Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: 8a. Квантовая механика I - Ричард Филлипс Фейнман на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Поскольку это решение отвечает состоянию с энергией E=hw,

то можно прямо написать

где Е пока неизвестна и должна быть определена так, чтобы дифференциальные уравнения (7.16) и (7.17) выполнялись. При подстановке С1и С2 из (7.18) и (7.19) в дифференци­альные уравнения (7.16) и (7.17) производные дают просто -iE/h, умноженное на С1или C2, так что слева остается попросту ЕС1или ЕС2. Сокращая общие экспоненциальные множители, получаем

или после перестановки членов

У такой системы однородных алгебраических уравнений не­нулевые решения для а1 и а2 будут лишь тогда, когда опре­делитель, составленный из коэффициентов при а1и а2, равен нулю, т. е. если

Но когда уравнений два и неизвестных тоже два, то можно обойтись и без столь возвышенных представлений. Каждое из уравнений (7.20) и (7.21) дает отношение двух коэффициентов a1 и а2, и эти два отношения должны быть равны. Из (7.20) мы имеем

а из (7.21)

Приравнивая эти отношения, получаем, что Е должно удовле­творять равенству

(E-H11)(E-H22)-H12H21=0.

То же получилось бы и из (7.22). В любом случае для Е получается квадратное уравнение с двумя решениями:

Энергия E может иметь два значения. Заметьте, что оба они вещественны, потому что Н11и H22 вещественны, а Н12Н21, равное Н12H12=|H12|2, тоже вещественно, да к тому же положительно.

Пользуясь тем же соглашением, что и раньше, обозначим большую энергию EI, а меньшую ЕII. Имеем

Подставив каждую из этих энергий по отдельности в (7.18) и (7.19), получим амплитуды для двух стационарных состояний (состояний определенной энергии). Если нет каких-либо внеш­них возмущений, то система, первоначально бывшая в одном из этих состояний, останется в нем навсегда, у нее только фаза будет меняться.

Наши результаты можно проверить на двух частных слу­чаях. Если H12=H21=0, то получается EI=H11 и EII=H22. А это бесспорно правильно, потому что тогда уравнения (7.16) и (7.17) не связаны и каждое представляет состояние с энер­гией H11 и H22. Далее, положив H11=H22=E0 и H21=H12=-А, придем к найденному выше решению:

еI0и еII0-а.

В общем случае два решения ЕIи ЕIIотносятся к двум состояниям; мы их опять можем назвать состояниями

У этих состояний С1и С2будут даваться уравнениями (7.18) и (7.19), где а1и а2 еще подлежат определению. Их отношение дается либо формулой (7.23), либо (7.24). Они должны также удовлетворять еще одному условию. Если известно, что си­стема находится в одном из стационарных состояний, то сумма вероятностей того, что она окажется в |1>или |2>, должна равняться единице. Следовательно,

или, что то же самое,

Эти условия не определяют а1и а2 однозначно: остается еще произвол в фазе, т. е. в множителе типа еid. Хотя для а можно выписать общие решения, но обычно удобнее вычислять их в каждом отдельном случае.

Вернемся теперь к нашему частному примеру молекулы аммиака в электрическом поле. Пользуясь значениями Н11, H22 и Н12из (7.14) и (7.15), мы получим для энергий двух ста­ционарных состояний выражения

Эти две энергии как функции напряженности x электрического поля изображены на фиг. 7.2.

Фиг. 7,2. Уровни энергии молекулы аммиака в электрическом поле.

Кривые построены по формулам (7.30):

Когда электрическое поле нуль, то энергии, естественно, обращаются в Е0±А. При наложении электрического поля расщепление уровней растет. Сперва при малых x оно растет медленно, но затем может стать пропор­циональным $. (Эта линия — гипербола.) В сверхсильных полях энергии попросту равны

Тот факт, что у азота существует амплитуда переброса вверх — вниз, малосуществен, когда энергии в этих двух поло­жениях сильно отличаются. Это интересный момент, к которо­му мы позже еще вернемся.

Теперь мы наконец готовы понять действие аммиачного мазера. Идея в следующем. Во-первых, мы находим способ отделения молекул в состоянии |I> от молекул в состоянии |II>. Затем молекулы в высшем энергетическом состоянии |I> пропускаются через полость, у которой резонансная частота равна 24000 Мгц. Молекулы могут оставить свою энергию полости (способ будет изложен позже) и покинуть полость в состоянии |II>. Каждая молекула, совершившая такой пере­ход, передаст полости энергию E=EIII. Энергия, отобран­ная у молекул, проявится в виде электрической энергии поло­сти.

Как же разделить два молекулярных состояния? Один способ такой. Аммиачный газ выпускается тонкой струйкой и проходит через пару щелей, создающих узкий пучок (фиг. 7.3).

Фиг. 7.3. Пучок молекул аммиака может быть раз­делен электрическим полем, в котором x2 обладает гра­диентом, перпендикуляр­ным пучку.

Затем пучок пропускается через область, в которой имеется сильное поперечное электрическое поле. Создающие поле элект­роды изогнуты так, чтобы электрическое поле поперек пучка резко менялось. Тогда квадрат x·x электрического поля будет иметь большой градиент, перпендикулярный пучку. А у мо­лекулы в состоянии |/> энергия с x2растет, значит, эта часть пучка отклонится в область меньших x2. Молекула же в со­стоянии |II>, наоборот, отклонится к области, где x2побольше, потому что ее энергия падает, когда x2растет.

Кстати, при тех электрических полях, которые удается генерировать в лаборатории, энергия mx всегда много мень­ше А. В этом случае корень в уравнении (7.30) приближенно равен

Во всех практических случаях энергетические уровни, стало быть, равны

и

и энергии с x2меняются линейно. Действующая на молекулы сила тогда равна

Энергия в электрическом поле у многих молекул пропорцио­нальна x2. Коэффициент — это поляризуемость молекулы. Поляризуемость аммиака необычно высока: у него А в зна­менателе очень мало. Стало быть, молекулы аммиака очень чувствительны к электрическому полю.

§ 3. Переходы в поле, зависящем от времени

В аммиачном мазере пучок молекул в состоянии |7> и с энергией ЕIпропускается через резонансную полость, как по­казано на фиг. 7.4.

Фиг. 7.4. Схематическое изображение аммиачного мазера.

Другой пучок отводится прочь. Внутри полости существует меняющееся во времени электрическое поле, так что нашей очередной задачей явится изучение поведе­ния молекулы в электрическом поле, которое меняется во вре­мени. Это совершенно новый род задач — задача с гамильто­нианом, меняющимся во времени. Раз Htjзависит от x, то и Hijменяется во времени, и нам надлежит определить поведе­ние системы в этих обстоятельствах.

Для начала выпишем уравнения, которые нужно решить:

Для определенности положим, что электрическое поле меня­ется синусоидально; тогда можно написать

На самом деле частота w берется всегда очень близкой к резо­нансной частоте молекулярного перехода w0=2A/h, но пока мы для общности будем считать w произвольной. Лучший спо­соб решить наши уравнения — это, как и прежде, составить из C1и С2 линейные комбинации. Сложим поэтому оба урав­нения, разделим на у 2 и вспомним определения СIи СIIиз (7.13), Получим

Вы видите, что это похоже на (7.9), но появился добавочный член от электрического поля. Равным образом, вычитая урав­нения (7.36), получаем

Вопрос теперь в том, как решить эти уравнения. Это труд­нее, чем прежде, потому что x зависит от t; и действительно, при общем x (t)решение не представимо в элементарных функ­циях. Однако, пока электрическое поле мало, можно добиться хорошего приближения. Сперва напишем

Если бы электрического поля не было, то, беря в качестве gI и gII две комплексные постоянные, мы бы получили пра­вильное решение. Ведь поскольку вероятность быть в состоя­нии |/ > есть квадрат модуля CI, а вероятность быть в состоя­нии |II> есть квадрат модуля СII, то вероятность быть в со­стоянии |I>или в состоянии |II> равна просто |gI|2 или |gII|2. Например, если бы система начинала развиваться из состояния |II> так, что gI было бы нулем, a |gII|2— единицей, то эти условия сохранились бы навсегда. Молекула из состояния |II> никогда бы не перешла в состояние |I>.

Польза записи решений в форме (7.40) состоит в том, что оно сохраняет свой вид и тогда, когда есть электрическое поле, если только mx меньше А, только gI и gII при этом станут мед­ленно меняющимися функциями времени. «Медленно меняю­щиеся» означает медленно в сравнении с экспоненциальными функциями. В этом весь фокус. Для получения приближен­ного решения используется тот факт, что gI и gII меняются медленно.

Подставим теперь СIиз (7.40) в дифференциальное уравне­ние (7,39), но вспомним, что gI тоже зависит от t. Имеем

Дифференциальное уравнение обращается в

Равным образом уравнение для dCII/dt обращается в

Обратите теперь внимание, что в обеих частях каждого урав­нения имеются одинаковые члены. Сократим их и умножим первое уравнение на

а второе на

. Вспоминая, что (EI- eii)=2А=hw0, мы в конце концов получаем

Получилась довольно простая пара уравнений — и пока еще точная. Производная от одной переменной есть функция от времени, умноженная на вторую переменную; про­изводная от второй — такая же функция от времени, умножен­ная на первую. Хотя эти простые уравнения в общем не реша­ются, но в некоторых частных случаях мы решим их.

Нас, по крайней мере сейчас, интересует только случай ко­леблющегося электрического поля. Взяв x(t) в форме (7.37), мы увидим, что уравнения для gI и gIIобратятся в

(it

И вот если x0достаточно мало, то скорости изменения gI и gIIтоже будут малы. Обе у не будут сильно меняться с t, особен­но в сравнении с быстрыми вариациями, вызываемыми экспо­ненциальными членами. У этих экспоненциальных членов есть вещественные и мнимые части, которые колеблются с частотой w+w0 или w-w0. Члены с частотой w+w0 колеблются вокруг среднего значения (нуля) очень быстро и поэтому не дадут сильного вклада в скорость изменения g. Значит, можно сде­лать весьма разумное приближение, заменив эти члены их средним значением, т. е. нулем. Их просто убирают и в каче­стве приближения берут

Но даже и оставшиеся члены с показателями, пропорциональ­ными (w-w0), меняются быстро, если только w не близко к w0. Только тогда правая сторона будет меняться достаточно мед­ленно для того, чтобы набежало большое число, пока интег­рируешь эти уравнения по t. Иными словами, при слабом электрическом поле изо всех частот представляют важность лишь те, которые близки к w0.

При тех приближениях, которые были сделаны для того, чтобы получить (7.45), эти уравнения можно решить и точно; но работа эта все же трудоемкая, и мы отложим ее на другое время, когда обратимся к другой задаче того же типа. Пока же мы их просто решим приближенно, или, лучше сказать, найдем точное решение для случая идеального резонанса w=w0 и приближенное — для частот близ резонанса.

§ 4. Нереходы при резонансе

Первым рассмотрим случай идеального резонанса. Если положить w=w0, то экспоненты в обоих уравнениях (7.45) станут равными единице, и мы просто получим

Если из этих уравнений исключить сперва gI, а потом gII, то мы увидим, что каждое из них удовлетворяет дифференциаль­ному уравнению простого гармонического движения

Общее решение этих уравнений может быть составлено из сину­сов и косинусов. Легко проверить, что решениями являются следующие выражения:

где а и b — константы, которые надо еще определить так, чтобы они укладывались в ту или иную физическую ситуацию.

К примеру, предположим, что при t=0 наша молекулярная система была в верхнем энергетическом состоянии |I>, а это требует [из уравнения (7.40)], чтобы gI=1 и gII=0 при t=0. Для такого случая должно быть а=1 и b=0. Вероятность того, что молекула окажется в том же состоянии |I> в какой-то позднейший момент t, равна квадрату модуля gI, или

Точно так же и вероятность того, что молекула окажется в состоянии |II>, дается квадратом модуля gII:



Поделиться книгой:

На главную
Назад