Джереми Тейлор
Здоровье по Дарвину: Почему мы болеем и как это связано с эволюцией
Переводчик
Руководитель проекта
Корректор
Компьютерная верстка
Дизайн обложки
Использованы иллюстрации из фотобанка
© 2015 by Jeremy Taylor
This edition published by arrangement with The Science Factory, Louisa Pritchard Associates and The Van Lear Agency LLC
© Издание на русском языке, перевод, оформление. ООО «Альпина Паблишер», 2016
Линусу и Барбаре
Введение
Почему люди не живут вечно? Почему мы не можем навсегда избавиться от болезней? Почему человечеству не удается победить рак? Такие на первый взгляд наивные вопросы постоянно задают ученым и популяризаторам науки в телевизионных шоу и на научно-популярных сайтах, но оттого эти вопросы не становятся менее интересными. Средняя продолжительность жизни быстро растет по всему миру и в некоторых странах уже превысила 80 лет. Недавнее исследование показало, что разница в уровне смертности между современными жителями развитых стран и первобытными охотниками-собирателями больше, чем между охотниками-собирателями и дикими шимпанзе. Значительная часть этого снижения смертности была достигнута всего за четыре последних поколения, притом что на земле в общей сложности жило примерно восемь тысяч поколений людей. Достаточно посмотреть на невероятный прогресс в таких областях, как фармакология, общественное здравоохранение, хирургия, иммунология и трансплантология, чтобы оценить масштабы успеха современной медицины.
Но такая оптимистичная статистика скрывает один вызывающий недоумение и беспокойство факт – а именно то, что сегодня мы наблюдаем не снижение, а, наоборот, рост заболеваемости. Распространение болезней, общая картина заболеваемости, постоянно меняется. Поэтому к перечисленным выше обманчиво наивным вопросам мы можем добавить следующие: «Почему сегодня так много людей страдает аутоиммунными заболеваниями, такими как ревматоидный артрит, рассеянный склероз, диабет 1-го типа и воспалительные заболевания кишечника? Почему многих преследуют аллергические заболевания, наподобие экземы и астмы? Почему в последнее время мы наблюдаем буквально эпидемию сердечно-сосудистых заболеваний? Почему нашему зрению все чаще угрожают пигментный ретинит и влажная макулярная дегенерация? Почему нас допекают боли в спине, межпозвоночные грыжи, смещение межпозвоночных дисков и гипермобильность тазобедренных суставов? Если аппендикс – бесполезный рудимент, почему он не исчез в процессе эволюции, что навсегда избавило бы нас от опасности развития аппендицита? Почему женщины так часто страдают бесплодием и преэклампсией? Почему так широко распространены психические заболевания? И почему многих из нас в старческом возрасте поджидают сумерки сознания – болезнь Альцгеймера?»
Традиционно в медицине человеческий организм было принято рассматривать как хорошо сконструированную машину, которая время от времени может ломаться. Эта машина нуждается в регулярном обслуживании, а также в периодическом ремонте, когда происходит какая-то поломка или сбой в работе. Студентов-медиков учат тому, что врач, по сути, – это высококвалифицированный механик, который умеет отремонтировать машину и обеспечить ее нормальное функционирование на протяжении как можно более длительного времени. Но тут есть одна загвоздка: человеческое тело – не машина. Это скопление живой материи, которое представляет собой продукт эволюции и естественного отбора, как и все живое на нашей планете, и между человеческим телом и любым творением инженерной и архитектурной мысли существуют фундаментальные различия.
Например, когда архитектору поручают разработать новое офисное здание, он первым делом задает вопрос: «Каким будет техническое задание?» Другими словами, какие основные требования предъявляются к этой конструкции? В числе параметров могут быть: высота здания, размещение лифтов (к примеру, с наружной стороны), обеспечение энергопотребления за счет солнечных панелей, соответствие окружающему архитектурному ансамблю, срок эксплуатации (не менее двухсот лет, скажем) и т. д. и т. п. Архитектор разрабатывает проект, который строго соответствует указанным требованиям. Если возникают какие-то проблемы, он возвращается к чертежной доске и переделывает проблемный компонент.
В эволюции мы сталкиваемся с «техническим заданием» совсем иной природы. При создании человеческого организма действуют критерии, в корне отличные от тех, которые можно встретить в мире архитектуры и технологии. Эволюцию вовсе не интересует наше здоровье, счастье или долголетие. Если говорить дарвиновским языком, ее интересует только максимизация репродуктивности индивидов. Это означает, что она продвигает только такие изменения в живых организмах, которые позволяют им адаптироваться к изменениям окружающей среды и размножаться. Если некое генетическое изменение у определенных представителей вида обеспечивает их репродуктивное преимущество, ответственные за него гены распространяются внутри популяции. Другими словами, эволюция озабочена бессмертием генов, но не бессмертием тел. Если она и позволяет индивидам выживать за пределами репродуктивного возраста, то оставляет им только такие качества и способности, которые повышают шансы на выживание генов, переданных ими детям и внукам. Кроме того, в отличие от любого хорошего архитектора эволюция слепа и неразумна. Она не разрабатывает никаких предварительных проектов и планов, она не способна заглядывать в будущее, видеть истинную причину проблемы и находить идеальное решение для ее устранения. Иначе говоря, когда какое-либо изменение окружающих условий требует соответствующего изменения конструкции или функции организма, эволюция не пытается решить проблему успешного выживания представителей данного вида путем фундаментального усовершенствования «проекта», а ищет самое быстрое и легкое решение.
Таким образом, уподобление человеческого организма машине глубоко ошибочно и не позволяет понять, почему мы так подвержены болезням и дегенерации. К счастью, в последнее время четверо пионеров эволюционной (или, как ее еще называют, дарвиновской) медицины – Рэндольф Несс, Стивен Стирнс, Диддахалли Говиндараджу и Питер Эллисон начали поход против этой инженерной аналогии, глубоко укоренившейся в нашей медицине. Во-первых, эти ученые утверждают, что, поскольку цель эволюции – репродуктивность, а не здоровье, наш организм изобилует неоптимальными компонентами и процессами, являющимися результатом неизбежных компромиссов и ограничений. Во-вторых, так как биологическая эволюция происходит гораздо медленнее, чем изменение условий жизни, многие современные болезни возникли из-за несоответствия наших организмов современной среде. А благодаря тому, что патогенные организмы способны эволюционировать гораздо быстрее, чем мы, в своей способности инфицировать нас они всегда идут на шаг впереди нашей иммунной системы. В-третьих, представление о том, что многие человеческие заболевания возникают в результате наследования нескольких дефектных генов, в большинстве случаев неверно. Как правило, болезнь – результат взаимодействия множества вариантов генов друг с другом и с факторами окружающей среды. Таким образом, заболевания – фактически неизбежный спутник нашей жизни и их весьма трудно предотвратить.
Эволюционная медицина позволяет взглянуть на человеческий организм под совершенно другим углом и зачастую дает нам довольно-таки неожиданное понимание болезней, которое идет вразрез с устоявшимися представлениями. Простой и наглядный пример – роль лихорадки при инфекциях. Когда мы заболеваем гриппом, у нас повышается температура, что мешает нам вести привычный образ жизни. Бóльшая часть продающихся в аптеке безрецептурных препаратов направлена на то, чтобы облегчить симптомы лихорадки. Но, поскольку патогены предпочитают температуру ниже, чем температура человеческого тела, лихорадка в действительности является сложным, приобретенным в результате эволюции механизмом, призванным сделать среду внутри человеческого тела максимально неблагоприятной для болезнетворных микроорганизмов.
Питер Глукмен из Оклендского университета приводит более сложный пример. По его словам, эволюционная теория позволяет пролить свет на то, почему в течение последних десятилетий стремительно растет заболеваемость раком молочной железы и яичников и почему рак молочной железы сегодня стал одной из пяти ведущих причин смерти среди женщин в развитых странах мира. Установлено, говорит Глукмен, что такие факторы, как позднее наступление первой менструации, быстрое рождение первого ребенка, за которым следует относительно большое количество беременностей с длительными периодами лактации, и довольно ранняя менопауза, защищают женщин от рака молочной железы. Все это было характерно для женщин в эпоху палеолита. У современных женщин мы видим совершенно иную картину: раннее начало менструаций, длительный промежуток между первой менструацией и первой беременностью (что означает большое количество менструальных циклов); небольшое число детей и короткие периоды лактации, если таковые вообще имеются. На протяжении репродуктивного периода у современной женщины происходит около 500 овуляций, что является рекордным показателем по сравнению даже с недавним прошлым. Проблема в том, что каждая овуляция вызывает механическое повреждение клеток наружного слоя яичников, что в сочетании со значительными локальными колебаниями уровней половых гормонов повышает риск развития рака яичников. Именно поэтому, полагает Глукмен, использование оральных контрацептивов, сокращающее количество менструальных циклов у женщин, ведет к снижению этого риска. Точно так же незрелость тканей молочной железы у нерожавших женщин (полное созревание молочной железы достигается во время первой беременности) на фоне постоянной регенерации эпителиальных клеток груди, стимулируемой циклическими колебаниями секреции эстрогена и прогестерона, при отсутствии длительных периодов аменореи в результате нескольких беременностей, ведет к повышению риска развития рака молочной железы. А отсутствие или сокращение периода грудного вскармливания лишает женщин благотворного эффекта вымывания предраковых клеток вместе с грудным молоком.
Таким образом, современные женщины живут вразрез со своей репродуктивной биологией в результате значительного изменения репродуктивного поведения, связанного с использованием контрацепции и заместительной гормональной терапии, уменьшением количества детей или их отсутствием, сокращением периода лактации, ранним началом менструации и более поздним наступлением менопаузы. Все эти факторы способствуют увеличению длительности репродуктивного периода и, следовательно, более многочисленными менструальным циклам с более резкими колебаниями гормональных состояний – со всеми вытекающими отсюда последствиями. Но как мы можем объяснить существование мутаций генов, обуславливающих предрасположенность к раку, например таких, как BRCA1 и BRCA2? Некоторые мутации этих генов теряют свою способность подавлять развитие опухолей в эпителиальной ткани молочной железы. Хотя большинство женщин заболевают раком молочной железы в пожилом возрасте, отмечает Глукман, это заболевание относительно часто встречается и у более молодых. Логично было бы предположить, что специфические варианты этих генов, значительно повышающие риск развития рака молочной железы, должны были бы отсеиваться в ходе эволюции и встречаться в современных популяциях довольно редко. Но почему-то ничего подобного не произошло. Согласно Глукмену, это говорит о том, что данные мутации генов обеспечивают определенные преимущества в молодом возрасте, которые компенсируют их пагубное воздействие в более поздний период. Этот феномен называется антагонистической плейотропией и довольно часто обнаруживается в эволюционных моделях человеческих заболеваний. Недавнее исследование показало, что для носителей мутаций в генах BRCA1 и BRCA2 характерны и более высокая плодовитость, и более высокая пострепродуктивная смертность. Создается впечатление, будто эволюция заплатила за повышенную плодовитость в репродуктивный период повышенным риском смерти от рака молочной железы после наступления менопаузы.
Учитывая привлекательность и пользу объяснительной силы такого эволюционного мышления, вы можете подумать, что оно должно было бы занимать куда более значимое место в медицинской теории и практике. Почему же оно не укоренилось в медицине или же в какой-то момент впало в немилость? Глукмен объясняет это так: первые эволюционно настроенные мыслители, появившиеся в начале XIX века, происходили, как правило, из медицинской среды, однако в те времена эволюционное учение вступало в противоречие с религиозными догмами, поэтому оно сумело дать ростки лишь в наиболее либеральных частях Европы. К концу века эволюционная теория столкнулась с конкуренцией за интеллектуальное пространство со стороны новых наук, таких как физиология, так что даже самые ярые дарвинисты, наподобие «бульдога Дарвина» Томаса Гексли, считали, что эволюционное мышление совершенно нерелевантно с точки зрения тех проблем, с которыми приходится сталкиваться докторам. С тех пор медицина достигла впечатляющего прогресса в физиологии, гистологии и многих других
Отчасти проблема заключается в том, что многие медицинские специалисты продолжают враждебно относиться к самой идее эволюции. Если вы хотите найти креационистов в университетском кампусе, шутит философ Майкл Рьюз, прямиком направляйтесь на медицинский факультет! Или же врачи считают понимание человеческих болезней, почерпнутое из эволюционной теории, бесполезным для своей повседневной практики, когда им приходится иметь дело с тяжело больными или умирающими пациентами, нуждающимися в немедленном лечении или хирургическом вмешательстве. Врачи живут в реальном мире человеческих страданий, а не в абстрактном мире эволюционных механизмов.
Еще одна проблема состоит в том, что, как только речь заходит о человеческой биологии и поведении, значительная часть эволюционной теории и ее языка, как кажется, вступает в противоречие с глубоко укоренившимися в нас представлениями о моральных, этических и эмоциональных нормах, определяющих человеческую природу. Я помню очень неприятный разговор, состоявшийся у меня на вечеринке с одной симпатичной собеседницей. Я всего-навсего попытался объяснить ей результаты исследований, которые показывают, что в хорошие времена матери кормят сыновей более питательным грудным молоком, чем дочерей, а в плохие – наоборот. Идея состоит в том, что существует определенный эволюционный механизм, который ограничивает родительскую заботу о сыновьях при неблагополучных условиях жизни, когда они могут вырасти на дне социальной пирамиды и быть непривлекательными как партнеры, что снижает вероятность рождения внуков. Моя знакомая сердито фыркнула, пожелала мне «получше разобраться с фактами и собственной головой» и отправилась на поиски более приятного собеседника. Ей показалась отвратительной и сексистской сама мысль о том, что приличная женщина может сознательно лишать младенца питательного грудного молока. Она не смогла провести различие между сознательным решением навредить ребенку в духе ужасающей практики женского инфантицида в сельских районах Индии и бессознательным физиологическим механизмом, направленным на повышение шансов на выживание родительских генов через сыновей или дочерей. Этот механизм реагирует на окружающие условия и соответствующим образом регулирует питание ребенка при грудном вскармливании без каких-либо осознанных намерений со стороны матери.
Эволюционный язык часто бывает настолько беспристрастен, что звучит откровенно оскорбительно. Разве приятно людям узнать о том, что соотношение полов может бессознательно регулироваться самими родителями в зависимости от их условий жизни; что частые ночные пробуждения и требование груди младенцем может быть приобретенным в процессе эволюции механизмом, призванным предотвратить овуляцию и беременность у матери, чтобы снизить вероятность конкуренции со стороны других детей. Легко ли человеку примириться с тем, что радужные картины – счастливая пара, занимающаяся любовью; женщина, вынашивающая младенца; мать, кормящая ребенка грудью, – на самом деле являются эволюционным полем битвы с участием конкурирующих между собой самца, самки и плода.
Каковы бы ни были причины, потребовался целый век, чтобы вернуть эволюцию на арену науки. Вышедшая в 1994 году книга Рэндольфа Несса и Джорджа Уильямса «Почему мы болеем? Новая теория дарвиновской медицины» (Why We Get Sick: The New Science of Darwinian Medicine) открыла шлюзы и повлекла за собой поток значимых работ со стороны таких ученых, как Питер Глукмен, Венда Треватан, Стивен Стирнс, Пол Эвальд и многих других. (Если вы хотите более подробно узнать, кто есть кто в области эволюционной медицины, загляните на веб-сайт издания
Несс утверждает, что значение эволюционного учения для медицины состоит в том, что оно
Итак, в следующих главах я поставил перед собой несколько ключевых задач: во-первых, дать достаточно глубокий уровень понимания эволюционных факторов, лежащих в основе патогенеза ряда заболеваний; во-вторых, развеять некоторые мифы, например связанные с дискуссией о взаимосвязи между прямохождением и заболеваниями позвоночника, ног и суставов; в-третьих, рассказать о том, как понимание болезней с эволюционной точки зрения уже привело к появлению захватывающих новых идей касательно способов медицинского вмешательства для лечения слепоты, болезней сердца, аутоиммунных заболеваний, заболеваний репродуктивной системы, рака и болезни Альцгеймера. «Но каким образом заболевания сердца, рак или деменция могут быть результатом эволюционной адаптации?» – спросите вы. Разумеется, таковыми они не являются. Но я хочу показать, в чем состоит ценность эволюционного учения: оно дает нам в руки аналитический инструмент, позволяющий задавать фундаментальные вопросы, которые дают нам возможность составить гораздо более полное представление о болезни и найти новые, порой неожиданные ответы.
Например, когда мы смотрим на рентгеновский снимок коронарных артерий, трудно отделаться от мысли, что эти узкие сосуды, которые так подвержены сужению и закупорке, являются грубой «конструкторской» ошибкой эволюции. Мы забываем, что сердце – одна из самых мощных и плотных мышц в человеческом организме, которая нуждается в огромном количестве кислорода и питательных веществ. По иронии судьбы, чем плотнее делается сердечная мышца, тем менее проницаемой она становится для нормального кровоснабжения. Когда мы поймем, что коронарные артерии стали ответом эволюции на необходимость обеспечивать богатой кислородом кровью все более мощную и плотную сердечную мышцу у активных позвоночных животных наподобие нас с вами, мы сможем смириться с таким «инженерным решением». Аналогичным образом «техзадание» с требованием совместить прямохождение с рождением все более крупных детей заставило эволюцию пойти на компромисс в конструкции женского позвоночника и таза.
Мир наших предков был гораздо грязнее, чем наш с вами. Эволюция пошла хитрым путем: поскольку в доисторическую эпоху люди не умели уничтожать микроорганизмы, она помогла людям приспособиться и жить вместе с ними, а не вести постоянную борьбу. Она сумела избавить нас от тяжелых побочных издержек в виде самопричиненного вреда, наносимого организму постоянно бушующей иммунной системой, путем передачи ответственности за ее регулирование живущим внутри нас микробам, так что мы в конечном итоге стали к ним вполне толерантны. Эволюция не могла предвидеть мир, где личная и общественная гигиена, антибиотики и химические вещества убивают 99,9 процента всех бытовых микробов и настолько истощают микробную популяцию внутри нас, что наша иммунная система не достигает должного уровня зрелости или теряет способность должным образом регулироваться. Именно это и ничто иное привело к наблюдаемому сегодня резкому росту аллергических и аутоиммунных заболеваний – одной из новых эпидемий XXI века.
Пожалуй, нет более убедительного аргумента в пользу эволюционного подхода к медицине, чем нынешняя волна роста устойчивости к антибиотикам. Биологи уже давно предупреждали нас об этой опасности на основе того простого факта, что бактерии способны размножаться в пределах нескольких часов или даже минут (тогда как людям на это требуются десятилетия), поэтому могут эволюционировать с головокружительной скоростью. Но мы были глухи к их предостережениям и фактически пустили коту под хвост десятилетия упорного труда исследователей, необдуманно прописывая антибиотики людям при малейшем чихе и еще больше усугубляя ситуацию тем, что начали – и продолжаем – тоннами скармливать антибиотики домашнему скоту и другим животным. Сегодня мы стоим перед реальной опасностью оказаться совершенно безоружными перед полчищами высокопатогенных и резистентных к лекарствам микроорганизмов. Некоторые эксперты в области здравоохранения уже предрекают скорое возвращение к больничным палатам 1950-х годов с рядами широко расставленных кроватей, легионами вооруженных карболкой медсестер и распахнутыми окнами для проветривания помещения, в то время как правительства при помощи щедрых налоговых льгот пытаются соблазнить сопротивляющиеся фармацевтические компании возобновить поход против непобедимых микроорганизмов. А многие онкологи не желают усвоить тот урок, что раковые клетки во многом похожи на бактерии и, следовательно, также способны быстро эволюционировать, развивая устойчивость к химиотерапии. Хотя показатели выживаемости для многих форм рака постепенно улучшаются, частым следствием лечения становится развитие устойчивости опухоли к медикаментам, что угрожает пациентам летальным исходом.
Что касается репродукции, то очень трудно объяснить низкую плодовитость человека по сравнению с другими видами животных вкупе с высокой частотой самопроизвольных выкидышей и патологических состояний при беременности, таких как преэклампсия, без парадигмы эволюционной теории, принимающей во внимание конкурирующие интересы материнских и отцовских генов и эволюционное регулирование заботы матери о своем потомстве.
Существует, однако, один аспект в эволюционистском описании человеческого тела и его склонности к болезням, который вызывает у меня беспокойство. Я всегда стараюсь останавливаться на нем отдельно, поскольку считаю, что он уводит нас в сторону от дарвиновского подхода к эволюции человека (и эволюции в целом). Этот аспект связан с вековой битвой за сердца и умы между дарвинистами и сторонниками креационизма и теории разумного замысла. Как вы знаете, креационисты исходят из фундаментальной идеи, что Бог создал людей по своему образу и подобию. Дарвинисты опровергают это представление, утверждая, что человеческое тело изобилует неоптимальными компонентами и процессами, с которыми не мог бы смириться никакой божественный инженер. Многочисленные недостатки, говорят они, являются доказательством того, что человек есть творение рук эволюции, а не бога. Чтобы вкратце передать суть этого столетнего спора между эволюционистами и креационистами, позвольте рассказать мою версию одного бородатого анекдота:
Ежегодное собрание Американской медицинской ассоциации. Место проведения – город Чаттануга, штат Теннесси, расположенный в самом сердце Библейского пояса и известный своими религиозными умонастроениями. Группа врачей отдыхает в холле между заседаниями, наслаждаясь хорошими напитками. Постепенно разговор переходит к удивительной конструкции человеческого организма.
– Не может быть лучшего свидетельства того, что Бог приложил руку к созданию человека, чем человеческое колено, – заявляет хирург-ортопед. – Это самый сложный сустав в нашем теле. Три длинные кости ноги – бедренная кость, большеберцовая кость и малоберцовая кость – соединяются вместе в виде идеально продуманного механизма, который защищается коленной чашечкой и приводится в движение сложной системой сухожилий и связок, дополненной хрящевым амортизатором и заполненными жидкостью сумками, чтобы обеспечить плавность движений. Это настоящее чудо!
– Да, это чудо, – подхватывает нейрофизиолог. – Но я считаю, что именно человеческий мозг со всей его потрясающей сложностью позволяет в полной мере оценить дело рук Божьих. Только подумайте: 86 миллиардов нейронов, посылающих друг другу нервные импульсы со скоростью 420 километров в час внутри сети, образованной 125 триллионами синапсов! В настоящее время я работаю над компьютерным моделированием активности головного мозга, и, по нашим оценкам, нам требуется 300 миллиардов гигабайт компьютерной памяти, чтобы сохранить данные измерений всего за один год!
– Ну, не знаю, как там у вас, – вступает в разговор уролог, – но в том месте, где работаю я, дела обстоят иначе. Порой мне кажется, что всю эту систему соорудил какой-то сумасшедший сантехник. Как можно додуматься проложить семявыводящий проток по такому длинному и извилистому пути, да еще и заложить петлю вокруг мочевого пузыря?! А расположить предстательную железу на самом выходе из мочевого пузыря, чтобы та своей толщей плотно охватывала уретру?! Небольшое воспаление простаты – и на тебе: ты не можешь даже нормально помочиться! Не вижу я тут никакого божьего замысла – каким нужно быть идиотом, чтобы проложить канализационную трубу посреди спальни! Да, наша мочеполовая система – это чудо. Чудо эволюционного идиотизма!
Эволюционистская литература изобилует массой других примеров. Глотка, которая используется для дыхания и приема пищи, что значительно повышает риск асфиксии. Наличие такого рудиментарного органа, как аппендикс, который может воспаляться и вызывать аппендицит – заболевание, убивавшее тысячи людей до появления современной медицины. Плохой отток жидкости из придаточных пазух носа, вызванный тем, что мы стали прямоходящими, а наши лица сделались более плоскими: если раньше носовые пазухи выводили жидкость по направлению вперед, то теперь они вынуждены выбрасывать ее по направлению вверх. Еще один излюбленный пример эволюционистов – путь, по которому пролегает возвратный гортанный нерв у некоторых животных. Этот нерв соединяет гортань с головным мозгом, но по пути он опускается в грудную клетку и огибает дугу аорты, делая петлю (поэтому он и называется возвратным). Чем длиннее шея, тем длиннее нерв. У жирафов его длина может превышать шесть метров, притом что расстояние от гортани до мозга составляет всего несколько сантиметров. Неужели божественный перфекционист не убрал бы эту нелепую петлю и не направил бы нерв по самому короткому пути? Проблема с таким доказательством «от противного» состоит в том, что оно стремится представить эволюцию как бестолкового изобретателя, которому не хватает ума разработать продуманную и элегантную в своей простоте и функциональности конструкцию, поэтому он берет все, что попадается под руку, и сооружает чрезвычайно замысловатый и запутанный, но при этом весьма нефункциональный механизм в духе карикатур Руба Голдберга или Хита Робинсона. Например, Несс и один из самых известных эволюционистов в мире Ричард Докинз критикуют устройство человеческого глаза с его перевернутой сетчаткой и нелепым расположением фоторецепторов в глубине сетчатки – позади пролегающих по ее поверхности нервных волокон, несущих сигналы от рецепторов к мозгу. Это означает, что свет, вместо того чтобы свободно проходить к светочувствительным клеткам, должен продираться сквозь лес нервных волокон. Что за странное инженерное решение!
На мой взгляд, подобные аргументы с акцентом на «неразумности дизайна», которые обычно используются в споре с креационистами, притом что звучат весьма убедительно, оказывают эволюционному учению медвежью услугу. Вместо того чтобы подчеркивать уникальность эволюционной инженерной мысли, они представляют эволюцию как неэффективного «бестолкового умельца», нередко забывая напомнить о том, что придуманные эволюцией решения являются по-своему изысканными и функциональными. Да, поскольку эти решения искались вслепую, путем перебора в процессе мутаций и естественного отбора без какого-либо учета будущего, зачастую они являются довольно причудливыми и даже эксцентричными, особенно с точки зрения настоящих инженеров. Тем не менее наши тела не могут быть просто мешаниной всевозможных эволюционных нелепостей и ошибок. Будь это так, человеческий род давным-давно бы погиб на полях кровопролитных эволюционных сражений с другими видами. В этом смысле эволюция больше напоминает мне находчивого секретного агента Ангуса Макгайвера из телесериала «Секретный агент Макгайвер», который часто попадает в угрожающие жизни ситуации и придумывает из них выход при помощи простых предметов, таких как скотч или скрепки, а вовсе не врача-шарлатана Доктора Ника из мультсериала «Симпсоны» – как вы помните, этот невежда совершенно не знал анатомии и однажды пришил пациенту ногу вместо руки и руку вместо ноги!
Я сожалею, что эволюционисты часто не находят другого способа убедить нас в том, что человека создал не Бог, а эволюция, кроме как делая акцент на «неудачном решении». Возьмем, например, устройство глаза. Если бы некоторые эволюционисты копнули чуть глубже, они бы обнаружили весьма разумные причины, заставившие эволюцию сконструировать наш глаз так, а не иначе. Такое строение сетчатки, на первый взгляд представляющееся нелепым, на поверку оказывается в высшей степени красивым и эффективным решением, позволяющим обрабатывать огромные объемы зрительных сигналов. Я считаю, что аргументы о «неразумности дизайна» пора выбросить в мусорную корзину. В нашем случае – в разговоре об эволюционной медицине – такие аргументы не столько помогают, сколько мешают делу.
Найденные эволюцией решения часто гениальны, а не абсурдны. Но миллионы лет эволюции оставили на наших телах неизгладимые отпечатки, и не все они сегодня воспринимаются нами как положительные. Мы выжили и процветаем как вид, но наши тела изобилуют компромиссами, подчас фаустовского масштаба, на которые пришлось пойти эволюции; придуманными на скорую руку решениями; механизмами антагонистической плейотропии в духе «живи сейчас, плати потом», цель которых – помочь людям выжить в молодом и репродуктивном возрасте за счет негативного воздействия на здоровье в более позднем возрасте; различными непреднамеренными последствиями эволюционных изменений и несоответствиями между нашими организмами и современными условиями жизни. Все эти эффекты сегодня мы рассматриваем как болезни и патологии. В последнее время на нас обрушивают поток популярной оздоровительной литературы в стиле «идеальное тело благодаря…» – вегетарианству, Богу, науке или какому-либо фитнес-тренеру с его уникальной системой тренировок. Следуя в русле этой тенденции, я предлагаю вам познакомиться с вашим, пусть и не идеальным, телом, созданным эволюцией и естественным отбором – или, если ассоциировать теорию с ее создателем, – вашим «телом по Дарвину».
Подлинная трагедия состоит в том, что за всеми этими эволюционными компромиссами и несовершенствами стоят люди. Я включил их голоса в эту книгу, чтобы, рассуждая об абстрактных проблемах эволюционной теории, мы не забывали о них – о реальных людях, которые страдают от реальных болезней и немощи и которые проявляют огромную силу духа, борясь с этими болезнями сами или помогая бороться другим. Многие люди, с которыми я разговаривал, мужественно соглашаются стать «подопытными кроликами» для испытания новаторских методов лечения, основанных на эволюционном подходе. Я хочу искренне поблагодарить их всех за эту неоценимую помощь.
Наши старые друзья
Как гигиеническая гипотеза объясняет аллергию и аутоиммунные заболевания
В 1990-е годы семья Джонсонов столкнулась с бедой: их сынишка Лоренс делался все более и более неуправляемым и постоянно демонстрировал самоповреждающее поведение, причем с течением времени положение только усугублялось. Лоренс был эмоционально неустойчивым ребенком и быстро приходил в состояние возбуждения; он разбивал себе лицо, бился головой об стену, пытался выдавить себе глаза, до крови кусал руки. В два с половиной года ему поставили диагноз аутизм, и с возрастом его состояние ухудшалось. Если во время прогулки по улице светофоры загорались не тем светом, на который он рассчитывал, он впадал в ярость. Он не мог находиться в людных местах, таких как рестораны или кинотеатры, к нему часто приходилось применять силу, чтобы он не причинил себе вреда. Врачи пытались лечить его антидепрессантами, противосудорожными и нейролептическими препаратами, литием, но безрезультатно.
Родители не знали, что делать. К счастью, отец Лоренса Стюарт был сильным и энергичным человеком, «решателем проблем», поэтому он принялся самостоятельно искать способ справиться с болезнью сына и стал настоящим экспертом по аутизму. Вскоре он сделал интересное наблюдение. «Мы заметили, что, когда у Лоренса начинался жар, все симптомы аутизма исчезали. Так было в 100 процентах случаев. Стоило подняться температуре – из-за простуды, гриппа или синусита, – он прекращал причинять себе вред, становился спокойным и вел себя как совершенно нормальный ребенок. Мы разговаривали с родителями других детей-аутистов, и все они сказали то же самое».
Может быть, все дело было в плохом самочувствии и слабости, которые умеряли проблемное поведение Лоренса? Некоторые ученые предполагали, что лихорадка влияет на передачу нервных импульсов в головном мозге, другие ссылались на изменения в иммунной системе. Никто не знал, что происходит на самом деле. Но все, кто имел дело с Лоренсом, в один голос заявляли: «Мы счастливы, когда он заболевает. Тогда жизнь становится прекрасной!» Тем не менее, как только лихорадка отступала, патологическое поведение возвращалось. В 2005 году, когда Лоренсу исполнилось пятнадцать лет, его родители поняли, что больше не способны заботиться о сыне сами. И пока Лоренс находился в специальном летнем лагере, они, скрепя сердце, подали заявление о помещении мальчика в специализированное учреждение на всю оставшуюся жизнь. «Лоренс должен был уйти, потому что он убивал всю нашу семью», – сказал Стюарт.
И в этот самый момент, когда решалась печальная судьба Лоренса, раздался телефонный звонок из летнего лагеря. «Мы приготовились к худшему, – рассказывает Стюарт. – Но нам сказали: "Мы не знаем, что происходит, но Лоренс ведет себя совершенно нормально. У него хорошее настроение, он спокоен, не психует, не бьет себя, не бросает еду, активно участвует во всех мероприятиях, общается…"» Стюарт немедленно поехал в лагерь и с удивлением обнаружил, что это действительно так. Его сын выглядел умиротворенным, с удовольствием играл с другими детьми и обрадовался приезду отца. Они сели в машину и поехали домой. Мало того, что Лоренс спокойно выдержал двухчасовую поездку на машине, так по приезде еще и заявил, что хотел бы сходить куда-нибудь поужинать. Они не были в ресторане два или три года. «Всю его жизнь мы старались избегать шумных и многолюдных мест, а теперь он сам захотел туда пойти! Раньше он не мог выдержать в очереди и минуты, а тут спокойно прождал сорок пять минут, пока принесут наш заказ, потом мы не спеша поели и поболтали – в общем, это был замечательный ужин!»
Стюарт был в полном недоумении. В тот же вечер, помогая Лоренсу раздеться перед сном, он увидел, что ноги мальчика, от щиколоток до бедер, были покрыты многочисленными укусами чиггеров (личинок клещей-тромбикулидов, широко распространенных в регионах с теплым климатом). Эти личинки заползают на траву и при контакте с любым позвоночным, включая человека, прикрепляются к его коже. Могла ли существовать взаимосвязь между укусами личинок клещей и полным исчезновением симптомов аутизма у Лоренса? Обратившись к медицинской литературе, Стюарт узнал, что укусы чиггеров вызывают очень мощный иммунный ответ, поскольку личинки прокалывают кожу человека и выделяют пищеварительные соки для разжижения клеток тканей, которыми они питаются в течение нескольких дней. Затем личинки отпадают, а на месте укуса образуется сильно зудящая папула. Те десять дней, пока иммунная система Лоренса боролась с токсинами чиггеров, были для их семьи счастливым временем. Но, как только зуд прекратился и иммунная реакция стихла, насильственное и саморазрушительное поведение вернулось. «Я сказал себе: "Вот оно! Я знаю, что решение здесь! По крайней мере какая-то часть симптомов аутизма у Лоренса вызвана его искаженной иммунной реакцией"».
Стюарт знал, что лечащий врач его сына, специалист по аутизму доктор Эрик Холландер из Медицинского колледжа Альберта Эйнштейна в Нью-Йорке, провел исследование, которое показало, что у близких родственников детей, страдающих аутизмом, аутоиммунные заболевания встречаются в девять раз чаще, чем у близких родственников нормальных детей. У Лоренса была аллергия на арахис; Стюарт страдал тяжелой миастенией – аутоиммунным заболеванием, вызывающим слабость мышц и быструю утомляемость, а его жена была астматиком. Медицинская история их семьи полностью соответствовала результатам этого исследования, которое связывало аутизм с аутоиммунными заболеваниями и аллергией. Еще в 1971 году исследователи из Университета Джонса Хопкинса описали семью, где у младшего сына был диагностирован аутизм, болезнь Аддисона (аутоиммунное заболевание, затрагивающее надпочечники) и кандидоз (грибковая инфекция, вызываемая дрожжевыми грибами
В 2003 году Тейн Свитен из Медицинской школы Университета Индианы сообщил о результатах исследования, которое показало, что в семьях детей с аутизмом распространенность аутоиммунных расстройств была даже выше, чем в семьях детей с аутоиммунными заболеваниями. Эти расстройства включали гипотиреоз, тиреоидит Хашимото (когда щитовидная железа атакуется собственными антителами и иммунными клетками) и ревматическую лихорадку. Свитен говорит, что это открытие более высокой распространенности аутоиммунных расстройств среди бабушек, дядей, матерей и братьев детей-аутистов «свидетельствует о возможной передаче предрасположенности к аутоиммунным заболеваниям по наследству от матери к сыну». Он также предполагает, что аутоиммунность или хроническая активация иммунной системы может объяснить некоторые биохимические аномалии, обнаруживаемые у больных аутизмом, в том числе высокие уровни мочевой кислоты и железодефицитную анемию, которые также наблюдаются при аутоиммунных расстройствах. Результаты исследования, проведенного среди датских детей в период между 1993 и 2004 годами доктором Йёрдис Атладоттир, согласуются с выводами Свитена, показывая более высокую частоту случаев аутизма среди детей, рожденных матерями с целиакией (непереносимостью глютена). Исследование также обнаружило связь между аутизмом и наличием в семье диабета 1-го типа, а также ревматоидного артрита у матерей.
Укусы клещей, исчезновение симптомов аутизма и аутоиммунные реакции – все это начало складываться в аналитическом уме Стюарта Джонсона в единую картину. Если аутизм его сына был вызван нарушением работы иммунной системы – ее гиперактивностью – значит, нужно каким-то образом ее утихомирить. Дальнейшее расследование привело его к работе Джоэла Вайнстока, Дэвида Эллиотта и их коллег из Университета Айовы. Команда исследователей под руководством Вайнстока сообщила об успешно проведенном клиническом эксперименте, в ходе которого им удалось вылечить небольшую группу пациентов с болезнью Крона (аутоиммунное воспалительное заболевание кишечника) при помощи яиц кишечного паразита – свиного власоглава (
Холландер был заинтригован: «Стюарт очень умный парень и проделал замечательную исследовательскую работу. Его гипотеза показалась мне вполне правдоподобной, поэтому мы решили попробовать». Холландер получил необходимое разрешение на применение этого метода лечения и помог Стюарту доставить из Германии партию яиц власоглава. Они начали с небольшой дозы, опасаясь побочных эффектов. Стюарт тоже начал принимать яйца – он не собирался испытывать столь странный метод лечения на собственном сыне, не разделив его участь. Первоначальные результаты были обескураживающими. За все 24 недели терапии у Лоренса в общей сложности набралось всего четыре «хороших» дня. Стюарт позвонил производителю, и ему сказали, что в действительности эти результаты указывают на то, что человек реагирует, но будет реагировать гораздо сильнее, если увеличить дозу. Таким образом, Стюарт вышел на ту же дозировку, которую использовала команда Вайнстока для пациентов с болезнью Крона, – 2500 яиц за один прием. В течение восьми дней симптомы Лоренса полностью исчезли и с тех пор больше не появлялись. Они возвращались всего четыре раза на короткое время, когда Стюарт пытался экспериментировать и на несколько дней прекращал лечение. Но пока Лоренс регулярно принимает яйца власоглава, симптомы аутизма не дают о себе знать.
Так Стюарт Джонсон на практике применил «гигиеническую гипотезу», которая связывает бактерии, грибки и гельминтов (паразитических червей), обитающих в нашем кишечнике, дыхательных путях, влагалище и на коже, с широким спектром аутоиммунных и аллергических расстройств. Исследователи находят все больше доказательств того, что популяции микроорганизмов, живущих на нас и внутри нас, – которые все вместе называются микробиотой – могут защищать нас от множества серьезных аутоиммунных заболеваний, в том числе воспалительных заболеваний кишечника (болезни Крона и язвенного колита), диабета 1-го типа, ревматоидного артрита, рассеянного склероза, и, как мы увидели, даже поддерживать наше психическое здоровье. Некоторые исследования показывают, что микробиота также может защищать нас от целого ряда распространенных атопических или аллергических заболеваний, таких как экзема, разные виды аллергии (на пищу, пыльцу и домашних животных); сенная лихорадка, ринит и астма. Тем не менее следует особо подчеркнуть, что аутизм является сложным, многофакторным заболеванием; что же касается терапевтического применения гипотезы гигиены для лечения различных аутоиммунных и аллергических заболеваний, то сегодня в этой области делаются только первые шаги, поэтому все используемые методы являются непроверенными и неподтвержденными. Например, вышеописанный способ лечения Лоренса Джонсона лишь единичный эксперимент, не прошедший необходимые клинические испытания. Но в целом исследования в этом направлении дают весьма убедительные и обнадеживающие результаты, поэтому, если их удастся перевести в конкретные методы терапии, уже в ближайшем будущем они могут произвести настоящую революцию в медицине.
Значительные улучшения в области гигиены, санитарии и качества воды, произошедшие за последние сто лет, в сочетании с широким использованием антибиотиков и вакцинацией населения повысили качество и продолжительность жизни во всем развитом мире. Но, фактически искоренив эпидемии полиомиелита, коклюша, дизентерии, кори и многих других потенциально смертельных или инвалидизирующих инфекционных болезней, развитое постиндустриальное общество стало жертвой новых набирающих силу эпидемий аутоиммунных и аллергических заболеваний. Возьмем, например, болезни кишечника. Согласно исследованию Вайнстока, до начала XX века воспалительные заболевания кишечника (ВЗК) были фактически не известны. С 1884 по 1909 год в больницах Лондона регистрировалось в среднем два случая язвенного колита в год, а первый случай болезни Крона был описан только в 1932 году. Но во второй половине XX века ВЗК стали стремительно распространяться. В настоящее время в Соединенных Штатах воспалительными заболеваниями кишечника страдает от 1 миллиона до 1,7 миллиона человек. По текущим оценкам, в Западной Европе и Великобритании количество больных ВЗК достигает 2,2 миллиона человек, причем в Великобритании, Франции и Швеции число заболевших постоянно растет. В Восточной Европе, Азии, Африке и Южной Америке уровень заболеваемости ВЗК намного ниже, но по мере того, как эти регионы развиваются в социально-экономическом плане, этот показатель также начинает расти. Более того, когда люди переезжают из страны с низкой распространенностью ВЗК в страну с высокой распространенностью, их дети подвергаются более высокому риску развития этих заболеваний.
Или возьмем диабет 1-го типа. Хотя эта болезнь была известна на протяжении многих веков, сегодня уровень заболеваемости растет быстрыми темпами – слишком быстрыми, чтобы здесь могли быть замешаны генетические изменения. Аналогичная связь между одержимостью «чистотой и гигиеной» и аутоиммунными реакциями проявляется в заболеваемости рассеянным склерозом, который относительно редко встречается в тропических регионах, но становится все более распространенным при продвижении от экватора на север. В Соединенных Штатах к северу от 37-й параллели это заболевание встречается в два раза чаще, чем к югу от нее. Конечно, здесь играют роль и инфекционные агенты, и генетика, и уровни витамина D, но, что интересно, люди, иммигрирующие из Европы в Южную Африку взрослыми, подвергаются в три раза более высокому риску развития рассеянного склероза, чем те, которые переезжают туда в возрасте до пятнадцати лет. Таким образом, как можно предположить, защитный эффект окружающей среды в принимающей стране действует только на молодых. Противоположная тенденция наблюдается среди детей иммигрантов, переезжающих в Великобританию из Индии, Африки и стран Карибского бассейна (т. е. регионов с низкой распространенностью рассеянного склероза): эти дети подвергаются более высокому риску развития рассеянного склероза, чем их родители, но сопоставимому с риском у их ровесников, рожденных в Великобритании. Хорхе Корреале, невролог из Буэнос-Айреса, указывает, что заболеваемость рассеянным склерозом неуклонно растет во всех развитых странах. В Германии заболеваемость рассеянным склерозом в период между 1969 и 1986 годом выросла в два раза, а в Мексике начиная с 1970 года – в 29 раз, вместе со стабильным повышением уровня жизни. Корреале также указывает на наличие поразительной обратной связи между заболеваемостью рассеянным склерозом и распространением одного из самых известных кишечных паразитов – власоглава
Вайнсток вспоминает, как на него «снизошло озарение», когда однажды в ожидании бесконечно откладывающегося рейса из чикагского аэропорта он размышлял о причинно-следственных связях – сначала вы что-то делаете, а потом что-то происходит. И вдруг он понял, что ответ на загадку всплеска заболеваемости кишечными и аутоиммунными заболеваниями очень прост: «Перестало происходить что-то, что происходило всегда». Другими словами, дело не в том, что новые аспекты окружающей среды способствуют развитию аутоиммунных заболеваний, а в том, что из современной среды исчезло что-то важное, в результате чего мы стали уязвимыми перед этими болезнями. «В прошлом у нас были грязные улицы, заваленные в том числе и конским навозом, и многие люди ходили босиком или в дырявой обуви. Теперь мы построили дороги и тротуары и носим хорошую обувь, так что возможности для передачи яиц гельминтов значительно сократились. Мы тщательно стерилизуем продукты питания, моем руки и т. п. – все стало чистым и стерильным. В результате гельминты практически исчезли из нашей жизни. Но стоит посмотреть на уровень дегельминтизации и уровень иммуноопосредованных заболеваний в разных странах, как обратная зависимость между ними становится очевидной. Конечно, эта отрицательная корреляция не доказывает, что гельминты полезны, но это косвенное свидетельство».
Современная санитария и гигиена оказались катастрофическими для большинства гельминтов, говорит Вайнсток. Унитазы со сливом, системы канализации и очистки сточных вод убирают яйца гельминтов, прежде чем те успевают распространиться. В том же направлении действуют частое мытье и стирка одежды. Чистящие средства дезинфицируют посуду и бытовые поверхности, также препятствуя передаче яиц. Тротуары и хорошая обувь препятствуют распространению анкилостом, в частности анкилостомы Нового Света (
Доктор Хорхе Корреале занимается лечением больных рассеянным склерозом в Аргентине. Несколько лет назад у двенадцати из двадцати четырех пациентов, которых он вел, обнаружилась легкая степень заражения кишечными паразитами. Он наблюдал за всеми пациентами на протяжении чуть более четырех лет, регулярно проверяя их иммунологическую функцию и отслеживая распространение очагов поражения в головном и спинном мозге при помощи МРТ. У инфицированных пациентов было значительно меньше рецидивов и меньше очагов поражения, а также гораздо лучшие показатели по всем параметрам оценки степени инвалидизации. Тогда Корреале решил увеличить период наблюдений до семи лет, но через пять лет четыре инфицированных пациента прошли антигельминтную терапию, потому что паразиты вызывали боли в кишечнике и диарею. Как только их организмы были очищены от гельминтов, все признаки и симптомы рассеянного склероза тут же усилились, и в скором времени их состояние сравнялось с состоянием неинфицированных пациентов.
Эрика фон Мутиус, специалист по аллергиям из Мюнхенского университета, в период объединения Восточной и Западной Германии получила уникальную возможность проверить свою теорию, согласно которой высокие уровни загрязнения воздуха и плохие условия жизни, включая высокую скученность людей, способствуют распространению астмы, сенной лихорадки и других атопических заболеваний. Она предполагала, что у детей из более богатой Западной Германии – с ее лучшей экологической обстановкой, высоким уровнем санитарии и меньшим количеством загрязняющих предприятий тяжелой промышленности – атопические заболевания должны встречаться гораздо реже, чем у детей из Восточной Германии. Каково же было ее удивление, когда она обнаружила совершенно обратную ситуацию. Восточногерманские дети, которые жили в тесных квартирах вместе со множеством родственников и домашних животных и целые дни проводили в детских садах в переполненных группах, намного реже страдали аллергиями и астмой, чем их западногерманские сверстники. Таким образом, фон Мутиус пришла к выводу, что контакт в раннем детстве с разнообразными микробными инфекциями (со стороны других детей, взрослых и животных) тренирует иммунную систему, делая ее более устойчивой к потенциальным аллергенам в дальнейшем.
Затем она решила сравнить городское и сельское население по всей Европе. Оказалось, что дети, которые растут на традиционных фермах, где они с рождения контактируют с домашним скотом и его кормом и пьют непастеризованное молоко, лучше защищены от астмы, сенной лихорадки и других видов аллергической сенсибилизации. Фон Мутиус отмечает, что в Швейцарии, Австрии и Германии, где фермерство традиционно было основным источником средств к существованию, сегодня большинство фермеров занимаются не только производством молочной продукции, но и разводят других животных, таких как лошади, свиньи, овцы, козы и домашняя птица, а также выращивают кукурузу, траву и зерно на корм скоту. Во многих фермерских хозяйствах животные, корма и люди находятся под одной крышей. Кроме того, женщины работают в хлеву и амбарах до, во время и после беременности и уже через несколько дней после рождения ребенка берут его с собой, чтобы присматривать за ним во время работы. Фон Мутиус подчеркивает, что несколько факторов, судя по всему, играют ключевую роль в развитии толерантности к аллергенам. Это «общение» с микробами в раннем детстве, даже в период внутриутробного развития, и разнообразие видов животных – а отсюда и разнообразие видов микробов и их количество, – с которыми контактируют дети.
Из всех аутоиммунных заболеваний диабет 1-го типа (и его все более раннее начало) стремительно становится главным бичом нынешнего одержимого гигиеной западного мира. По прогнозам, уровень заболеваемости среди европейских детей в возрасте до пяти лет в течение следующего десятилетия должен удвоиться. Но печальным рекордсменом здесь является Финляндия с самым большим процентом диабетиков 1-го типа в мире. В попытке выяснить причины такого положения дел, Микаэль Книп и его коллеги из Университета Хельсинки провели широкомасштабное исследование, чтобы определить, какую роль играют генетические, а какую внешние факторы в развитии этого угрожающего жизни заболевания, при котором иммунная система организма атакует бета-клетки поджелудочной железы, ответственные за производство инсулина, что приводит к хронически высокому уровню сахара в крови. Несмотря на то, что инсулиновая терапия позволяет стабилизировать состояние и устранить угрозу жизни, у многих больных со временем развивается слепота и поражение почек.
Карелия – территория на севере Европы, где традиционно проживает карельская народность. Эта территория разделена на две части: одна часть находится в Финляндии, а другая во время Второй мировой войны была присоединена к России. Таким образом, с тех пор существует финская и российская Карелия. Несмотря на то, что российские и финские карелы имеют одинаковый генетический профиль, включая одинаковую предрасположенность к диабету, их социально-экономическое положение и состояние здоровья существенно разнятся. Согласно Книпу, один из самых резких в мире перепадов в уровне жизни существует на границе между российской и финской Карелией, поскольку по объему ВНП последняя опережает первую в восемь раз. Это даже больше, чем разница между Мексикой и Соединенными Штатами. Тем не менее распространенность диабета 1-го типа, а также множества других аутоиммунных заболеваний на финской стороне гораздо выше. Среди финских карелов диабет встречается в шесть раз чаще, целиакия – в пять раз чаще, аутоиммунные заболевания щитовидной железы – в шесть раз чаще, а также наблюдаются более высокие уровни различных аллергий, чем среди российских карелов.
Книпу удалось наладить сотрудничество с российской стороной и собрать медицинские данные, образцы стула, пробы крови и мазки с кожи и из носа у нескольких тысяч детей по обе стороны границы. Исследователи обнаружили, что к двенадцати годам российские карелы подвергаются более высокой микробной нагрузке и имеют более разнообразные по своему составу колонии микробов в кишечнике, где шире представлены полезные виды бактерий, известные своей активной ролью в защите и поддержании оболочки кишечника. Исследователи также нашли биохимические свидетельства более точной отрегулированности иммунной системы. Кроме того, хотя дефицит витамина D часто указывается как важный фактор развития диабета 1-го типа, исследователи обнаружили с российской и эстонской стороны в целом более низкие уровни витамина D, чем с финской. Грубо говоря, российские карелы живут беднее и грязнее, чем их финские собратья, но с точки зрения иммунозависимых заболеваний гораздо здоровее.
Может ли раннее знакомство с широким кругом бактерий, грибков и гельминтов (которые в прошлом атаковали детей с самого рождения) действовать так же, как детские прививки, – например, как тройная вакцина против кори, краснухи и паротита – т. е. стимулировать иммунитет? Гигиеническая гипотеза в ее первоначальном варианте утверждает, что так оно и есть. Эта гипотеза впервые появилась в XIX веке в контексте изучения аллергии. В 1873 году Чарльз Харрисон Блэкли заметил, что сенная лихорадка, или поллиноз, причиной которой является аллергическая реакция на пыльцу, крайне редко встречается у фермеров. Чуть позже, в 1980-х, Дэвид Стрэкен из Госпиталя святого Георгия в Лондоне установил, что наличие в семье нескольких старших братьев и сестер также ассоциируется с более низким риском развития сенной лихорадки. Он предположил, что от развития аллергии младших детей защищает так называемый «синдром грязного брата», т. е. большое количество постнатальных инфекций в многодетных семьях. Таким образом, гипотеза Стрэкена гласила, что в результате таких ранних инфекционных атак дети приобретают иммунитет к этим заболеваниям, точно так же как это происходит при детской вакцинации, и что наша почти патологическая одержимость гигиеной лишает нашу иммунную систему столь важного стимулирования. Между тем за последние десять лет был обнаружен ряд важных свидетельств того, что здесь могут существовать куда более глубинные взаимосвязи.
Первое свидетельство касается того факта, что на протяжении значительного периода нашей эволюции мы, люди, подвергались воздействию некоторых видов бактерий, грибков и гельминтов, причем этот период существенно больше того, который мы имеем в случае более современных патогенов, таких как холера и корь. Джордж Армелагос из Университета Эмори считает, что на протяжении палеолита (более 2,5 миллиона – 10 тысяч лет назад) наши предки постоянно контактировали с сапрофитными микобактериями, в изобилии живущими в почве и разлагающейся растительности. Поскольку в то время люди ели необработанную пищу и хранили продукты в земле, их питание, вероятно, содержало в миллиарды раз больше сапрофитных и других непатогенных бактерий, таких как лактобактерии, чем питание современных людей. Кроме того, они были хронически инфицированы различными гельминтами. Молекулярный анализ ленточных червей, объясняет Армелагос, показывает, что 160 тысяч лет назад, до исхода человека из Африки, они повсеместно паразитировали в кишечнике человека. Хотя тяжелая форма гельминтозов ведет к ухудшению здоровья человека, паразиты редко убивают хозяина. После того как гельминты поселялись в организме, избавиться от них в те времена, когда не было современных лекарственных препаратов, было почти невозможно, поэтому хроническая гиперактивная иммунная реакция принесла бы человеческому организму гораздо больше вреда, чем пользы. У человеческого организма был только один выход – научиться жить вместе с ними.
Только после появления первых городов примерно шесть тысяч лет назад, когда люди начали жить в условиях многолюдия и скученности, появилось новое поколение тяжелых эпидемических заболеваний, таких как холера, тиф, корь, паротит, оспа и многие другие. Эти более современные болезни существуют недостаточно давно, чтобы обусловить такие же эволюционные изменения в людях, как более древние инфекции. Гельминты, грибы, микобактерии и синантропные бактерии жили бок о бок с нами – и внутри нас – на протяжении сотен тысяч лет. Мы эволюционировали вместе с ними, т. е. мы коэволюционировали. Неудивительно, что Грэм Рук из Университетского колледжа в Лондоне, авторитетнейший специалист в своей области, назвал эти организмы «старыми друзьями» и переименовал гигиеническую гипотезу в «гипотезу старых друзей», тем самым акцентировав ключевой аспект нашей долговременной коэволюции.
Второе свидетельство наших глубинных связей заключается в том, что мы нуждаемся в раннем воздействии этих «старых друзей» не только для того, чтобы активировать нашу иммунную систему, но и для того, чтобы ее создать, сформировать и довести до состояния зрелости. Пожалуй, самый убедительный пример, доказывающий, что мы, люди, коэволюционировали вместе с микроорганизмами внутри нас, – это взаимодействие человеческих детей с бактериями во время родов и в первые критические месяцы жизни.
Во время беременности в бактериальной флоре влагалища происходят важные изменения. Число видов и общее количество бактерий уменьшается, однако некоторые виды, наоборот, расширяют свое присутствие. Большинство из них относятся к лактобактериям (
Ребенок рождается с практически стерильным кишечником, который должен быть немедленно заселен правильными бактериями. Если он находится на грудном вскармливании, то начинает получать один из самых удивительных продуктов, существующих в природе. Человеческое грудное молоко содержит сложный набор жиров и сахаров – быстрое питание, – а также иммуноглобулин А, антитела, которые защищают слизистую оболочку кишечника от повреждения вирусами и бактериями и не дают им проникать в организм. По оценкам, с грудным молоком младенец получает более 100 миллионов иммунных клеток в день, в том числе макрофагов, нейтрофилов, лимфоцитов, вместе с большим количеством цитокинов, хемокинов и колониестимулирующих факторов – веществ, которые обеспечивают передачу сигналов между клетками иммунной системы и способствуют их росту. Всего в человеческом грудном молоке обнаружено более 700 видов бактерий, многие из которых – такие как лактококки, лейконостоки и лактобактерии – способны переваривать молочный сахар (лактозу). Также в молоке находится большое количество бифидобактерий, одного из самых мощных пробиотиков.
Один из основных твердых компонентов грудного молока – сложные длинноцепочечные сахара, называемые олигосахаридами. В литре грудного молока их находится около десяти граммов, и их количество в человеческом молоке в 10–100 раз больше, чем в молоке любых других млекопитающих. Между тем ребенок не способен усваивать эти молекулы – у него попросту нет необходимых для этого ферментов. На протяжении многих лет ученые недоумевали, почему человеческое молоко содержит такое большое количество неперевариваемых веществ, но не так давно было выяснено, что олигосахариды предназначаются вовсе не для самого ребенка. Они служат питанием для тех бифидобактерий, которые содержатся в грудном молоке. Например, бифидобактерии
Пробиотические бактерии выполняют важнейшие функции. Незрелый, стерильный кишечник новорожденного беззащитен перед агрессивными патогенами, а его неразвитая иммунная система еще не умеет распознавать и уничтожать захватчиков. Пробиотические бактерии могут действовать как рецепторы-ловушки, обманывая патогенные микроорганизмы и не давая им прикрепляться к стенке кишечника. Например, они могут защищать младенцев от такого потенциально смертельного заболевания, как некротический энтероколит. Oни также участвуют в образовании биопленки из насыщенной пробиотической слизи, которая защищает внутреннюю поверхность кишечника, и помогают сформировать хорошо регулируемую иммунную систему. Кишечник имеет свою собственную иммунную систему, распределенную вдоль его стенок и известную как лимфоидная ткань кишечника, и было установлено, что пробиотические бактерии играют важную роль в ее нормальном развитии. Эксперименты показали, насколько мощным влиянием обладают пробиотики. Когда в ходе контролируемых исследований в детскую питательную смесь добавляли олигосахариды, это приводило к снижению уровней циркулирующего иммуноглобулина Е (IgE), который является важным маркером аллергических реакций. Кроме того, было зафиксировано уменьшение количества случаев атопического дерматита, диареи и инфекций верхних дыхательных путей. Таким образом, система ребенок – богатое олигосахаридами грудное молоко – пробиотические бактерии является одним из самых красивых примеров коэволюции, известных науке, и уникальным механизмом, помогавшим человеческому потомству выживать на протяжении тысячелетий.
Рискуя предъявить еще одно обвинение современному развитому миру, все большее количество исследований демонстрирует отрицательные аспекты кесарева сечения и искусственного вскармливания. Кишечники детей, рожденных с помощью кесарева сечения, с большей вероятностью изначально колонизируются бактериями, которые обычно обитают на коже, и испытывают нехватку «дружественных» бактерий, таких как бифидобактерии. Таким детям требуется не менее пяти месяцев, чтобы сформировать в кишечнике устойчивую, здоровую микробиоту (микрофлору). В кишечниках искусственно вскармливаемых младенцев обнаруживаются более многочисленные популяции таких условно-патогенных бактерий, как клостридии, энтеробактерии, энтерококки и бактероиды. Доктор Кристина Коул Джонсон из Госпиталя Генри Форда в Детройте наблюдала за более чем тысячью младенцев с рождения до двух лет. Дети, рожденные в результате кесарева сечения, были в пять раз более склонны к развитию аллергий, чем дети, родившиеся естественным путем. Другие исследования добавляют в список риска такие заболевания, как целиакия, ожирение, диабет 1-го типа и даже аутизм. Одним из очевидных решений этой проблемы может быть целенаправленное «заражение» детей, появившихся на свет путем кесарева сечения, бактериями-пробиотиками при рождении. Именно это и делает Мария Домингес-Белло вместе со своими коллегами из США и Пуэрто-Рико. Они выдерживают марлевые тампоны в течение одного часа во влагалище женщин, которым предстоит кесарево сечение, и, как только ребенка извлекают из матки, обтирают его этими тампонами – сначала внутри ротовой полости, затем лицо и все тело. Анализы показывают, что после такой «обработки» младенцы населяются бактериальными популяциями из влагалищ своих матерей и после рождения имеют более богатое разнообразие видов бактерий в кишечнике, которое немного уменьшается после начала грудного вскармливания, пока не придет в соответствие с микробным профилем материнского молока.
По всей видимости, через грудное молоко также может происходить передача хороших и плохих черт непосредственно от матери к ребенку. Например, установлена взаимосвязь между материнским ожирением и разнообразием видов бактерий в грудном молоке. Страдающие ожирением женщины производят молоко с более бедным видовым составом по сравнению с худыми матерями. Их молоко содержит меньше полезных пробиотических видов бактерий и больше потенциально патогенных бактерий, таких как стафилококки и стрептококки. Существуют данные о том, что при приобретении детьми кишечной микробиоты, ассоциируемой с ожирением, у них повышается риск развития ожирения, а также резистентности к инсулину. Страдающие аллергией матери также могут передавать свои неправильные иммунные «настройки» детям. Установлено, что грудное молоко таких матерей содержит меньше пробиотических бифидобактерий. Хотя через несколько месяцев после рождения все дети, находящиеся как на грудном, так и на искусственном вскармливании, приобретают примерно одинаковую по своему видовому составу кишечную микробиоту, характер ранней колонизации в первые несколько дней после рождения, по всей видимости, играет ключевую роль в формировании иммунной системы.
Но каким образом «дружественные» бактерии попадают в грудное молоко? Швейцарский исследователь Кристоф Шассар говорит, что в кишечнике матери, ее грудном молоке и кишечнике ребенка обнаруживается одинаковый видовой состав бактерий. Судя по всему, бактерии перемещаются из кишечника в материнскую грудь следующим образом: они проникают через стенки кишечника и попадают в мезентериальные (брыжеечные) лимфатические узлы, из которых транспортируются через лимфатическую систему в молочные железы. Таков полный цикл вертикальной передачи от матери к ребенку, который, помимо прочего, означает, что ребенок в значительной степени зависит от состояния материнского кишечника. Если мать имеет здоровую кишечную микрофлору, ребенок будет здоров; если же ее микрофлора значительно обеднена, ее ребенок будет страдать аналогичными нарушениями.
Одному владельцу ресторана в лондонском Ковент-Гардене пришла в голову идея, что человеческое грудное молоко может быть отличной приманкой для покупателей. Он начал продавать новый вид мороженого под названием Baby Gaga, изготовленного из женского грудного молока с добавлением мадагаскарской ванили и лимонной цедры. Первым щедрым донором стала кормящая мать Виктория Хайли, остальные женщины-доноры были найдены через интернет-форумы. Как сообщает BBC News, по желанию покупателей к мороженому могут добавлять сухарики или ложку «Калпола» (детского обезболивающего средства) или «Бонджела» (геля для прорезывания зубов). «Некоторые люди, услышав об этом, говорят "Фу!", но на самом деле это экологически чистый, органический и абсолютно естественный продукт», – говорит Хайли, а владелец ресторана Мэтт О'Коннор добавляет: «За последние сто лет никто не делал с мороженым ничего интересного!» Но у этой истории есть продолжение. Инспекция по контролю за качеством пищевых продуктов Лондонского городского совета Вестминстера потребовала убрать мороженое из продажи: у них, видите ли, нет гарантий, что оно пригодно для потребления человеком!
Примерно через неделю после рождения изначально стерильный кишечник ребенка заселяется колонией микроорганизмов, насчитывающей до 90 триллионов бактерий. Вот несколько удивительных фактов: общее количество бактерий в нашем кишечнике на порядок превышает общее количество клеток в нашем теле; вся микрофлора кишечника весит намного больше, чем наш мозг или печень; а совокупное количество бактериальных генов в сто раз превосходит количество генов в геноме человека. Эти микробы вовсе не туристы, а «местные жители» в нашем организме. Хотя ученые уже давно признали, что бóльшая часть микробиоты является безвредной и даже полезной, предполагалось, что мы и живущие внутри нас микроорганизмы просто питаемся с одного стола. Считалось, что мы позволяем им забирать часть питательных веществ, проходящих через наш кишечник, и обеспечиваем их теплой и бескислородной средой обитания, а они взамен снабжают нас отходами своего пищеварения, такими как витамины B, H и K, которые мы не можем производить сами, а также расщепляют сахара и жирные кислоты наподобие бутирата, помогая нашему метаболизму. Но теперь стало ясно, что наши отношения со «старыми друзьями» выходят далеко за рамки такого симбиоза. Мы эволюционировали в столь тесной взаимозависимости с нашей микробиотой, что разделять наши с ней геномы больше нет смысла. Отныне ученые говорят о метагеноме, представляющем собой совокупность геномов человека и его микробиоты, – суперорганизме, в котором мы, люди, являемся младшими партнерами и без которого мы уже не можем существовать. Ученые задают два фундаментальных, связанных между собой вопроса. Во-первых, каким образом наш организм отличает «старых друзей» (синантропные бактерии, грибки и кишечные гельминты) от опасных патогенов, чтобы мирно уживаться с первыми и атаковать вторых? Во-вторых, что происходит со здоровьем человека, когда эти «старые друзья» ослабевают или полностью исчезают? Ответы на эти вопросы позволяют нам приблизиться к более глубокому пониманию процессов, протекающих в нашем организме, и получению более точного представления о работе нашей иммунной системы, а также обещают привести к появлению в недалеком будущем нового поколения фармакологических средств, которые помогут побороть масштабные эпидемии аллергических и аутоиммунных заболеваний, терзающие сегодня развитые страны.
Чтобы понять, как «старые друзья» манипулируют нашей иммунной системой, чтобы замаскироваться под «своих», нам понадобится знание некоторых основополагающих фак тов о том, как устроена и как функционирует эта система. Человеческая иммунная система состоит из двух подсистем: врожденной иммунной системы, которая есть у всех животных, включая позвоночных и беспозвоночных, и адаптивной иммунной системы, которая имеется только у позвоночных. Врожденная иммунная система реагирует на патогены неспецифическим образом – она не может обеспечить длительной, надежной защиты, поскольку не обладает иммунологической памятью и не запоминает патогены, с которыми сталкивается. Как только иммунная система обнаруживает патоген, она немедленно начинает действовать, запуская в месте повреждения или проникновения инфекции воспалительную реакцию. Она «оцепляет» зараженный участок, расширяет окружающие кровеносные сосуды и стягивает к этому месту иммунные клетки для борьбы с инфекцией. За воспалительную реакцию отвечают цитокины – вещества, обеспечивающие передачу сигналов между иммунными клетками, а также гистамины и простагландины. Наиболее важными «провоспалительными» цитокинами являются фактор некроза опухоли альфа (ФНО-α), гамма-интерферон (интерферон γ) и интерлейкины 1, 6, 7 и 17. Система врожденного иммунитета также включает вспомогательную систему белков плазмы крови, которая помогает другим иммунным клеткам или дополняет их действие: атакует и разрушает патогены, специально маркирует их, чтобы сделать распознаваемыми для иммунных клеток, и привлекает на поле боя еще больше провоспалительных факторов.
Основные клетки врожденной иммунной системы – это лейкоциты (белые кровяные клетки). Существует множество разных видов лейкоцитов. Тучные клетки (мастоциты) присутствуют во всех слизистых оболочках, например, кишечника и легких, и вырабатывают гистамин, цитокины и хемокины – вид цитокинов, которые действуют как дорожные указатели для других иммунных клеток, направляя их к месту действия. Наиболее важными среди лейкоцитов являются фагоциты – группа клеток, которые активно захватывают и поглощают чужеродные организмы. Эта группа включает макрофаги (буквально «большие поедатели»); нейтрофилы, которые вырабатывают токсичные для болезнетворных организмов химические вещества, такие как перекись водорода, свободные радикалы и гипохлорит (природный отбеливатель), и дендритные клетки, особенно распространенные в стенке кишечника, чья основная задача – захватывать чужеродные белки (антигены) из оболочки болезнетворных бактерий и вирусов и затем «презентовать» их на своей поверхности в такой форме, чтобы клетки адаптивной иммунной системы могли распознать их и запустить иммунный ответ. Дендритные клетки играют роль связующего звена между врожденной и адаптивной иммунной системой.
Ключевыми агентами адаптивной иммунной системы являются два типа белых кровяных клеток, называемых лимфоцитами. Первый тип – B-клетки (B-лимфоциты), которые образуются в костном мозге и в незрелом виде поступают в различные лимфоидные ткани, такие как селезенка, лимфатические узлы и иммунологически активная ткань стенки кишечника. Зрелые В-лимфоциты синтезируют на своей поверхности специальные рецепторные молекулы, предназначенные для распознавания антигенов чужеродных микроорганизмов. Эти рецепторы представляют собой молекулы иммуноглобулина с гипервариабельным «наконечником». Гены, кодирующие этот гипервариабельный участок, способны очень быстро мутировать, производя почти бесконечное число комбинаций, с тем чтобы создать рецептор, точно соответствующий антигенам конкретного патогенного организма. Таким образом, наивные В-клетки могут быстро произвести правильный замок для любого антигенного ключа. После связывания антигена с рецептором В-клетка либо трансформируется в плазматическую клетку и превращается в фабрику по выработке антител – она штампует миллионы копий данной рецепторной молекулы и выпускает их в свободное плавание в кровяное русло, где они находят и связывают соответствующие антигены; либо она превращается в В-клетку памяти, которая может долгое время жить в организме, сохраняя информацию об активировавшем ее антигене, и при новой встрече со старым врагом немедленно запускать иммунную реакцию.
Второй ключевой агент адаптивной иммунной системы – это Т-клетки, или Т-лимфоциты. Их незрелые предшественники мигрируют из костного мозга в тимус (отсюда и название Т-клетки), где они проходят несколько этапов созревания. Одна группа Т-лимфоцитов, эффекторные Т-лимфоциты, также имеют на своей мембране гипервариабельные рецепторы, которые могут быть трансформированы под любой антиген, находящийся на оболочке вторгшегося вируса или бактерии. Они не вырабатывают антитела, а непосредственно атакуют захватчиков и уничтожают их. Т-лимфоциты быстро производят целую армию клонов, специфических по отношению к конкретному антигену, которая бросается на уничтожение микроорганизмов с данным антигенным профилем. Часть этих специфических Т-лимфоцитов может оставаться в крови и лимфе двадцать лет и больше, отвечая за так называемую полупостоянную иммунологическую память. Именно эта память обеспечивает нас приобретенным иммунитетом, благодаря которому мы быстрее и легче справляемся с последующими вторжениями уже знакомого патогена, поскольку наши В-клетки памяти и Т-клетки уже наготове, как ружье с взведенным курком. Этот же принцип лежит в основе вакцинации, когда в организм вводятся мертвые, инактивированные или ослабленные вирусы и бактерии или же извлеченные из их внешней оболочки антигены, чтобы заставить организм выработать клоны лимфоцитов памяти, готовые немедленно дать отпор при проникновении настоящего, активного патогена. Таким образом, адаптивная иммунная система распознает конкретные антигены, производит специфические рецепторы и антитела для борьбы с ними, запоминает врагов «в лицо» и мгновенно дает отпор при следующей встрече с ними. Оба вида лимфоцитов – В-клетки и Т-клетки – проходят процесс созревания в костном мозге или тимусе, где отсеиваются те новобранцы, которые слишком сильно реагируют на «свои» антигены – белковые маркеры, находящиеся на собственных клетках организма. Другими словами, их «учат» проводить различие между «своими» и «чужими» и действовать соответственно.
Решающее значение для понимания аллергических и аутоиммунных заболеваний имеют два других вида Т-лимфоцитов. Первые – это Т-хелперы, или Тх (от английского
На момент появления гигиенической гипотезы предполагалось, что клетки Тх1 и Тх2 являются антагонистами, функционируя по принципу качелей – т. е. факторы, способствующие выработке клеток Тх1, ингибируют выработку клеток Тх2, таким образом предотвращая аллергические реакции. И наоборот, факторы, приводящие к увеличению популяции клеток Тх2, подавляют выработку клеток Тх1, что предотвращает аутоиммунные реакции. Однако вскоре стало очевидно, что при некоторых видах аутоиммунных расстройств пациенты одновременно страдают и атопическими заболеваниями (как семья Джонсонов), и, кроме того, неспроста в развитых странах мира наблюдается одновременный рост аутоиммунных и аллергических заболеваний. Это заставило ученых пересмотреть свои представления о динамике иммунной системы, и в настоящее время считается, что именно регуляторные Т-клетки выполняют функцию главного переключателя, который запускает выработку всех эффекторных клеток – в том числе Тх1 и Тх2 – в иммунной системе. Для того чтобы наша иммунная система не рассматривала их как угрозу и не бросалась в бой, наши «старые друзья» используют хитрый прием – они стимулируют выработку регуляторных Т-лимфоцитов, которые сдерживают штурмовые батальоны эффекторных Т-клеток и, таким образом, вызывают состояние иммунологической толерантности. Например, микробиологи Джун Раунд и Саркис Мазманян исследовали пробиотические бактерии группы
Здесь действует один общий принцип. Иммунной системе человека пришлось научиться быть толерантной к широкому спектру микробов и грибов, которые присутствовали в пище и воде – и, следовательно, инфицировали людей – на протяжении миллионов лет. То же самое касается и гельминтов – как только они поселялись в организме, избавиться от них было почти невозможно, поэтому иммунная атака на них принесла бы непропорционально больше вреда, чем пользы. Например, упорные попытки иммунной системы уничтожить личинки нитевидного гельминта
Исследователь Маттео Фумагалли из Калифорнийского университета в Беркли считает, что паразитические черви оказывали довольно значительное давление отбора на человека на протяжении всей его истории. Даже сегодня, говорит он, свыше 2 миллиардов человек инфицированы гельминтами, что является распространенной причиной детской заболеваемости. Паразитарные инфекции замедляют рост, повышают подверженность другим инфекциям, вызывают преждевременные роды, служат причиной низкого веса при рождении и материнской смертности. Так было всегда. Фумагалли утверждает, что давление отбора, оказываемое на человеческий род гельминтами, было гораздо сильнее, чем давление, оказываемое бактериями, вирусами или даже климатом, и что свидетельство этого можно увидеть в наших геномах, особенно среди генов, отвечающих за иммунные реакции. Используя данные из Проекта по определению разнообразия человеческого генома, он взял образцы геномов 950 человек со всего мира и соотнес присутствующие в них генные мутации с видовым разнообразием гельминтов в соответствующих частях планеты. Почти у трети человек была обнаружена по меньшей мере одна генная мутация, в значительной степени ассоциирующаяся с видовым разнообразием гельминтов, а в общей сложности было найдено более восьмисот таких генных мутаций. Многие из этих генов отвечают за функционирование регуляторных Т-лимфоцитов и активацию макрофагов врожденной иммунной системы. Другие задействованы в продуцировании цитокинов клетками Тх2, которые мобилизуются в случае паразитарных инфекций.
Обнаруженные исследователями генные мутации дают нам важный ключ к пониманию характера отношений любви-ненависти между людьми и гельминтами. В то время как многие из генов, развившихся под давлением гельминтов, связаны с агрессивными, провоспалительными реакциями, направленными на борьбу с паразитарными инфекциями, другие гены действуют в противоположном направлении и стимулируют иммунологическую толерантность через регуляторные Т-лимфоциты, противовоспалительные цитокины и другие вещества, подавляющие иммунный ответ. Гельминты – мастера в манипулировании иммунной системой. Вот почему они способны долгое время существовать в организме любого хозяина и на протяжении многих тысячелетий остаются основной человеческой инфекцией. Грэм Рук рассматривает отношения между людьми и гельминтами как шахматную партию – или же с точки зрения динамического напряжения между паразитом и иммунитетом хозяина. Там, где паразитарная нагрузка была особенно высока, считает он, эволюцией был сделан выбор в пользу провоспалительных вариантов генов – либо для того, чтобы противостоять мощному иммунорегуляторному действию гельминтов, либо для того, чтобы сделать иммунную систему более эффективной против других вирусных и бактериальных инфекций в условиях гельминтоза. Когда же гельминты полностью исчезают, это динамическое равновесие нарушается, что приводит к чрезмерно интенсивной иммунной реакции – феномен, последствия которого мы и наблюдаем в сегодняшнем всплеске аллергических и аутоиммунных заболеваний.
Джим Терк – директор по биологической безопасности в Висконсинском университете. Он отвечает за то, чтобы все университетские лаборатории соблюдали правила безопасного обращения с патогенными и рекомбинантными организмами. Джим всегда поддерживал хорошую физическую форму и даже принимал участие в марафонских забегах. Но весной 2005 года у него внезапно нарушилась речь. Его жена испугалась, что это могло быть признаком скрытого инсульта, и заставила пойти к врачу, который обследовал его и не нашел ничего плохого. «Вы просто перенапряглись, – сказал врач. – Вы много работаете, часто задерживаетесь на работе допоздна, к тому же у вас семья, дети. Это результат усталости и стресса». Джим также заметил периодически возникающие проблемы с равновесием и онемение ног, но, успокоенный заключением врача, отмел все тревоги. В феврале 2008 года он начал серьезно готовиться к очередному марафону. Он вспоминает: «После трех-четырех минут интенсивного бега на крытом стадионе я терял над собой контроль. Я спотыкался и был вынужден хвататься за ограждения. Но я упрямо закрывал глаза на эти симптомы и продолжал тренировки. "Я нахожусь в плохой форме, – сказал я себе, – поэтому мне нужно тренироваться еще упорнее!"» Джим продолжал ходить на стадион, и каждый день повторялось то же самое, пока однажды он не упал лицом на дорожку.
По-прежнему не желая признавать, что с ним что-то не так, Джим начал тренировать бейсбольную команду своего сына. Но вскоре он заметил, что вынужден все шире расставлять ноги только лишь для того, чтобы удерживаться в вертикальном положении. От малейшего наклона вперед у него сильно кружилась голова. Тогда он снова пошел к врачу. Высокое кровяное давление было быстро исключено из списка возможных причин – сердце у Джима было как у подростка. Но магнитно-резонансная томография показала ужасающую картину. «Мой мозг был усеян этими бляшками. Их было штук двадцать», – говорит Джим. Следующее МРТ-обследование показало, что очаги поражения затронули даже спинной мозг, и в августе 2008 года ему был поставлен диагноз «рассеянный склероз с возвратно-ремиттирующим течением», т. е. его начальная стадия.
Так Джим присоединился к более чем 2 миллионам человек по всему миру, страдающих этим заболеванием. Эти люди живут в основном в развитых странах и, на удивление, очень молоды – средний возраст начала заболевания составляет всего двадцать пять лет. Хотя к развитию этого заболевания причастны более пятидесяти генов, недостаток солнечного света и витамин D, вирусы и курение, нельзя не обратить внимание на два поразительных факта – а именно на существование значительной отрицательной корреляции между распространением рассеянного склероза и распространением гельминтных инфекций, а также на дисрегуляцию функционирования Т-лимфоцитов, которая часто встречается у больных рассеянным склерозом. Так называемые склеротические «бляшки» представляют собой небольшие очаги воспаления, где происходит разрушение миелиновой оболочки, покрывающей и изолирующей нервные волокна. При возвратно-ремиттирующей форме рассеянного склероза за год обычно образуется от пяти до десяти новых бляшек, при этом в среднем лишь одна из десяти затрагивает критически важный участок центральной нервной системы – зрительный нерв, мозжечок или сенсорные нервные волокна.
Через несколько дней после постановки диагноза Джим с женой смотрели еженедельную передачу о рассеянном склерозе на местном телеканале. «Выступал доктор Флеминг из нашего Висконсинского университета. Он рассказал, что планирует провести испытания своего нового метода лечения – гельминто-индуцированной иммуномодулирующей терапии – с использованием яиц власоглава. Я уже кое-что слышал о гигиенической гипотезе, поэтому сразу заинтересовался этой идеей. Однако я понимал, что люди вряд ли выстроятся в очередь, чтобы глотать яйца глистов, учитывая, как отвратительно это звучит. Я знал, что эти яйца имеют микроскопический размер, их не увидишь невооруженным глазом. Но если вы попросите людей их проглотить…» На следующий же день Джим связался с Флемингом и стал первым добровольцем в этом исследовании. Он принимал яйца гельминтов в течение трех месяцев, после чего прошел двухмесячный период очищения.
Интерес Джона Флеминга к возможностям свиного власоглава (
Флеминг также обратил внимание на работу аргентинского невролога Хорхе Корреале, который сообщил о снижении тяжести симптомов рассеянного склероза у пациентов, инфицированных кишечными гельминтами. Как показал Корреале, паразитарная инфекция обладала специфическим действием в случае рассеянного склероза, поскольку регуляторные Т-лимфоциты, продуцируемые у зараженных пациентов, были специфическими по отношению к миелиновым антигенам, что означало, что они защищали миелиновую оболочку нервных волокон. Флеминг получил разрешение провести первую фазу испытаний на небольшой группе, включающей всего пять пациентов, которым диагноз был поставлен совсем недавно и которые еще не получали никакого лечения от рассеянного склероза. Хотя испытание специально было сделано коротким и нацеленным в первую очередь на проверку безопасности, а не эффективности, Флеминг обнаружил, что на фоне приема яиц власоглава у всех пяти добровольцев существенно сократилось образование новых очагов поражения в головном мозге, притом что после прекращения лечения темпы образования очагов выросли.
В настоящее время Джим принимает традиционные лекарства от рассеянного склероза и старается держать болезнь под контролем при помощи тщательно подобранной диеты и физической активности. «Если бы у меня не было рассеянного склероза, сейчас я бы находился в лучшей форме за всю мою жизнь!» – говорит он. Джим научился так хорошо контролировать свои симптомы, особенно нарушения речи, что большинство его коллег даже не догадываются о его болезни. Но занятия спортом с детьми стали делом прошлого. «Моим сыновьям сейчас девять и тринадцать лет. Конечно, я бы хотел играть с ними в футбол на заднем дворе, или в баскетбол, или совершать длинные велосипедные прогулки. Я могу немного побросать мяч в корзину – но не могу бегать с ним по площадке. Да, пожалуй, больше всего я тоскую о беге. Я очень люблю бег, но мне пришлось отказаться от него шесть лет назад».
Наша местная кишечная микробиота имеет очень сложный состав – это более двух тысяч видов бактерий, обитающих внутри нас на постоянной основе. Наши отношения с ними настолько близки и тесно переплетены, что многие метаболические сигнатуры, обнаруживаемые в человеческой крови, поте и моче, на самом деле принадлежат нашим синантропным бактериям, а не нам. Реакция человека на конкретное медикаментозное лечение, которую мы видим, вполне может быть не реакцией его организма, а реакцией микробных колоний в его кишечнике. Только позвоночные обладают такими разнообразными и устойчивыми колониями микроорганизмов. У беспозвоночных эти колонии очень малы, иногда всего несколько видов, и зачастую носят транзитный характер. Существует и еще одно интересное различие между позвоночными и беспозвоночными. У последних нет адаптивной иммунной системы – у них есть только примитивная система врожденного иммунитета.
Это наблюдение побудило Маргарет Макфолл-Нгай, специалиста по медицинской микробиологии из Висконсинского университета, перевернуть современную иммунологию с ног на голову. Она утверждает, что адаптивная иммунная система развивалась не только для того, чтобы защищать нас от внешних патогенных микроорганизмов, но и для того, чтобы контролировать постоянное микробное сообщество внутри нас. Новаторские микробиологические исследования XIX века, за которые мы должны благодарить Коха и Пастера, проводились в контексте человеческих болезней. Они задали направление для дальнейших исследований, где микробы рассматривались только как захватчики, которые вторгаются извне в человеческий организм и могут вызывать болезни. Патогенные бактерии и вирусы способны мутировать гораздо быстрее, чем мы, и быстро менять антигенные маркеры на своей поверхности, при помощи которых наша иммунная система распознает в них врагов. Чтобы успешно противостоять им, утверждает традиционная иммунология, нам требуется адаптивная иммунная система с долговременной памятью и способностью генерировать практически бесконечное разнообразие антител.
И хотя это сущая правда, что без адаптивной иммунной системы мы не могли бы эффективно противостоять инфекциям, также верно и то, говорит Макфолл-Нгай, что сложность внешней патогенной среды затмевается невероятной сложностью микробных сообществ внутри нас. Так, было установлено, что всего двадцать пять инфекционных заболеваний являются причиной подавляющего большинства человеческих смертей и случаев приобретенной инвалидности, причем десять из них могли появиться в нашей жизни только с началом урбанизации около шести тысяч лет назад, поскольку они передаются от человека к человеку. Эти патогены не могли бы выжить в те времена, когда люди жили небольшими, географически рассредоточенными общинами. В то же время наша кишечная микробиота может насчитывать тысячи видов микроорганизмов, и, хотя большую часть времени они могут быть дружелюбными, бактерии коварны по своей природе: они являются условно-патогенными и легко мутируют, превращаясь из полезных в болезнетворные, когда им представляется такая возможность. Например, когда из-за повреждения стенки кишечника они могут сбежать из своего надежного «заточения» и проникнуть во внутреннюю среду организма.
Таким образом, наша микробиота не только присутствует в нашей жизни гораздо дольше, чем большинство внешних патогенных микроорганизмов, но и значительно превосходит их по численности и видовому разнообразию. Без нее «кишечная полиция» нашей адаптивной иммунной системы никогда бы не развилась в столь невероятно гибкую систему, способную проводить различие между дружественными микробами и периодически проникающими в их ряды патогенами или же выявлять среди дружественных микробов тех, которые вдруг превратились во враждебных изгоев. Как утверждает Саркис Мазманян, взаимоотношения с микробиотой – это серьезный вызов для нашей адаптивной иммунной системы, поскольку микробиота несет с собой огромную чужеродную антигенную нагрузку, которую иммунной системе нужно либо игнорировать, либо терпеть для поддержания здоровья человека. В свою очередь, в интересах микробиоты поддерживать здоровье своего хозяина. Да, довольно унизительно осознавать, что мы являемся всего лишь подходящей средой обитания для миллионов микроорганизмов – домом, который они «подстраивают» под себя и свои потребности. В процессе коэволюции мы вместе с нашей микробиотой научились давать отпор внешним патогенам, поскольку это отвечает нашим общим интересам. Например, недавно было установлено, что мыши, страдающие системной бактериальной инфекцией, начинают вырабатывать особый вид сахара, благоприятствующий росту популяции дружественных бактерий в кишечнике, которые помогают им бороться с этой инфекций.
Жерар Эберль из Института Луи Пастера считает, что в этом суперорганизме, образованном человеком и микробами, иммунная система никогда не отдыхает – она работает по принципу пружины. Чем больше микробы колонизируют ниши внутри нас или проявляют патогенное поведение, тем сильнее сжимается пружина иммунитета, и чем сильнее сжимается эта пружина, тем более интенсивный отпор микробам она дает. Другими словами, иммунная система постоянно находится в динамическом напряжении, и это напряжение необходимо для поддержания гомеостаза – состояния равновесия внутри организма. Например, если уничтожить кишечную микробиоту при помощи антибиотиков, мы можем стать уязвимыми для инфекций, вызываемых энтерококками. Дело в том, что дружественные бактерии, обитающие на стенке нашего кишечника, производят антибактериальные пептиды, которые в нормальных условиях уничтожают эти патогены. Слишком слабая иммунная система, объясняет Эберль, с одной стороны, делает суперорганизм уязвимым для условно-патогенных старых друзей, которые внезапно «переходят на сторону зла»; с другой – слишком сильная иммунная система дестабилизирует нашу микробиоту и запускает развитие аутоиммунных заболеваний.