5b. Электричество и магнетизм
ДИЭЛЕКТРИКИ
§1. Диэлектрическая проницаемость
§2. Вектор поляризации Р
§З. Поляризационные заряды
§4. Уравнения электростатики для диэлектриков
§5. Поля и силы в присутствии диэлектриков
§ 1. Диэлектрическая проницаемость
Сейчас мы разберем еще одно характерное свойство материи, возникающее под влиянием электрического поля. В одной из предыдущих глав мы рассмотрели поведение
Наша задача теперь состоит в том, чтобы объяснить, почему вообще возникает электрический эффект, раз изоляторы фактически являются изоляторами и не проводят электричества. Начнем с экспериментального факта, что емкость увеличивается, и попытаемся разобраться, что же там может происходить. Рассмотрим плоский конденсатор, на проводящих пластинах которого имеются заряды, скажем, на верхней пластине отрицательные, а на нижней — положительные.
Пусть расстояние между пластинами равно
(10.1)
а заряд и потенциал конденсатора связаны соотношением
(10.2)
Далее, экспериментальный факт состоит в том, что если мы положим между пластинами кусок изолирующего материала, например стекла или плексигласа, то емкость возрастет. Это, разумеется, означает, что при том же заряде потенциал стал меньше. Но разность потенциалов есть интеграл от электрического поля, взятый поперек конденсатора; отсюда мы должны заключить, что электрическое поле внутри конденсатора стало меньше, хотя заряды пластин и не изменились.
Но как может это быть? Нам известна теорема Гаусса, которая утверждает, что полный поток электрического поля прямо связан с находящимся внутри объема электрическим зарядом. Рассмотрим входящую в теорему Гаусса поверхность
Все было бы понятно, если бы речь шла о проводнике. Пусть у нас был бы, например, конденсатор, расстояние между пластинами которого равно
Напряжение равно
Окончательное выражение для емкости похоже на (10.1), где
(10.3)
Емкость увеличилась в некоторое число раз, зависящее от
Отсюда мы получаем модель того, что происходит в диэлектриках: внутри материала имеется множество мелких проводящих слоев. Беда такой модели состоит в том, что в ней должна иметься выделенная ось — перпендикуляр ко всем слоям, а у большинства диэлектриков такой оси нет.
Эту трудность, однако, можно устранить, предположив, что все изолирующие материалы содержат маленькие проводящие шарики, отделенные один от другой изолятором (фиг. 10.3). Появление диэлектрической проницаемости тогда объясняется действием зарядов, индуцируемых в каждом шарике. В этом и состоит одна из самых первых физических моделей диэлектриков, предложенная для объяснения явления, которое наблюдал Фарадей. Точнее, предполагалось, что каждый атом материала есть идеальный проводник, изолированный от остальных атомов. Диэлектрическая проницаемость
§ 2. Вектор поляризации Р
Продолжив наш анализ, мы обнаружим, что идея о проводящих и непроводящих участках не так уж существенна. Любой из маленьких шариков действует как диполь, момент которого создается внешним полем. Для понимания диэлектриков существенной является идея о том, что в материале возбуждается множество маленьких диполей. Почему они возбуждаются — то ли потому, что в материале есть проводящие шарики, то ли по каким-либо другим причинам — абсолютно несущественно.
Почему поле должно индуцировать дипольный момент у атома, хотя атом не является проводящим шариком? Мы обсудим этот вопрос гораздо подробнее в следующей главе, которая будет посвящена внутреннему механизму диэлектрических материалов. А сейчас мы дадим лишь один пример, только чтобы проиллюстрировать возможный механизм. Атом имеет ядро с положительным зарядом, окруженное отрицательными электронами. В электрическом поле ядро притягивается в одну сторону, а электроны в другую. Орбиты или плотности вероятности электронов (или какая-либо другая картина, используемая в квантовой механике) несколько искажаются (фиг. 10.4); центр тяжести отрицательных зарядов сместится и больше не будет совпадать с положительным зарядом ядра. Мы уже обсуждали такое распределение заряда. Если взглянуть на него издалека, то подобная нейтральная конфигурация в первом приближении эквивалентна маленькому диполю.
Если поле не чересчур велико, естественно считать величину индуцированного дипольного момента пропорциональной полю. Иначе говоря, небольшое поле сместит заряды чуть-чуть, а более сильное поле раздвинет их дальше — пропорционально величине поля, пока смещение не станет чересчур большим.
До конца этой главы мы будем считать, что дипольный момент в точности пропорционален полю.
Предположим теперь, что в каждом атоме заряды
(10.4)
Вообще говоря, Р будет меняться в диэлектрике от точки к точке. Но в каждой точке Р пропорционален электрическому полю Е. Константа пропорциональности, которая определяется тем, насколько легко можно сместить электрон, зависит от сорта атомов в материале.
О том, что действительно определяет поведение этой константы и степень ее постоянства для больших полей, а также о том, что происходит внутри разных материалов, мы поговорим позже. А пока мы просто предположим, что существует какой-то механизм, благодаря которому индуцируется дипольный момент, пропорциональный электрическому полю.
§ 3. Поляризационные заряды
Посмотрим теперь, что дает эта модель для конденсатора с диэлектриком. Рассмотрим сначала лист материала, в котором на единицу объема приходится дипольный момент Р. Получится ли в результате в среднем какая-нибудь плотность зарядов? Нет, если Р постоянен.
Если положительные и отрицательные заряды, смещенные относительно друг друга, имеют одну и ту же среднюю плотность, то сам факт их смещения не приводит к появлению суммарного заряда внутри объема. С другой стороны, если бы Р в одном месте был больше, а в другом меньше, то это означало бы, что в некоторые области попало больше зарядов, чем оттуда вышло; тогда мы бы могли получить объемную плотность заряда. В случае плоского конденсатора предположим, что Р — величина постоянная, поэтому достаточно будет только посмотреть, что происходит на поверхностях. На одной поверхности отрицательные заряды (электроны) эффективно выдвинулись на расстояние d, а на другой поверхности они сдвинулись внутрь, оставив положительные заряды снаружи на эффективном расстоянии d. Возникает, как показано на фиг. 10.5, поверхностная плотность зарядов, которую мы будем называть
Этот заряд можно подсчитать следующим образом. Если площадь пластинки равна
Но она равна как раз длине
(10.5)
Поверхностная плотность зарядов равна поляризации внутри материала. Поверхностный заряд, конечно, на одной поверхности положителен, а на другой отрицателен.
Предположим теперь, что наша пластинка служит диэлектриком в плоском конденсаторе.
Теперь мы можем применить теорему Гаусса к поверхности
(10.6)
Заметьте, что поле
(10.7)
Из этого уравнения мы не можем определить электрическое поле, пока не узнаем, чему равно Р. Здесь мы, однако, предполагаем, что Р зависит от Е и, более того, пропорционально Е. Эта пропорциональность обычно записывается в виде
(10.8)
Постоянная c (греческое «хи») называется
Тогда выражение (10.7) приобретает вид
(10.9)
откуда мы получаем множитель 1/(1+c), показывающий, во сколько раз уменьшилось поле.
Напряжение между пластинами есть интеграл от электрического поля. Раз поле однородно, интеграл сводится просто к произведению
Полный заряд конденсатора есть sсвоб
(10.10)
Мы объяснили явление, наблюдавшееся на опыте. Если заполнить плоский конденсатор диэлектриком, емкость возрастает на множитель
(10.11)
который характеризует свойства данного материала. Наше объяснение останется, конечно, неполным, пока мы не объясним (а это мы сделаем позже), как возникает атомная поляризация.
Обратимся теперь к чуть более сложному случаю — когда поляризация Р не всюду одинакова. Мы уже говорили, что если поляризация непостоянна, то вообще может возникнуть объемная плотность заряда, потому что с одной стороны в маленький элемент объема может войти больше зарядов, чем выйдет с другой. Как определить, сколько зарядов теряется или приобретается в маленьком объеме?
Подсчитаем сначала, сколько зарядов проходит через воображаемую плоскость, когда материал поляризуется. Количество заряда, проходящее через поверхность, есть просто