Гуру Мадхаван
Думай как инженер. Как превращать проблемы в возможности
Guru Madhavan
Applied Minds: How Engineers Think
Научный редактор Эдуард Крайников
© Guruprasad Madhavan, 2015
© Перевод на русский язык, издание на русском языке, оформление. ООО «Манн, Иванов и Фербер», 2016
Эту книгу хорошо дополняют:
Стивен Строгац
Авинаш Диксит, Барри Нейлбафф
Алекс Беллос
Кип Торн
Сэм Карпентер
Пролог
Невидимые мосты
Никто не знал, откуда она взялась.
Стоял ясный апрельский день 1980 года, и Бостонский марафон был в самом разгаре. Вдоль улиц выстроились десятки конных полицейских и сотни медиков, готовых прийти на помощь бегунам. Небольшой самолет оставил на лазурном небе надпись: «Веселого состязания!»
На 42-километровой марафонской дистанции было четыре существенных подъема, среди которых самым изматывающим считался холм Хартбрейк, находящийся примерно за 9,5 км от финиша. На этом отрезке длиной 800 м с дистанции обычно сходило несколько сотен из пяти с лишним тысяч участников забега.
Примерно в 14:30 первым – уже третий год подряд – финишную черту пересек легендарный Билл Роджерс; его результат составил 2 ч 12 мин. Под одобрительные крики оживленных зрителей через несколько минут финишную линию, сделав рывок, пересекла девушка лет двадцати пяти в бело-желтом спортивном костюме Adidas. Она оказалась первой среди участниц марафона, показавшей результат 2 ч 31 мин.
Ее звали Рози Руис, и она установила новый рекорд Бостонского марафона, став третьей самой быстрой женщиной в истории марафонов. Зрители продолжали подбадривать криками других участников забега, которые приближались к финишу. Один тележурналист сразу же объявил, что результат Руис – «новый американский рекорд», и взял у нее интервью.
РЕПОРТЕР. За какое время вы пробежали свой первый марафон и где это было?
РУИС. 2 ч 56 мин. 33 с, в прошлом году, в Нью-Йорке.
РЕПОРТЕР. То есть вы улучшили время с 2 ч 56 мин. до 2 ч 31 мин.?
РУИС. Ну, видимо, да.
РЕПОРТЕР. И чем вы объясняете такой прогресс?
РУИС. Не знаю.
РЕПОРТЕР. У вас было много интенсивных интервальных тренировок?
РУИС. Меня уже об этом спрашивали, но я не совсем поняла. Что такое интервальные тренировки?
РЕПОРТЕР. Это беговые тренировки, цель которых – резко улучшить вашу скорость. Вы перешли от 2 ч 56 мин. к 2 ч 31 мин.; обычно это предполагает усиленную работу над скоростью. У вас есть тренер или, может, кто-то вам дает советы?
РУИС. Нет, я сама себе советчик.
РЕПОРТЕР. Потрясающие результаты, Рози! Поздравляю! Рози Руис – таинственная победительница!
Но организаторы забега отнеслись к девушке с недоверием. Руис не выглядела усталой и даже не вспотела, да и по физическим данным мало напоминала марафонца. Ее не видели на шести контрольных пунктах, расположенных на дистанции. Более того, никто не смог найти ее на видеозаписях ни в один момент марафона, который смотрели 1,5 млн человек и освещали более 600 репортеров.
Один из свидетелей заявил: «Я видел, как из толпы передо мной выскочила женщина – на другой стороне Коммонуэлс-авеню, метров за 800 до финиша. Она была в спортивном костюме с номером, но я подумал, что, может, она немного не в себе и решила просто пробежаться». Это подтвердили еще несколько зрителей.
Быстрая проверка анкетных данных Руис показала, что она – иммигрант с Кубы и работает секретарем-референтом в фирме по продаже металлопродукции на Манхэттене. А вскоре организаторы марафона выяснили, что до этого Руис участвовала всего в одном марафоне – в Нью-Йоркском 1979 года – и благодаря продемонстрированным там результатам была допущена к участию в Бостонском. Но потом один фотокорреспондент вспомнил, что на Нью-Йоркском марафоне Руис схитрила: проехала на метро до Колумбус-Серкл, а оттуда пробежала до финиша в Центральном парке.
Потрясающее своей наглостью мошенничество Руис в 1979 году помогло ей «выиграть» Бостонский марафон, где она пробежала всего полтора последних километра или около того. Руис отстаивала свою позицию, принимая вид оскорбленной невинности, и даже выразила готовность пройти ряд проверок на детекторе лжи. Но после почти недельного расследования Бостонская легкоатлетическая ассоциация аннулировала результат Руис и дисквалифицировала ее за обман при участии в марафоне.
А потом ее арестовали.
Скандал с Руис дал богатый материал СМИ. В комедийной передаче «Пятница» на телеканале ABC шутили: «Организаторы заподозрили неладное, когда после 42 км марафона Руис пересекла финишную черту в сандалиях и с сигаретой в зубах». Один из знакомых Руис сказал журналистам: «Если вы попросите ее пролить пять слезинок, то она ровно столько и прольет». Имя Руис стало синонимом мошенничества в марафонах. Как выразился журналист New York Times: «Ее дурная слава продолжает жить, как хрупкая фарфоровая статуэтка, которую разбили, но потом склеили».
Случай с Рози Руис заставил организаторов марафона серьезно задуматься. Ее обман был очевиден, но он подчеркнул тот факт, что следить за соблюдением правил в забеге с тысячами участников – задача не из простых. Как предотвращать подобные инциденты в будущем? Решение предоставила инженерия в виде комбинации изобретений, которые первоначально предназначались для двух других, причем совершенно разных целей.
В 1959 году железнодорожные компании в США столкнулись с весьма досадной и неподатливой проблемой. В системе железных дорог насчитывалось почти 1,6 млн товарных вагонов, и компаниям нужно было знать точное местонахождение каждого вагона ежедневно в полночь, поскольку это влияло на доходы, но никакого способа отслеживания не было. Требовалось автоматизированное средство поиска и идентификации вагонов.
Примерно в то же время Дэвид Коллинз устроился на работу в отдел исследования операций в Sylvania, компанию по производству электротоваров. Коллинз, окончивший Массачусетский технологический институт со степенью магистра, обожал профессию инженера и даже в шутку говорил жене, что в следующей жизни писал бы сценарии для телевидения и кино, где инженеры были бы супергероями.
Коллинз узнал о проблеме с товарными вагонами от коллеги. В студенчестве Коллинз проходил стажировку на Пенсильванской железной дороге и разбирался в этой системе. «Задача меня увлекла, – вспоминал он. – И я начал подумывать об идее этого проекта».
На каждом вагоне обычно указывался горизонтальный серийный номер, представлявший собой сочетание кода компании (шесть цифр) и кода вагона (четыре цифры). Подобно традиции клеймения скота на западных ранчо, эти коды были разных цветов, отражающих свет – красный, голубой и белый – на неотражающем черном фоне. Кроме того, у кодов не было единой принятой ширины, шрифта и стандартного места размещения на вагонах. Сами же вагоны различались по размерам: вагоны-цистерны, крытые вагоны, вагоны-платформы, причем на последних иногда перевозились полуприцепы высотой 2,7 м. Из-за этих расхождений любые попытки считывать коды с вагонов были сопряжены с трудностями. К тому же поезда двигались с разной скоростью: то развивали ее до 96 км/ч, то ползли на взвешивание. Для решения этих проблем явно требовалась технология динамического сканирования.
«Итак, хотя система маркировки применялась уже 50 лет, не было способа собрать эту информацию и привести ее в форму, пригодную для машинного считывания», – вспоминал Коллинз. Он начал работать над проектом в свободное время и в итоге заручился поддержкой начальника. Коллинз описывал ситуацию так: «Я как будто мастерил что-то в сарае на задворках фермы, и никому не было до этого особого дела».
У Коллинза возник замысел разработать систему оптических датчиков, которая бы посылала луч белого света к удаленному коду и расшифровывала отраженный при этом сигнал. Коллинз сосредоточился на главных элементах конструкции: размере участка с кодом (место, куда падает и откуда отражается свет), частоте сканирования (сколько раз в секунду код должен считываться, чтобы считаться точно) и глубине резкости (дальний предел считывания сканера). Первые эксперименты стали чередой досадных неудач. Один из коллег-инженеров Коллинза, Фрэнк Стайтс, тоже тщетно пытался решить эту проблему, и тут на помощь пришла интуиция. Стайтс натолкнул Коллинза на мысль: «А почему бы не развернуть таблички с кодом набок?» Мысль оказалась удачной.
Вертикальное сканирование кодов – то есть расстановка элементов кода по принципу «перекладин стремянки», а не «кольев забора» – стало более выигрышным с технической точки зрения вариантом. Вместо того чтобы направлять непрерывные лучи белого света на проезжающие поезда и получать при этом весьма сомнительные результаты, Коллинз разработал подвижный источник света с вращающимися зеркалами. Теперь его сканер стабильно распознавал структуру цветовых кодов и расшифровывал информацию о поезде. Но тут возник ряд вопросов. А будет ли этот сканер надежно работать при разных скоростях поездов? Возможно ли считывание в снег, дождь, туман? Повлияют ли на точность считывания загрязнения на поверхности кодов?
«В лаборатории это нельзя было выяснить, – рассказывал Коллинз. – Следовало “обкатывать” систему с настоящими вагонами в полевых условиях, но у нас не было личной железной дороги».
Коллинз устроил тестовую площадку возле железнодорожной ветки, по которой перевозили материалы из Нью-Гемпшира для расширения федеральной автострады в районе Бостона. Обычно поезд пересекал эту площадку раз в сутки, и Коллинз усердно испытывал на сотнях грузовых вагонов свой сканер, который назвал KarTrak. В последующие годы Коллинз значительно улучшил эффективность KarTrak, заменив белый свет на гелий-неоновый лазер. К 1967 году железнодорожная отрасль начала осваивать это нововведение.
Каков конечный результат? Многоцелевая технология считывания кодов на расстоянии.
Как-то утром в 1970-х Джордж Лорер, сидя в своем «Шевроле» цвета «зеленый металлик», движущемся по окружной дороге в Северной Каролине, вспоминал, как они с бывшим однокурсником путешествовали автостопом по Восточному побережью после окончания колледжа. У них не было ни гроша, и они отчаянно искали работу. Тогда, в начале 1950-х, инженеры практически не пользовались спросом на рынке труда. И Лорер был готов взяться за любую работу, где платили бы больше 1,5 долл. в час. Перед собеседованиями Лорер заходил в местный полицейский участок и просил разрешения умыться в туалете. Спустя несколько месяцев он таки получил заветную работу в IBM, где и прошла вся его карьера.
Сейчас Лорер уже пенсионер; спокойный, чем-то похожий на актера Хэла Холбрука, голливудского ветерана, человек: бледная кожа, серебристая седина и густые брови. Кабинет в загородном доме Лорера в Северной Каролине напоминает мастерскую и выдает в нем человека разносторонних интересов. Чего там только нет: и коллекция механических инструментов и электронных деталей, и технические руководства, и книги на разнообразные темы – например, «Все о сварке», «Столярные работы в саду», «Альбом американских марок», «Основы кузовного ремонта и покраски автомобилей», «Руководство пользователя TurboCAD» и «Делаем авиамодели с нуля». А к потолку подвешена авиамодель.
В начале 1970-х недостатки управления товарными запасами серьезно вредили пищевой промышленности. Компании искали способ сэкономить деньги, и одна из идей сводилась к применению основанной на коде системы отслеживания продовольственных товаров. Комитет в составе топ-руководителей таких фирм, как Heinz, General Foods, Kroger, General Mills, Associated Foods, Fairmont Foods и Bristol-Myers, объявил конкурс предложений по разработке кода отслеживания. В 1971 году за эту задачу взялись в IBM.
Проект доверили Лореру, и начальник поручил ему проверку кода в виде мишени, который за несколько лет до этого написал другой инженер. «Пару дней я пытался с ним экспериментировать, – вспоминал Лорер, – но вскоре убедился, что код такого вида не в состоянии удовлетворить требованиям пищевой промышленности».
Код должен быть не больше полутора квадратных дюймов (около 9,7 см²) и легко считываться и людьми, и электроникой. Кроме того, символ должен подходить для печати на продукции любых форм и размеров – например, кусках мыла, коробках с сухими завтраками и банках кофе. Десятизначный код должен считываться в любом направлении с точностью как минимум 99,995 %, то есть на каждые 20 тыс. проданных единиц товара допускалась только одна ошибка. Более того, следовало удовлетворить эти технические требования так, чтобы затраты на производство продовольственных товаров при этом не повысились. И Лорер начал работать над решением задачи в условиях этих жестких ограничений.
Рискуя потерять работу, Лорер пошел наперекор указаниям начальника и задался целью создать более эффективный подход. Разработанный им код состоял из 10 вертикальных черных и белых полосок разной ширины, расположенных подобно узору на шкуре зебры. Темные полоски поглощали свет, а белые отражали; оптический датчик воспринимал этот отраженный свет и преобразовывал его в электрические импульсы, которые обрабатывал компьютер.
Для демонстрации опытного образца Лорер нанял высококлассного питчера из софтбольной команды, и тот со всей возможной скоростью швырял помеченные кодом пепельницы с мягким основанием так, чтобы они пролетали над сканером. Код с каждого предмета считывался безошибочно. Более того, команда Лорера намного превзошла ожидания представителей пищевой промышленности: частота ошибок составляла всего 1 из 200 тысяч. Итак, Лорер справился с задачей. Комитет по отбору кода пришел в восторг от изобретения Лорера и назвал его «универсальным кодом товара» (Universal Product Code, UPC). В 1973 году он был принят в качестве отраслевого стандарта.
Но через несколько недель возникла проблема «золотой курицы». В мясных отделах продовольственных магазинов отсутствовал способ проверить, совпадает ли указанная на продукте цена с фактической ценой в базе данных магазина. Из-за этого компьютер иногда мог или уменьшить цену для покупателя на несколько центов, или завысить ее на тысячу долларов, причем вероятность таких ошибок была одинаковой. «Мы узнали еще один факт, на сей раз – о человеческой натуре. – заметил Лорер. – Большинство людей были готовы проявить снисхождение к милой молоденькой кассирше, если она брала с них 1,98 долл. за товар стоимостью в 1,89 долл., но не желали прощать машину, которая назначала цену в 99,99 долл. за полкило курятины, хотя столь грубая ошибка никогда не прошла бы незамеченной. Просто люди не прощают ошибки машинам».
Лорер устранил проблему, добавив в универсальный код товара цифру для проверки цены. Со временем благодаря дополнительным испытаниям, улучшению печати этикеток и подробным кассовым чекам от подобных трудностей, по сути, удалось избавиться, что привело к радикальным изменениям в управлении товарными запасами и в процессе расчета за купленные в магазине товары.
«Просто нужно сесть и продумать каждое из возможных решений, шаг за шагом, по очереди, и верить в то, что решение есть и вам по силам его найти, – сказал Лорер. – А не вздыхать по поводу того, что это невозможно».
В конечном итоге технология сканирования – детище Дэвида Коллинза, и универсальный код товара, разработанный Джорджем Лорером, появившиеся при разных обстоятельствах абсолютно независимо друг от друга, были сведены воедино. Результатом такой комбинации стал штрихкод. Это произвело настоящий переворот в организации торговли и заложило основу современной системы цепочки поставок. Внедрение штрихкодов открыло дорогу для целого потока новых, раньше просто немыслимых областей практического применения, воспринимаемых сегодня как само собой разумеещееся.
Все скоропортящиеся товары – от калифорнийских авокадо до эквадорских бананов – теперь приобрели не поддающееся порче «удостоверение личности», заключенное в штрихкоде. Это произошло благодаря умению таких инженеров, как Коллинз и Лорер, превращать проблемы в возможности. Они целенаправленно, последовательно, делая ошибки и устраняя их, не теряя связи с реальностью, шли к своей цели. И этот процесс был так же важен, как и сама первоначальная идея.
Инженеры помогают создавать
Это очень точно подметил Джон Сибрук из New Yorker: «Мало кто из жильцов современных высоток знает, где расположены несущие колонны и как обеспечивается их устойчивость, а также к какой конструктивной системе относится их дом – монолитно-каркасной или с несущими стенами, и никто не вскрывает потолок, чтобы посмотреть особенности устройства перекрытий; все эти решения разрабатываются инженерами-проектировщиками здания. Анонимность инженера, спроектировавшего небоскреб, – это награда за его гениальность. Небоскребы вызывают такое восхищение отчасти и потому, что на них будто не действует сила тяжести: кажется, что им легко устремляться ввысь и для этого не прикладывалось никаких усилий». Взгляните вниз с самолета, летящего на высоте 6,5 км над землей, и все, что вы увидите, – это системы, сотворенные природой и инженерами.
Инженерное мышление не поддается простому определению. Как объясняет Крейг Барретт, бывший председатель совета директоров и главный исполнительный директор компании Intename = "note" «Умение скрупулезно и упорядоченно решать проблемы – вот что отличает инженеров от других людей, которые в своем отношении к жизни, возможно, больше склонны философствовать, дискутировать или витать в облаках. По-моему, это – одна из причин, почему инженеры обычно процветают не только в своей профессии, но и за ее пределами». Инженерное мышление похоже на прибор, который не нужно долго настраивать, достаточно просто включить в сеть, или мультитул, подходящий для самых разных работ. А причина в том, что, по словам Джима Пламмера, бывшего декана инженерного факультета Стэнфордского университета, «инженеры – это интеграторы, которые сводят воедино идеи из многочисленных потоков знаний. Они действуют на стыке осуществимого, перспективного и желательного».
Инженерное мышление – органичный, но при этом синтетический процесс, и среди инженеров царит такое же культурное разнообразие, как и в мире музыки. В этой книге я устрою вам экскурсию по ряду разных областей – от сфер, где царит строгий контроль и стандартизация, до загадочных уголков инженерного ума, на которые помогут пролить свет сами представители этой профессии. В ходе путешествия мы увидим яркие примеры того, как инженеры превращают чувства в готовый продукт. Еще я расскажу о ситуациях, когда инженерное мышление может навредить. И вместе мы проведем «обратный инжиниринг» инженерного мышления и рассмотрим практические аспекты, которые вы можете применять в повседневной жизни.
Вскоре после Бостонского марафона 1980 года Дэвиду Коллинзу позвонили из New York Road Runners – клуба, который занимался организацией забегов, и предложили испробовать штрихкоды для отслеживания участников марафонов. Позже Коллинз вспоминал, что сразу же отказался. «Я сказал, что это неудачная идея и им нужно забыть о ней». Но Фред Лебоу, основатель Нью-Йоркского марафона, не сдавался.
Лебоу связался с Коллинзом в Бостоне. В итоге они договорились и попросили нескольких человек пробежаться вокруг одного здания в спортивных костюмах. Коллинз при этом тестировал разные способы считывать номера с нашивок на груди бегунов с помощью устройства KarTrak. Оказалось, что вариант, отлично подходивший для товарных вагонов, не срабатывал с бегунами. Люди были непредсказуемы: они намокали от пота, их номера болтались туда-сюда. И тогда Коллинз решил сканировать бегунов по достижении финишной черты и просить их выстроиться в ряд, поскольку считывать код в движении сложно. При этом организаторы забега могли определить время финиша бегунов с приемлемой точностью.
Коллинз устранил одну из основных проблем больших забегов – точную фиксацию времени и относительной позиции бегунов, но не смог полностью справиться с «проблемой Рози Руис». Это впоследствии сделал другой инженер, применив творческий подход и еще одну технологию – радиочастотную идентификацию. В последние годы в одежду или обувь бегунов вставляются электронные чипы, что позволяет мгновенно отслеживать каждого спортсмена с точностью до доли секунды.
«Я так увлекся работой над этой проблемой, что сам пробежал пару марафонов в костюме со штрихкодом, чего от себя не ожидал, – вспоминает Коллинз. – Это было очень интересно. Что касается участия в марафонах, то их может пробежать кто угодно. Просто нужно упорство… совсем как в работе инженера».
Глава 1
Подбор и комбинирование
Людовик XIV, известный также как «король-солнце», был большим любителем порядка. Он писал: «Надлежащий порядок придает нам уверенный вид, и, судя по всему, нам достаточно просто выглядеть храбрыми». По этому принципу он организовал всю свою артиллерию. Но к 1715 году – в конце его правления, одного из самых длительных в европейской истории, и после ряда крайне разорительных войн – упорядоченная военная система Людовика XIV превратилась в мешанину всевозможных обходных путей. Его преемник, Людовик XV, в 1732 году издал королевский указ, в котором предписывал взяться за работу генерал-лейтенанту Жану-Флорану де Вальеру.
Вальеру было поручено реорганизовать артиллерию, и он как абсолютист хотел создать упорядоченную «систему контроля: рациональность, поставленную на службу деспотизму», как писал историк Кен Олдер. На практике планы Вальера привели к уровню централизации, ранее просто невообразимому во французской армии. В числе впечатляющих достижений Вальера было принятие на вооружение 24-фунтовых орудий (современный калибр 152 мм) – длинноствольных, толстостенных, богато украшенных художественным литьем, обладавших превосходной дальнобойностью и высокой эффективностью.
Но у этих пушек был один существенный недостаток. Хотя они отлично зарекомендовали себя при обороне морских берегов и крепостей, а также в осадных боях, в наступательных военных действиях они проявили себя не лучшим образом. Пушки Вальера были громоздкими, и транспортировать их было тяжело. А маневрирование во время боя в открытом поле требовало таких усилий и ресурсов, что это грозило катастрофой.
Согласно одному военному историку, чтобы транспортировать и обслуживать 34-фунтовое орудие, в 1600-е годы требовалось до 20 лошадей и артиллерийский расчет из 35 человек. Даже 4-фунтовые пушки Вальера имели ствол длиной 238 см и весили около 563 кг, что примерно в 288 раз превышало вес снаряда. В конце концов французы поняли, что их осадное оружие пригодно только для поражения неподвижных целей, а тактические варианты следовало пересмотреть.
Подвижность была решающим качеством, а скорость – обязательным. Французы нуждались в новой системе.
В детстве Жан-Батист Вакет де Грибоваль интересовался военными орудиями. Он родился в 1715 году в семье юриста и впоследствии поступил в артиллерийскую школу для изучения баллистической технологии. В 17 лет Грибоваль записался добровольцем во французскую армию. В 1748 году он модифицировал конструкцию лафета для корабельных орудий, что позволяло перевозить их для наступательных операций. В 1749-м Грибоваль был произведен в капитаны. Позже в том же году Вальер отверг предложение Грибоваля о массовом производстве его лафетов, которые, возможно, облегчили бы передвижение громоздких орудий.
Грибоваля постигло глубокое разочарование. Он ценил установленную строгими правилами упорядоченность пушек Вальера, но считал, что кустарный способ их производства ведет к отставанию. Но еще сильнее Грибоваля угнетало то, что он не пользовался авторитетом в артиллерийском корпусе; его идеи ни на что не влияли. В то время там процветали зависть и соперничество, а присвоения нового звания приходилось ждать годами. В общем, Грибоваля мало что удерживало на своем месте.
Хотя с 1741 года французы и пруссаки были союзниками, подписание в 1756 году первого Версальского договора между Францией и Австрией – двумя заклятыми соперниками – привело Пруссию в ярость. Во франко-прусских отношениях наступило резкое охлаждение. И вскоре Пруссия образовала союз с Великобританией и напала на Францию и ее партнеров: Австрию, Баварию, Россию, Саксонию и Швецию – тем самым развязав Семилетнюю войну, которую Уинстон Черчилль впоследствии назвал «первой мировой».
С началом войны Австрия осознала, что отчаянно нуждается в грамотных военных инженерах, поскольку в ее войсках было много плохо подготовленных офицеров технической службы, которые делали карьеру благодаря фаворитизму, а не личным заслугам. Грибоваль усмотрел в этом свой шанс и добился отправки на военную службу в Австрию, которая была союзником Франции в этой войне. Он интуитивно догадывался, что легкие орудия имеют решающее значение в наступательных боевых действиях, а этого так не хватало системе Вальера по сравнению с мобильными войсками Пруссии. Грибоваль с большим техническим успехом применил несколько измененных им пушек, а также значительно улучшенный в 1748 году лафет для морских орудий.
После такой наглядной демонстрации Грибоваль стал неуклонно приобретать авторитет в австрийской армии. Теперь он задался целью реформировать в стране производственный процесс и поднять его на новый уровень по сравнению с кустарным производством. Ему удалось убедить начальство, сделав акцент на том, что у австрийских орудий огромные преимущества перед французскими. «Просвещенный и рассудительный человек, который разбирается в [относящихся к делу] подробностях и имеет репутацию, позволяющую ему говорить правду, нашел бы в этих двух видах артиллерии способ создать одну, которая почти каждый раз побеждала бы на поле боя, – писал Грибоваль. – Но этому всегда мешают невежество, тщеславие и зависть; это дьявольски трудное начинание, и добиться здесь изменений вовсе не так легко, как переодеться в новый костюм. Затраты слишком велики, к тому же вы подвергаетесь большой опасности, если не уверены в успехе».
В 1762 году, в самый разгар Семилетней войны, Грибоваль сделал свой ход. Во время осады Швейдница он командовал горсткой военных, которая противостояла значительным силам противника. Грибоваль продержался 63 дня против пруссаков в одной из самых кровопролитных битв той эпохи, унесшей около трех тысяч жизней. Методы Грибоваля произвели впечатление даже на его врага, Фридриха Великого. В конце концов пруссаки все же одержали победу. Грибоваля арестовали, но выпустили в конце Семилетней войны.
Так Грибоваль стал «настоящим героем войны». Тогда наблюдавшие за его возвышением французы предложили ему влиятельную должность и заманчивое вознаграждение за возвращение. Первый шаг Грибоваля в новом качестве был дерзким: он решил положить конец преобладанию системы Вальера, считая ее одной из причин поражения Франции. В результате во французской артиллерии возникло ожесточенное соперничество. Грибоваль и Вальер сошлись в борьбе, которую, как пишет Олдер, можно сравнить «с полемикой по поводу стратегической оборонной инициативы в нашу эпоху». По словам историка, это был «ставший достоянием публики спор о наступательных и оборонительных возможностях страны и эффективности передовых технических устройств». В этом поединке сторонники прежнего порядка выступали против приверженцев нового.
Грибоваль начал совершенствовать конструкцию французских орудий. Поставив во главу угла точность, он сформулировал технические характеристики, которые можно было выверять в пределах одной тысячной дюйма, что меньше толщины бумажного листа. Обратившись к опытным металлургам и применив сложные сверлильные станки, Грибоваль добавил к пушкам подъемные винтовые механизмы, что способствовало точному прицеливанию и высокой меткости. Прицелы, добавленные для более удачного расположения орудий, и кожаные лямки для их перемещения оказались большим подспорьем для солдат в ходе боевых действий. Грибоваль увеличил размер колес орудий для легкого хода по пересеченной местности и заменил деревянные оси на чугунные для простоты в обслуживании и ремонте. Эти небольшие, но существенные корректировки повысили удобство применения орудий, а также определили тактику Грибоваля.
В отличие от пушек Вальера, которые приходилось возвращать оружейникам для обслуживания и устранения неисправностей, орудия Грибоваля легко демонтировались и перекомпоновывались. Одной деталью пушки можно было заменить другую, обладавшую теми же техническими характеристиками. Такая взаимозаменяемость стала возможной благодаря принципам «вариации параметров», согласно которым различные компоненты проверяются по отдельности, тогда как другие остаются неизменными, подобно методу решения алгебраических уравнений. Как поясняет Олдер, эта «комбинация факторов», позаимствованная Грибовалем у своего наставника в артиллерийском деле, математического гения Пьера Симона Лапласа, на практике использовалась для максимизации эффективности.
В ходе своей деятельности Грибоваль создал платформу для развития будущих технологий. Его стратегия заключалась в достижении того, что еще никому не удавалось: высокой эффективности, единообразия и заменяемости. Были разработаны таблицы для изготовления изделий, введены стандарты производства и инструкции для легкого и быстрого обслуживания орудий. Этот систематический процесс привел к появлению легких орудий и сделал систему Грибоваля основой самой эффективной артиллерии в Европе.
Эта была радикальная идея для эпохи осадных войн. «Самым значительным нововведением Грибоваля стало то, что его система была настоящей: глубокий синтез организации, технологий, материальной части и тактики, – пишет историк Говард Розен, – а каждый ее аспект, от лошадиной упряжи до подбора и организации личного состава, воплощал единую функциональную концепцию. Ее принципом была
И все это не опиралось на классические правила того времени.