Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Динамика звёздных систем - Владимир Георгиевич Сурдин на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Библиотека

«Математическое просвещение» Выпуск 12

В. Г. Сурдин Динамика ЗВЁЗДНЫХ СИСТЕМ

Издательство Московского центра

НЕПРЕРЫВНОГО МАТЕМАТИЧЕСКОГО ОБРАЗОВАНИЯ

Москва • 2001

УДК 524 С90

ББК 22.67

Аннотация

Великие астрономические открытия Николая Коперника, Тихо Браге, Иоганна Кеплера, Галилео Галилея положили начало новой научной эре, стимулируя развитие точных наук. Астрономии выпала большая честь заложить основания естествознания: в частности, создание модели планетной системы привело к появлению математического анализа.

Из этой брошюры читатель узнает о многих фантастических достижениях астрономии, сделанных в последние десятилетия.

Текст брошюры представляет собой дополненную автором обработку записи лекции, прочитанной им для школьников 9-11 классов 11 ноября 2000 года на Малом мехмате МГУ.

Брошюра рассчитана на широкий круг читателей: школьников старших классов, студентов младших курсов, учителей...

ISBN 5-900916-90-1

Сурдин Владимир Георгиевич.

Динамика звёздных систем.

(Серия: «Библиотека „Математическое просвещение"»).

М.: МЦНМО, 2001. — 32 с.: ил. + 1 вкл.

Главный редактор серии В. М. Тихомиров.

Заведующая редакцией В. Л. Браккер.

Редакторы А. А. Ермаченко, Е. Н. Осьмова.Техн. редактор М. Ю. Панов.

Лицензия ИД № 01335 от 24/Ш 2000 года. Подписано к печати 18/V 2001 года. Формат бумаги 60x88 Vie- Офсетная бумага № 1. Офсетная печать. Объём 2,00 печ. л. + + 1 вкл. (0,25 печ. л.). Уч.-изд. л. 2,09. Тираж 5000 экз. Заказ 5433.

Издательство Московского центра непрерывного математического образования. 121002, Москва, Г-2, Бол. Власьевский пер., 11. Тел. 241-05-00.

Отпечатано в Производственно-издательском комбинате ВИНИТИ. 140010, г. Люберцы Московской обл., Октябрьский пр-т, 403. Тел. 554-21-86.

Введение

Практически всё, что мы видим вокруг себя в космосе — это звёзды, более или менее похожие на наше Солнце. Разумеется, нам известно вещество и вне звёзд: это планеты и их спутники, кометы и астероиды, межзвёздные газ и пыль. Но всё это незначительный «довесок» в сравнении с гигантскими звёздами, объединенными в системы — двойные и кратные, в звёздные скопления и галактики. Кроме этого, есть свидетельства, что во Вселенной много небарионного вещества, состоящего не из привычных нам частиц — протонов и нейтронов (главных представителей группы барионов), а из частиц совсем другой, пока неясной природы, единственное взаимодействие которых с обычным веществом происходит через силу гравитации. Но, даже если это необычное вещество существует, понять его свойства удастся, лишь изучая поведение нормального вещества, т. е. звёзд — главного наблюдаемого персонажа Вселенной.

Итак, современная астрономическая Вселенная состоит из звёзд. Но так было не всегда: более 10 млрд, лет назад, когда от начала расширения Вселенной прошло не более 300 тыс. лет, наш мир был заполнен очень горячим и однородным веществом и излучением, причём по плотности своей массы излучение превосходило вещество. Когда возраст Вселенной превысил 300 тыс. лет и наполняющая её материя остыла примерно до 4 000° К, плотность массы излучения стала ниже, чем вещества, и с тех пор это различие между веществом и излучением только нарастало; сегодня мы живём во Вселенной, где доминирует вещество. Но ещё многие сотни миллионов лет после того, как вещество стало основным компонентом Вселенной, оно оставалось практически однородным, как воздух, заполняющий наши комнаты: его плотность везде одинакова; его лишь слабо возмущают звуковые волны, бегущие в разных направлениях.

До сих пор астрономы не знают точно, как произошло деление почти однородного вещества Вселенной на звёзды, но каким-то образом это случилось: когда возраст Вселенной ещё не достиг 1 млрд, лет, почти всё её барионное вещество оказалось разбито на плотные газовые шары с характерной массой порядка Ю30 кг, объединённые в галактики с массами порядка 10й кг. Принципиальных трудностей в понимании этого процесса нет. Распространение звуковых волн в космическом веществе, как и в комнатном воздухе, создаёт перепады плотности. В обычной звуковой волне «комнатного размера» сила упругости газа гораздо выше силы гравитационного взаимодействия его частиц друг с другом, поэтому гравитация не мешает циклическому колебанию звуковых волн в комнате. Но в больших, космических масштабах действие гравитации может изменить эту картину: если в

некоторых областях повышенной плотности газа его давление не способно противостоять его же собственной силе притяжения, то такие уплотнения, случайно возникнув, уже не расширяются, а продолжают сжиматься. Этот процесс называют «гравитационной неустойчивостью» [1—3]. По-видимому, именно он породил звёзды и звёздные системы, власть в которых окончательно захватила гравитация.

Закон гравитации Ньютона

Великие теоремы притяжения

Итак, в мире звёзд царствует гравитация. Остальные три физических взаимодействия — электромагнитное, слабое и сильное ядерные — практически никакой роли в движении звёзд и в эволюции звёздных систем не играют. Сила гравитации описывается чрезвычайно простым, особенно с точки зрения искушённых в математике школьников, законом. Исаак Ньютон опубликовал его в 1687 году в своей замечательной книге «Начала натуральной философии». Этот закон описывает взаимодействие двух материальных точек, т. е. таких тел, размер которых мал по сравнению с разделяющим их расстоянием. Но он применим к любым телам, поскольку каждое из них можно представить в виде совокупности материальных точек. Закон Ньютона гласит, что две материальные точки, обладающие массами М, и М2, притягиваются друг к другу с одинаковой силой, равной произведению их масс, делённому на квадрат расстояния между ними и, разумеется, умноженному на некоторую константу (обычно в курсах физики её обозначают буквой G, от лат. gravitas — тяжесть), значение которой зависит от единиц измерения массы, силы и расстояния:

В системе СИ ([М] = кг, [R] = м, [F] = Н) значение

но астрономы (и физики-теоретики, когда они работают в этой области) пользуются более удобными для проведения вычислений системами единиц, в которых многие константы, в том числе и G, можно полагать равными единице и забывать про них.

Обратите внимание, как коротка запись числа G — всего четыре значащих цифры; другие физические константы содержат по 8—10, а порой и 12 цифр. Почему же именно значение G измерено с такой низкой точностью? А потому, что гравитация — слабая сила, менее других проявляющая себя в лабораторных экспериментах. Очень трудно

определить притяжение двух тел с аккуратно измеренной массой. Если два большущих слона (М1 = М2 = 4 т) стоят в лаборатории, тесно прижавшись друг к другу (R= 1 м), то их взаимное гравитационное притяжение составляет всего около 0,1 г. А вот если бы один слон состоял только из протонов, а другой — только из электронов, то они притягивались бы с силой порядка 1030 т! К счастью, все слоны, планеты и звёзды состоят практически из равного количества протонов и электронов, электрическое взаимодействие которых уравновешивается. Зато гравитационное взаимодействие всех частиц — протонов, нейтронов и электронов — суммируется, поскольку в природе нет гравитационных зарядов разного знака. Поэтому крайне слабая сила всемирного тяготения, почти незаметная между лабораторными телами, является доминирующей для крупных космических тел.

Итак, взаимодействие материальных точек описывается очень простым законом. Для математика этого было бы достаточно, но физик и астроном сразу вспоминают, что реальные тела — это ведь не точки, а протяжённые объекты. Значит, производя расчёты, придётся иметь дело с суммированием или с интегрированием, т. е. с вычислением суммы всех сил, действующих на интересующий нас объект со стороны всех прочих объектов Вселенной. Это задача крайне сложная: представьте себе, что слон притягивает мышонка, и нам предстоит просуммировать все силы, действующие на мышонка со стороны каждой точки хобота, ушей, ног, хвоста и прочих органов слона — со стороны миллионов частей, каждую из которых можно уподобить материальной точке... Сегодня мы можем сказать: что в этом особенного? Мысленно разобьём слона на миллион частей и просуммируем силы от единицы до миллиона. Настольный компьютер сделает это за минуту, поскольку суммировать придётся простенькие члены. Но во времена Ньютона не было компьютеров, и любое суммирование или то, что мы теперь называем интегрированием по объёму, было чрезвычайно сложной операцией, ведь её приходилось выполнять пером на бумаге. И Ньютон не продвинулся бы далеко в исследовании Вселенной, если бы не две замечательные теоремы, которые ему удалось доказать.

I Теорема 1. Сферическое тело (тонкая сферическая оболочка) постоянной плотности притягивает любую точку, находящуюся вне его, так, как будто вся масса тела сосредоточена в его центре.

Эта изумительная теорема дала возможность небесным механикам — людям, которые занимаются расчётом движения планет и космических зондов, а также звёзд и галактик, — свести большинство задач о взаимодействии космических тел к задаче о притяжении двух точек. Дело в том, что почти все небесные тела, за редким исключением, можно уподобить последовательности вложенных друг в друга сфер, каждая из которых имеет постоянную плотность (которая обычно меняется лишь от центра к периферии). Например, у нашей Земли форма почти шарообразная, плотность растёт по направлению к центру, однако, разбив её на бесконечное количество сферических слоёв, вы убедитесь, что каждый из них притягивает внешнюю точку так, как будто вся масса сосредоточена в центре. Поэтому никакого суммирования или интегрирования не нужно.

Теорема 2. Если точку поместить внутри однородной сферы (причём в любом месте, а не только в центре), то она не ощутит притяжения сферы, поскольку силы, действующие на неё со стороны всех элементарных частей этой сферы, в точности уравновесятся.

Эта теорема очень помогла тем специалистам, которые изучают недра небесных тел: стало возможным решать задачи, мысленно поместив наблюдателя внутрь планеты и не заботясь о тех слоях вещества, которые находятся снаружи от него, поскольку их суммарное притяжение у сферической планеты в точности равно нулю.

Таким образом, снаружи сферы вы чувствуете, будто вас притягивает точка, а внутри сферы — вообще невесомость. Эти замечательные теоремы позволили даже во времена Ньютона, при полном отсутствии вычислительной техники, чрезвычайно точно решать интереснейшие задачи: о строении планет (в частности Земли), об их взаимном притяжении и движении в пространстве.

Движение двух точек под действием ВЗАИМНОГО ГРАВИТАЦИОННОГО ПРИТЯЖЕНИЯ

Ньютон решил задачу о том, как движутся две материальные точки, взаимно притягивающие друг друга, например, планета и её спутник. Вы, конечно, знаете решение этой задачи: под действием взаимного притяжения каждое из тел обращается по эллиптической орбите вокруг общего центра масс, лежащего в фокусах эллипсов. Орбиты тел подобны, но имеют разный размер, обратно пропорциональный массам тел. Если из инерциальной системы отсчёта, связанной с центром масс, перейти в неинерциальную, связанную с одним из тел, то второе обращается вокруг него также по эллиптической орбите (найдите сами её размеры).

Решение Ньютона, полученное в конце XVII века, подтвердило на основании новой по тем временам физики эмпирические открытия, сделанные Кеплером ещё в начале того же века: по результатам многолетних наблюдений, в основном проделанных датским астрономом Тихо Браге, Кеплер обнаружил, что планеты обращаются вокруг

Солнца по эллипсам с переменной скоростью, двигаясь так, что радиус-вектор (прямая, соединяющая планету и Солнце) за равные отрезки времени заметает равные площади, и что квадраты периодов обращения двух планет относятся как кубы больших полуосей их эллиптических орбит [4, 5]. Ньютон, используя сформулированные им законы механики и предположение о гравитационной силе, обратной квадрату расстояния, не только объяснил найденные Кеплером закономерности движения планет, но и доказал, что эллипс — лишь частный случай любого конического сечения (им может быть также парабола, гипербола, окружность или прямая), по которому происходит движение двух гравитационно взаимодействующих тел (рис. 1). Разумеется, если речь идёт о длительном движении связанных, т. е. не улетающих далеко друг от друга тел, то это эллипс или его частный случай — окружность (а почему не отрезок прямой?).

Рис. 1. Сечения конуса плоскостью представляют все возможные траектории движения в задаче двух тел: 1) окружность, 2) эллипс, 3) парабола, 4) гипербола; прямая получается в сечении конуса плоскостью, проходящей через вершину конуса.

Любопытно, что закон Ньютона справедлив только в нашем, трёхмерном пространстве. Нам трудно представить себе другое пространство, но математики и физики оперируют с пространствами произвольного числа измерений: с 1-, 2-, 4-мерными, и даже с пространствами большей размерности. Например, одна из последних теорий строения элементарных частиц утверждает, что мы живём в (не пугайтесь!) 506-мерном пространстве, но только три его координаты доступны нам как направления движения, ещё одна — это время, а остальные 502 настолько туго «свёрнуты в клубочек», что мы их не замечаем, а вот элементарные частицы при высоких энергиях — замечают. Но если бы мы жили в реальном, полноправном геометрическом пространстве большего или меньшего числа измерений, то закон притяжения имел бы иную форму. Легко понять, какую: если напряжённость физического поля, связанного с обменом стабильными частицами (фотонами, гравитонами и т. п.), проинтегрировать по поверхности, окружающей источник этого поля, то должна получиться константа — полный поток частиц.

Рис. 3. Траектории частицы при п немного меньшем (а) или большем (б), чем 2, показывают направление поворота орбиты, близкой к эллиптической.

Рис. 2. Смоделированные на компьютере траектории движения частицы, обращающейся вокруг центра притяжения под действием силы F ~1/Rn. Значения п = 1, 2 и 3 соответствуют ньютоновскому притяжению в физическом пространстве двух, трёх и четырёх измерений.

Значит, если бы мы жили в евклидовом пространстве N измерений (время — особая координата, здесь мы её не рассматриваем), то закон Ньютона имел бы форму

например, если бы мы жили в 4-мерном пространстве, то сила была бы обратно пропорциональна кубу расстояния.

Интересно, к чему бы это привело? Давайте менять показатель степени при R и смотреть, как будет двигаться пробное тело в этом случае. На рис. 2 показаны варианты такого движения для целого n = N — 1, а на рис. 3 — для нецелого n в законе

Среди наших примеров только для ньютоновского притяжения (n = 2) получилась простая замкнутая траектория. Быть может, вы угадаете ещё одно значение n, дающее эллиптическую траекторию? В чём отличие этого эллипса от кеплеровской орбиты?

При n < 3 область движения частицы ограничена: хотя траектория не замкнута, частица не покидает области в виде кольца; такое движение можно считать устойчивым. При n > 3 устойчивость исчезает: частица либо бесконечно удаляется от центра, либо падает в центр. При небольшом отличии n от 2 траектория имеет вид «розетки»; такую орбиту могло бы иметь тело, движущееся по эллипсу, ось которого непрерывно поворачивается. В случае n > 2 поворот эллипса происходит в направлении движения частицы; в случае n < 2 эллипс поворачивается в противоположном направлении. Далее мы увидим, что эти математические этюды имеют важный физический смысл.

Реальное движение планет

Зачем мы «издевались» над простым и изящным законом Ньютона 1/R2? Дело в том, что, обращаясь к реальным небесным объектам, мы замечаем их отличие от идеальных сфер. Форма Земли или Солнца лишь в первом приближении похожа на сферу. Мы знаем, что Земля по причине вращения сплюснута вдоль полярной оси: расстояние между её северным и южным полюсами на 43 км меньше, чем между противолежащими точками экватора. Из-за этого, к сожалению, теорема Ньютона в точности не выполняется, и Земля притягивает к себе не как помещённая в её центре массивная точка, а по более сложному закону. Приблизительно этот закон можно записать в форме, подобной форме ньютоновского закона:

Где IნI << 1 — маленькая добавочка, которая может быть положительной или отрицательной в зависимости от формы тела. Нарушается простота ньютоновского закона, а значит, нарушается и простота взаимного движения тел. Как мы видели, орбиты тел получаются незамкнутыми и гораздо более сложными, чем эллиптические.

Действительно, наблюдая движение планет и их спутников, астрономы обнаружили, что все небесные тела движутся не в точности по эллипсам, а скорее по «розеткам». Разумеется, это никого не удивило, поскольку, начиная с Ньютона, учёные ясно понимали, что простой эллипс, как и сама задача двух тел — лишь первое приближение к реальности. Приняв во внимание взаимное притяжение планет, обращающихся вокруг Солнца, удалось почти полностью объяснить форму их орбит. Орбиты спутников, близких к своим

планетам, в основном искажаются из-за несферичности планет, а на движение далёких спутников (в их числе — наша Луна) решающее влияние оказывает Солнце.

Используя законы Ньютона, астрономы XVIII—XIX веков достигли высочайшего искусства в предвычислении траекторий планет. Если наблюдаемое движение планеты отклонялось от расчётного, то виновника возмущений искали не в основах теории, а на небе — среди неоткрытых космических тел. Триумфом в этой работе стало теоретическое открытие планеты Нептун, которую «на кончике пера» обнаружили в 1846 году французский астроном У. Леверье и англичанин Дж. Адамс в поисках виновника возмущений в движении Урана.

Однако уже в XIX веке этой идиллии пришёл конец: когда точность астрономических расчётов возросла ещё немного, оказалось, что теория Ньютона не стыкуется с наблюдениями. По иронии судьбы, обнаружил это недавний триумфатор — Леверье, решивший после открытия Нептуна построить наиточнейшую теорию движения всех планет. Такую теорию он действительно построил, т. е. разработал аналитическую схему предвычисления положения планет; однако не всё в этой схеме получило физическое объяснение. Например, ближайшая к Солнцу планета Меркурий движется по довольно вытянутой эллиптической орбите, поворот оси которой легко заметить. Обычно астрономы выражают этот поворот как скорость углового перемещения перигелия — ближайшей к Солнцу точки орбиты. Наблюдения показывают, что перигелий Меркурия поворачивается на 574" в столетие. Леверье доказал, что поворот на 531" за 100 лет вызван влиянием других планет — в основном Венеры, Юпитера и Земли. Это 93% от наблюдаемого эффекта; казалось бы, можно радоваться. Но оставшиеся 43" в столетие не давали астрономам покоя; сказывалась профессиональная гордость за пресловутую астрономическую точность [6-8].

Кстати, попробуйте сами догадаться, в каком направлении происходит движение перигелия Меркурия под влиянием окружающих планет. Для этого представьте все планеты «размазанными» вдоль их орбит. Меркурий при этом оказывается внутри кольца. Вспомнив теорему Ньютона о гравитации внутри сферы, определите характер поля внутри кольца. Теперь вам не составит труда найти знак 8 и, следовательно, знак выражения n —2. Теперь посмотрите на рис. 3. Скажу по секрету, что перигелий Меркурия вращается в положительном направлении, т. е. в сторону движения самой планеты.

Обнаружив неувязку в движении Меркурия, Леверье решил, что ему вторично улыбнулась удача, как в случае с Нептуном. Он вычислил параметры неизвестной планеты, которая могла бы находиться внутри орбиты Меркурия и дополнительно возмущать его движение.

Позже эту гипотетическую планету назвали Вулканом. Её искали, но не нашли. Поэтому в конце XIX веке небесная механика встала перед парадоксом; ньютоновская физика прекрасно объясняет движение всех тел Солнечной системы, кроме Меркурия.

Чтобы спасти физику, было предложено множество оригинальных гипотез; самые горячие головы даже покушались «на святое» — на закон гравитации Ньютона, предлагая его немного модернизировать. Действительно, движение Меркурия удавалось объяснить, если принять п = 2,00000016. Но чувство прекрасного не позволяло физикам без отвращения смотреть на закон гравитации в такой форме;

К счастью, пришёл Эйнштейн и объяснил, что теория Ньютона — это лишь первое (и очень хорошее!) приближение к описанию природы, но, на самом деле, движение тел и их гравитационное взаимодействие устроены гораздо сложнее, чем это казалось до начала XX века.

Теория Эйнштейна и сплюснутость Солнца

Вместо мелких поправок к ньютоновской теории Эйнштейн принёс с собой нечто совершенно новое, то, что мы сейчас называем общей теорией относительности (ОТО). К сожалению, эта теория очень сложна, и её нельзя представить в такой же замечательной форме, как ньютонову механику. Но зато она правильно описывает притяжение и движение тел. Когда на основе ОТО было вычислено движение Меркурия, в частности, поворот его эллиптической орбиты, то теория сошлась с наблюдениями с такой точностью, какую только могут дать современные астрономы. Даже значительно меньший эффект — поворот эллиптической орбиты Земли всего на 4" в столетие — весьма точно объясняется в рамках ОТО [9].

Однако скучно жить без проблем, поэтому в замечательном согласии эйнштейновской физики с астрономическими наблюдениями тоже был усмотрен парадокс. Суть его в том, что все расчёты, как по Ньютону, так и по Эйнштейну, проводились для сферического Солнца, как будто бы вся его масса в центре. А ведь Солнце вращается, поэтому сферическим оно быть не может. Мы в телескоп наблюдаем вращение его поверхности, которая делает один оборот за 25,4 сут. Если с таким же периодом вращаются и недра Солнца, то фигура его должна быть сплюснутой с относительной разностью экваториального и полярного радиусов Δr/r ≈ 10-5. Но, вообще говоря, внутренности

Солнца могут вращаться совсем не так, как поверхность; в астрономии этому есть немало примеров.

Ещё в 1960-е годы американский физик Роберт Дикке — один из создателей конкурирующей с ОТО релятивистской теории (скалярно-тензорная теория Бранса—Дикке) — обратил внимание на то, что формулы Эйнштейна используются для расчёта движения планет в предположении, что Солнце — шар, хотя это, очевидно, не так. А надо сказать, что даже для точечных и шарообразных тел вести расчёты на языке общей теории относительности — довольно трудоёмкое дело. Поэтому в первых расчётах, основанных на теории Эйнштейна, для облегчения вычислений все тела считались точками или шарами. А Дикке понял: раз Солнце вращается, значит нужно принять это во внимание и всё пересчитать заново! В 1960-е годы технические трудности релятивистских расчётов уже были преодолимы: появились компьютеры. Но нужно было точно знать, какова форма Солнца и как оно вращается. Теория Эйнштейна утверждает, что на силе притяжения объекта сказывается не только отличие его формы от идеального шара, но и характер вращения: даже у двух идеальных шаров тяготение будет разным, если один из них неподвижен, а другой вращается. Гравитационное поле вращающегося тела в рамках ОТО имеет «вихревой» компонент: оно не только притягивает соседнее тело, но и раскручивает его вокруг себя.



Поделиться книгой:

На главную
Назад