Поскольку это решение отвечает состоянию с энергией E=hw,
то можно прямо написать
где Е пока неизвестна и должна быть определена так, чтобы дифференциальные уравнения (7.16) и (7.17) выполнялись. При подстановке С1и С2 из (7.18) и (7.19) в дифференциальные уравнения (7.16) и (7.17) производные дают просто -iE/h, умноженное на С1или C2, так что слева остается попросту ЕС1или ЕС2. Сокращая общие экспоненциальные множители, получаем
или после перестановки членов
У такой системы однородных алгебраических уравнений ненулевые решения для а1 и а2 будут лишь тогда, когда определитель, составленный из коэффициентов при а1и а2, равен нулю, т. е. если
Но когда уравнений два и неизвестных тоже два, то можно обойтись и без столь возвышенных представлений. Каждое из уравнений (7.20) и (7.21) дает отношение двух коэффициентов a1 и а2, и эти два отношения должны быть равны. Из (7.20) мы имеем
а из (7.21)
Приравнивая эти отношения, получаем, что Е должно удовлетворять равенству
(E-H11)(E-H22)-H12H21=0.
То же получилось бы и из (7.22). В любом случае для Е получается квадратное уравнение с двумя решениями:
Энергия E может иметь два значения. Заметьте, что оба они вещественны, потому что Н11и H22 вещественны, а Н12Н21, равное Н12H12=|H12|2, тоже вещественно, да к тому же положительно.
Пользуясь тем же соглашением, что и раньше, обозначим большую энергию EI, а меньшую ЕII. Имеем
Подставив каждую из этих энергий по отдельности в (7.18) и (7.19), получим амплитуды для двух стационарных состояний (состояний определенной энергии). Если нет каких-либо внешних возмущений, то система, первоначально бывшая в одном из этих состояний, останется в нем навсегда, у нее только фаза будет меняться.
Наши результаты можно проверить на двух частных случаях. Если H12=H21=0, то получается EI=H11 и EII=H22. А это бесспорно правильно, потому что тогда уравнения (7.16) и (7.17) не связаны и каждое представляет состояние с энергией H11 и H22. Далее, положив H11=H22=E0 и H21=H12=-А, придем к найденному выше решению:
еI=е0+а и еII=е0-а.
В общем случае два решения ЕIи ЕIIотносятся к двум состояниям; мы их опять можем назвать состояниями
У этих состояний С1и С2будут даваться уравнениями (7.18) и (7.19), где а1и а2 еще подлежат определению. Их отношение дается либо формулой (7.23), либо (7.24). Они должны также удовлетворять еще одному условию. Если известно, что система находится в одном из стационарных состояний, то сумма вероятностей того, что она окажется в |1>или |2>, должна равняться единице. Следовательно,
или, что то же самое,
Эти условия не определяют а1и а2 однозначно: остается еще произвол в фазе, т. е. в множителе типа еid. Хотя для а можно выписать общие решения, но обычно удобнее вычислять их в каждом отдельном случае.
Вернемся теперь к нашему частному примеру молекулы аммиака в электрическом поле. Пользуясь значениями Н11, H22 и Н12из (7.14) и (7.15), мы получим для энергий двух стационарных состояний выражения
Эти две энергии как функции напряженности x электрического поля изображены на фиг. 7.2.
Фиг. 7,2. Уровни энергии молекулы аммиака в электрическом поле.
Кривые построены по формулам (7.30):
Когда электрическое поле нуль, то энергии, естественно, обращаются в Е0±А. При наложении электрического поля расщепление уровней растет. Сперва при малых x оно растет медленно, но затем может стать пропорциональным $. (Эта линия — гипербола.) В сверхсильных полях энергии попросту равны
Тот факт, что у азота существует амплитуда переброса вверх — вниз, малосуществен, когда энергии в этих двух положениях сильно отличаются. Это интересный момент, к которому мы позже еще вернемся.
Теперь мы наконец готовы понять действие аммиачного мазера. Идея в следующем. Во-первых, мы находим способ отделения молекул в состоянии |I> от молекул в состоянии |II>. Затем молекулы в высшем энергетическом состоянии |I> пропускаются через полость, у которой резонансная частота равна 24000 Мгц. Молекулы могут оставить свою энергию полости (способ будет изложен позже) и покинуть полость в состоянии |II>. Каждая молекула, совершившая такой переход, передаст полости энергию E=EI-ЕII. Энергия, отобранная у молекул, проявится в виде электрической энергии полости.
Как же разделить два молекулярных состояния? Один способ такой. Аммиачный газ выпускается тонкой струйкой и проходит через пару щелей, создающих узкий пучок (фиг. 7.3).
Фиг. 7.3. Пучок молекул аммиака может быть разделен электрическим полем, в котором x2 обладает градиентом, перпендикулярным пучку.
Затем пучок пропускается через область, в которой имеется сильное поперечное электрическое поле. Создающие поле электроды изогнуты так, чтобы электрическое поле поперек пучка резко менялось. Тогда квадрат x·x электрического поля будет иметь большой градиент, перпендикулярный пучку. А у молекулы в состоянии |/> энергия с x2растет, значит, эта часть пучка отклонится в область меньших x2. Молекула же в состоянии |II>, наоборот, отклонится к области, где x2побольше, потому что ее энергия падает, когда x2растет.
Кстати, при тех электрических полях, которые удается генерировать в лаборатории, энергия mx всегда много меньше А. В этом случае корень в уравнении (7.30) приближенно равен
Во всех практических случаях энергетические уровни, стало быть, равны
и
и энергии с x2меняются линейно. Действующая на молекулы сила тогда равна
Энергия в электрическом поле у многих молекул пропорциональна x2. Коэффициент — это поляризуемость молекулы. Поляризуемость аммиака необычно высока: у него А в знаменателе очень мало. Стало быть, молекулы аммиака очень чувствительны к электрическому полю.
§ 3. Переходы в поле, зависящем от времени
В аммиачном мазере пучок молекул в состоянии |7> и с энергией ЕIпропускается через резонансную полость, как показано на фиг. 7.4.
Фиг. 7.4. Схематическое изображение аммиачного мазера.
Другой пучок отводится прочь. Внутри полости существует меняющееся во времени электрическое поле, так что нашей очередной задачей явится изучение поведения молекулы в электрическом поле, которое меняется во времени. Это совершенно новый род задач — задача с гамильтонианом, меняющимся во времени. Раз Htjзависит от x, то и Hijменяется во времени, и нам надлежит определить поведение системы в этих обстоятельствах.
Для начала выпишем уравнения, которые нужно решить:
Для определенности положим, что электрическое поле меняется синусоидально; тогда можно написать
На самом деле частота w берется всегда очень близкой к резонансной частоте молекулярного перехода w0=2A/h, но пока мы для общности будем считать w произвольной. Лучший способ решить наши уравнения — это, как и прежде, составить из C1и С2 линейные комбинации. Сложим поэтому оба уравнения, разделим на у 2 и вспомним определения СIи СIIиз (7.13), Получим
Вы видите, что это похоже на (7.9), но появился добавочный член от электрического поля. Равным образом, вычитая уравнения (7.36), получаем
Вопрос теперь в том, как решить эти уравнения. Это труднее, чем прежде, потому что x зависит от t; и действительно, при общем x (t)решение не представимо в элементарных функциях. Однако, пока электрическое поле мало, можно добиться хорошего приближения. Сперва напишем
Если бы электрического поля не было, то, беря в качестве gI и gII две комплексные постоянные, мы бы получили правильное решение. Ведь поскольку вероятность быть в состоянии |/ > есть квадрат модуля CI, а вероятность быть в состоянии |II> есть квадрат модуля СII, то вероятность быть в состоянии |I>или в состоянии |II> равна просто |gI|2 или |gII|2. Например, если бы система начинала развиваться из состояния |II> так, что gI было бы нулем, a |gII|2— единицей, то эти условия сохранились бы навсегда. Молекула из состояния |II> никогда бы не перешла в состояние |I>.
Польза записи решений в форме (7.40) состоит в том, что оно сохраняет свой вид и тогда, когда есть электрическое поле, если только mx меньше А, только gI и gII при этом станут медленно меняющимися функциями времени. «Медленно меняющиеся» означает медленно в сравнении с экспоненциальными функциями. В этом весь фокус. Для получения приближенного решения используется тот факт, что gI и gII меняются медленно.
Подставим теперь СIиз (7.40) в дифференциальное уравнение (7,39), но вспомним, что gI тоже зависит от t. Имеем
Дифференциальное уравнение обращается в
Равным образом уравнение для dCII/dt обращается в
Обратите теперь внимание, что в обеих частях каждого уравнения имеются одинаковые члены. Сократим их и умножим первое уравнение на
а второе на
. Вспоминая, что (EI- eii)=2А=hw0, мы в конце концов получаем
Получилась довольно простая пара уравнений — и пока еще точная. Производная от одной переменной есть функция от времени, умноженная на вторую переменную; производная от второй — такая же функция от времени, умноженная на первую. Хотя эти простые уравнения в общем не решаются, но в некоторых частных случаях мы решим их.
Нас, по крайней мере сейчас, интересует только случай колеблющегося электрического поля. Взяв x(t) в форме (7.37), мы увидим, что уравнения для gI и gIIобратятся в
(it
И вот если x0достаточно мало, то скорости изменения gI и gIIтоже будут малы. Обе у не будут сильно меняться с t, особенно в сравнении с быстрыми вариациями, вызываемыми экспоненциальными членами. У этих экспоненциальных членов есть вещественные и мнимые части, которые колеблются с частотой w+w0 или w-w0. Члены с частотой w+w0 колеблются вокруг среднего значения (нуля) очень быстро и поэтому не дадут сильного вклада в скорость изменения g. Значит, можно сделать весьма разумное приближение, заменив эти члены их средним значением, т. е. нулем. Их просто убирают и в качестве приближения берут
Но даже и оставшиеся члены с показателями, пропорциональными (w-w0), меняются быстро, если только w не близко к w0. Только тогда правая сторона будет меняться достаточно медленно для того, чтобы набежало большое число, пока интегрируешь эти уравнения по t. Иными словами, при слабом электрическом поле изо всех частот представляют важность лишь те, которые близки к w0.
При тех приближениях, которые были сделаны для того, чтобы получить (7.45), эти уравнения можно решить и точно; но работа эта все же трудоемкая, и мы отложим ее на другое время, когда обратимся к другой задаче того же типа. Пока же мы их просто решим приближенно, или, лучше сказать, найдем точное решение для случая идеального резонанса w=w0 и приближенное — для частот близ резонанса.
§ 4. Нереходы при резонансе
Первым рассмотрим случай идеального резонанса. Если положить w=w0, то экспоненты в обоих уравнениях (7.45) станут равными единице, и мы просто получим
Если из этих уравнений исключить сперва gI, а потом gII, то мы увидим, что каждое из них удовлетворяет дифференциальному уравнению простого гармонического движения
Общее решение этих уравнений может быть составлено из синусов и косинусов. Легко проверить, что решениями являются следующие выражения:
где а и b — константы, которые надо еще определить так, чтобы они укладывались в ту или иную физическую ситуацию.
К примеру, предположим, что при t=0 наша молекулярная система была в верхнем энергетическом состоянии |I>, а это требует [из уравнения (7.40)], чтобы gI=1 и gII=0 при t=0. Для такого случая должно быть а=1 и b=0. Вероятность того, что молекула окажется в том же состоянии |I> в какой-то позднейший момент t, равна квадрату модуля gI, или
Точно так же и вероятность того, что молекула окажется в состоянии |II>, дается квадратом модуля gII: