он беседовал с ними о математике, пытался объяснять темы, которые они изучали, по-своему. В этом проявлялась самостоятельность мышления будущего гения, которая позже позволит ему совершить переворот в физике.
Еще одним нелюбимым занятием юного Эйнштейна была музыка. Правда, впоследствии его мнение об этом предмете переменилось на прямо противоположное. Родители решили, что мальчика нужно учить игре на скрипке и пригласили учительницу, когда ему было пять лет. Он люто невзлюбил и преподавательницу, и инструмент, и гаммы, которые приходилось разучивать. Но постепенно, год за годом занимаясь музыкой, он осознал, насколько благоприятно ее воздействие. Он втянулся, делал успехи и мог бы даже стать профессиональным музыкантом, если бы не увлечение наукой.
Механизмы были страстью Эйнштейна на протяжении всей жизни. Ничто так не успокаивало мыслителя, как наблюдение за работой сложного, хорошо отлаженного прибора. Уже став известным ученым, он продолжал заниматься конструированием и изобретательством в качестве хобби. Мало кто знает, что Альберт Эйнштейн не только создал теорию относительности, но и усовершенствовал некоторые бытовые приборы. Например, он создал и запатентовал холодильник новой модели и измеритель напряжения, который работал весьма эффективно.
В 1894 году Эйнштейны переехали из немецкого Мюнхена в итальянский Милан. Дела на фабрике шли все хуже, и глава семейства решил попробовать новое дело на новом месте. Альберта оставили у родственников оканчивать гимназию, до выпуска оставалось полтора года. Это было непростое время для подростка. Он всегда чувствовал себя в гимназии неуютно, а без поддержки близких стало совсем тяжело. Ему уже исполнилось 16 лет, а в 17, по германским законам, он должен был пойти в армию. Все связанное с войной и военными он искренне ненавидел. «К наихудшему проявлению стадной жизни, милитаристской системе, я питаю отвращение. Для меня достаточно одной способности этих людей получать удовольствие от маршировки по четыре в виде воинственной банды, чтобы презирать их», – писал Эйнштейн.
Через год после отъезда родителей Альберт присоединился к ним в Милане. Он хотел избежать армии и думал отказаться ради этого от немецкого гражданства. Поступить в вуз без гимназического аттестата он не мог, и для завершения школьного образования его отправили в кантональную школу в швейцарском городке Аарау. Здесь Эйнштейн занялся изучением электромагнитной теории Максвелла и впервые задался вопросами, которые позже привели к созданию теории относительности.
Жажда знаний: голодный студент, увлеченный математикой и физикой
Альберт Эйнштейн стремился к поступлению в Цюрихский Политехникум, потому что, во-первых, он был в Швейцарии, но при этом находился в ее немецкоязычной части, а во-вторых, там преподавали известные физики: Герман Минковский, Адольф Гурвиц, Генрих Вебер. Нужно заметить, что Эйнштейна допустили до экзаменов даже без аттестата, но он завалил французский язык и ботанику При этом его результаты по физике и математике были настолько выдающимися, что руководство университета предложило ему посещать лекции вольнослушателем. Родители Альберта на это не согласились, они хотели, чтобы сын приобрел не только знания, но и диплом о высшем образовании. Поэтому он и был отправлен в одну из швейцарских школ для получения аттестата.
В это время его умом завладела электромагнитная теория Максвелла. Еще до поступления в выпускной класс школы, летом, он написал свою первую научную статью, которая называлась «К рассмотрению состояния эфира в магнитном поле». Конечно, Эйнштейн, тогда еще школьник, даже не пытался опубликовать ее в каком-нибудь научном журнале, он просто отослал ее своему дяде. Эта статья не сохранилась. Вполне возможно, что она содержала какие-то интересные для научного мира идеи. Ведь уже в те годы в уме будущего светила науки возникали оригинальные мысли.
Школа в Аарау с первого взгляда поразила Альберта, она очень отличалась от школы в Мюнхене. Здесь царила демократическая атмосфера, преподаватели общались с учениками на равных, не было муштры и наказаний. Система преподавания была подобна университетской: лекции, семинары, занятия в лаборатории, оборудованной по последнему слову науки. Эйнштейн был в восторге. Позже он назовет период обучения в швейцарской школе самым счастливым в своей жизни. Здесь впервые заметили его таланты, на него больше не смотрели как на отщепенца со странностями; у него появились достойные наставники, интересующиеся передовыми тенденциями науки. В школьной лаборатории Эйнштейн сконструировал прибор для измерения эфира. Он, естественно, не работал. Но над увлеченным подростком никто не смеялся, к его идеям относились серьезно и с интересом.
С аттестатом из Аарау Альберт отправился в Политехникум, его взяли без экзаменов, помня его прошлогодние успехи. Здесь все было не так гладко. Преподаватели были разные: кто-то требовал дисциплины, кому-то не нравились нестандартное мышление Эйнштейна и его каверзные вопросы на лекциях. После того как он, вновь пытаясь соорудить прибор по уловлению эфира, устроил взрыв в лаборатории, один из профессоров учинил ему разнос. Он предрекал, что Эйнштейн не добьется успеха в физике и советовал ему перейти на другой факультет – юриспруденции или филологии.
Уже на первом курсе Альберт начал прогуливать лекции, предпочитая им самостоятельное изучение интересующих его предметов. Вместо того чтобы слушать скучных профессоров, которые преподавали устаревшие теории, он читал научные журналы, знакомился со свежими теориями, которые давали обширную пищу для размышлений.
Тем временем предприятие отца Эйнштейна в Милане потерпело крах, семья бедствовала, родители практически не присылали сыну денег, хотя иногда передавали продукты. Он был настоящим голодным студентом: питался через раз, иногда обходился одним бутербродом за весь день. При этом много курил, часто тратя последние деньги на табак. Бедность его не слишком напрягала, беспокоило только то, что из-за отсутствия денег он не мог жениться. В то время у него был бурный роман с будущей женой Милевой Марич, которая тоже училась в Политехникуме и была единственной девушкой на его факультете.