Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Очерк общей истории химии. От древнейших времен до начала XIX в. - Николай Александрович Фигуровский на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Развивая эти соображения, Лавуазье вскоре создает целую теорию кислот. Эта теория была представлена Академии наук 5 сентября 1777 г., в окончательном виде она опубликована в 1780 г. под заглавием «Мемуар о природе кислот и началах, их составляющих». Лавуазье формулирует следующее важное положение, ставшее затем основой его «кислородной теории»: «Многочисленные эксперименты дают мне сегодня возможность обобщить следствия и утверждать, что наиболее чистый воздух, воздух удобовдыхаемый, представляет собой образующее начало кислотности, что это начало является общим для всех кислот и что при этом в состав каждой из них входят одно или несколько других начал, которые их отличают и отделяют друг от друга» (35).

Далее, как бы подчеркивая особую важность в системе складывавшихся воззрений приведенного положения, Лавуазье предлагает «на основании твердо установленных фактов» переименовать «дефлогистированный воздух» Пристлея, или, как он сам обозначал, «удобовдыхаемый воздух», и называть его отныне кислотообразующим, началом, или оксигеном [от — «кислый» и — «рождаю»], или кислородом [37].

Таким образом, Лавуазье полагал, что кислород представляет собой начало, без участия которого невозможно образовать кислоту. Эта концепция, как мы знаем, была ошибочной и явилась следствием явной переоценки роли кислорода в различных химических процессах. Однако сам Лавуазье, основываясь на собственных опытах сжигания фосфора, серы, углерода и других веществ в кислороде, безраздельно держался этой концепции и в случаях ее противоречия фактам прибегал к фантастическим допущениям, точно так же как это делали флогистики, которых он так резко критиковал. Например, для того чтобы объяснить с точки зрения этих представлений состав соляной кислоты, Лавуазье прибегнул к гипотезе о существовании особого элемента — «мурия» (от латинского muria — «рассол», «раствор соли»), который, по его мнению, при соединении с кислородом будто бы и давал соляную кислоту. Эта гипотеза, благодаря авторитету Лавуазье, вскоре сделалась общепринятой и просуществовала около 25 лет — до начала XIX в., когда она была отвергнута. Но введенное им латинское название соляной кислоты — «муриевая кислота» (acidum muriaticum) — удержалось почти до наших дней.

Завершающим этапом формирования кислородной теории явились опыты по сжиганию «горючего воздуха» (водорода) и выяснению состава воды. Опыты эти привели Лавуазье к весьма важным выводам уже в 1783 г.

С тех пор как Кавендиш в 1766 г. получил «горючий воздух» я принял его за флогистон, этот газ привлек пристальное внимание химиков-пневматиков. С «горючим воздухом» экспериментировали почти все химики-пневматики и, прежде всего, английские — Кавендиш и Дж. Уатт, известный изобретатель паровой машины. Лавуазье заинтересовался «горючим воздухом» в семидесятых годах, но из многочисленных опытов с этим газом не смог сделать в то время каких-либо существенных выводов. В 1781 г. Кавендиш, продолжая свои опыты над сжиганием «горючего воздуха», установил, что продуктом его сгорания является вода. «Почти весь горючий и весь дефлогистированный воздух превращается (при горении) в чистую воду», — писал он. Однако этот процесс образования воды Кавендиш объяснил как «флогистирование» воздуха, полагая, что вода представляет собой лишь конденсированное видоизменение воздуха.

В 1783 г. в Париж приехал видный английский физик, секретарь Королевского общества Чарлз Благден (1748–1820), который и рассказал французским академикам, в том числе и Лавуазье, об опытах Кавендиша, Пристлея и Уатта по сжиганию «горючего воздуха», а также об их толкованиях состава воды как «дефлогистированного воздуха», к которому присоединен флогистон. В это время Лавуазье занимался между прочим чисто практическим вопросом — конструированием горелки с кислородным дутьем. Для обеспечения достаточно длительной работы такой горелки он получал в больших количествах кислород и хранил его в изобретенных им газометрах. Кроме того, в распоряжении Лавуазье в то время имелась разнообразная аппаратура для производства всевозможных пневматических опытов. В связи с приездом Благдена Лавуазье, по просьбе академиков, согласился публично показать опыты сжигания «горючего воздуха» в кислороде и 24 июня 1783 г. продемонстрировал их с успехом. В последовавших затем докладах, объяснявших опыты, Лавуазье неточно отметил роль Кавендиша, первым осуществившего такой опыт. Благден высказал в связи с этим свое негодование.

Не касаясь здесь подробностей этого эпизода и возникшего затем спора о приоритете открытия (сообщение Кавендиша было опубликовано в печати лишь в 1784–1785 гг.), укажем, однако, что Лавуазье сделал из своих опытов сжигания «горючего воздуха» совершенно иные выводы, нежели английские ученые-флогистики. В частности, он заявил в докладе, что «вода отнюдь не является простым веществом, но она полным своим весом состоит из горючего воздуха и живительного воздуха».

Нужно, однако, сказать, что образование воды из кислорода и «горючего воздуха» противоречило общей концепции Лавуазье, согласно которой при горении неметаллических веществ в кислороде должны образовываться кислоты. Лавуазье высказывал удивление по поводу образования нейтральной воды при сжигании «горючего воздуха» и в течение нескольких лет пытался открыть в полученной при этом воде какие-либо следы кислоты (36).

Лавуазье не только констатировал образование воды при сжигании «горючего воздуха». Он попытался установить соотношение обоих компонентов, образующих воду. В то время он узнал об опытах своего коллеги, известного французского математика Гаспара Монжа (1746–1818), получившего при помощи разработанного им простого метода значительное количество воды при сжигании «горючего воздуха» (свыше 3 унций). Основываясь на опытах Монжа, Лавуазье рассчитал соотношение объемов обоих газов, образующих воду. Это соотношение оказалось равным 12:22,9, т. е. почти как 1: 2. Он пытался установить и весовые отношения обоих газов в воде.

Однако сама по себе констатация образования воды при сжигании «горючего воздуха» в кислороде и даже установление соотношений между обоими компонентами воды не удовлетворила Лавуазье. В свете прежних своих пневматических исследований он считал необходимым осуществить кроме синтеза и разложение воды, что дало бы ему возможность более основательно утверждать, что его вывод о составе воды и соотношениях в ней обоих газов вполне справедлив. Но вначале Лавуазье не имел возможности осуществить прямое разложение воды с получением обоих составляющих ее газов. Поэтому он был вынужден удовлетвориться получением лишь одного газа в свободном состоянии.

Лавуазье провел опыт разложения воды, исходя из своих представлений о большом сродстве кислорода к металлам, особенно к железу. Действуя на воду железными опилками в течение длительного времени, он получил водород, но не смог установить, сколько можно получить этого газа при полном окислении железа.

Вскоре после этого Лавуазье совместно с математиком, инженером и химиком Жаном Батистом Менье (1754–1793)[38] осуществил разложение воды при высоких температурах. Установка Менье и Лавуазье состояла из ружейного ствола, соединенного с одной стороны с прибором для получения водяных паров, а с другой — с приемником образующихся газов. Пропуская через нагретый докрасна ствол водяные пары, экспериментаторы констатировали, что при достаточно медленном токе вода целиком разлагалась и в приемнике под колоколом собирался водород. При помощи весов был установлен привес железной трубы за счет образования окислов железа и одновременно было определено количество образовавшегося водорода. Исходное же количество воды тоже было хорошо известно.

Эти опыты получения «горючего воздуха» термическим разложением воды в присутствии железа имели и чисто практическое значение. В то время ученые Франции, в первую очередь Бертолле, занимались проблемой добывания водорода для наполнения аэростатов. Менье и Лавуазье при постановке своих опытов также имели в виду разработать дешевый и удобный метод получения водорода для этой цели.

Опыты по сжиганию «горючего воздуха», а также по разложению воды были завершающими в намеченной Лавуазье серии опытов конечной целью которых было низложение теории флогистона. Лавуазье писал в своем мемуаре «Размышления о флогистоне, являющиеся продолжением теории горения и кальцинации, опубликованной в 1777 г.», представленном Академии наук 28 июня 1785 г.: «Моя задача была развить в этом мемуаре теорию горения, опубликованную мною в 1777 г., показать, что флогистон Шталя — воображаемое существо, присутствие которого он без всяких к тому оснований допустил в металле, в сере и фосфоре, во всех горючих телах; что все явления горения и обжига объясняются гораздо проще и легче без флогистона, чем с его помощью. Я не жду, что мои взгляды будут сразу приняты; человеческий ум привыкает видеть вещи определенным образом, и те, кто в течение части своего поприща рассматривали природу с известной точки зрения, обращаются лишь с трудом к новым представлениям; итак, дело времени подтвердить или опровергнуть выставленные мною мнения» (37).

Мы видели, что систематические исследования Лавуазье в области пневматической химии в период с 1772 по 1784 г. полностью развеяли в прах главные положения теории флогистона. Получив кислород, Лавуазье впервые правильно объяснил его роль в процессах горения, кальцинации металлов, восстановления окислов металлов, в процессах дыхания и т. д. Он подробно изучил явление горения, а также продукты горения серы, фосфора, угля и других веществ. Пользуясь весами, в ряде случаев он количественно определил продукты горения всех этих веществ. Наконец, он подробно исследовал процесс сжигания водорода в кислороде и установил состав воды. Все это, как и другие многочисленные его опыты, характеризует его не только как талантливого исследователя-экспериментатора, но и как новатора науки, развившего на основе огромного экспериментального материала новые представления о явлениях горения и дыхания и основавшего на их базе новую химию.

Несмотря на все это, в некоторых исторических научных трудах, особенно в Германии и Англии, еще до сих пор оспаривается приоритет Лавуазье в большинстве его экспериментальных, фактических открытий. Нет необходимости вдаваться в запутанную полемику о приоритете открытий Лавуазье. Выше уже были указаны некоторые факты и мнения по этому поводу. Здесь на основе краткого исторического анализа деятельности Лавуазье в области пневматической химии можно определенно утверждать, что никому другому, кроме Лавуазье, не принадлежат правильные объяснения многих химический явлений, которые в течение ряда столетий обсуждались и объяснялись химиками либо с позиций традиционной аристотелевской философии, либо с точки зрения реакционных алхимических учений. Говоря о заслугах Лавуазье в открытии кислорода и в объяснениях процессов горения, Ф. Энгельс писал: «Пристли и Шееле описали кислород, но они не знали, что оказалось у них в руках. Они «оставались в плену» флогистонных категорий, которые они нашли у своих предшественников. Элемент, которому суждено было ниспровергнуть все флогистонные воззрения и революционизировать химию, пропадал в их руках совершенно бесплодно. Но вскоре после этого Пристли, будучи в Париже, сообщил о своем открытии Лавуазье, и Лавуазье, руководствуясь этим новым фактом, вновь подверг исследованию всю флогистонную химию и впервые открыл, что новая разновидность воздуха была новым химическим элементом, что при горении не таинственный флогистон выделяется из горящего тела, а этот новый элемент соединяется с телом, и таким образом он впервые поставил на ноги всю химию, которая в своей флогистонной форме стояла на голове. И если даже Лавуазье и не дал описания кислорода, как он утверждал впоследствии, одновременно с другими и независимо от них, то все же по существу дела открыл кислород он, а не те двое, которые только описали его, даже не догадываясь о том, что именно они описывали» (38).

Отдавая должное предшественникам Лавуазье, сделавшим крупнейшие открытия, в частности открывшим кислород и другие газы, а также современникам и сотрудникам Лавуазье, вместе с ним или независимо от него разрабатывавшим актуальные проблемы пневматической химии и, прежде всего, проблему горения, мы должны все же твердо сказать, что в создании новой химии и ее основы — кислородной теории — Лавуазье по праву принадлежит первое место. Гениальная научная проницательность Лавуазье, его настойчивость и энергия исследователя и, наконец, его новаторский подход, его смелость в борьбе с укоренившимися традициями и верованиями — все это обеспечило ему почетное место в истории науки как виднейшему деятелю эпохи «пневматической химии», главному инициатору и участнику «химической революции» конца восемнадцатого столетия.

ДАЛЬНЕЙШАЯ РАЗРАБОТКА ОСНОВ «НОВОЙ ХИМИИ»

Как было сказано, Лавуазье решил открыто выступить против теории флогистона только после того, как сам убедился на основе целого комплекса добытых им и другими учеными многочисленных и разнообразных экспериментальных фактов в справедливости своих новых взглядов. Казалось, что все эти новые факты, экспериментально установленные и проверенные, и сделанные на их основе выводы были неоспоримы. Но теория флогистона была привычной для большинства ученых и прочно удерживалась в их сознании. Вот почему доказательства Лавуазье в пользу новых представлений казались флогистикам недостаточно убедительными. Многие из них хотя и соглашались с доводами Лавуазье, однако одновременно указывали, что его опыты могут быть также хорошо объяснены и с точки зрения флогистических воззрений. Именно такой точки зрения придерживался, например, Кавендиш.

Одновременно некоторые флогистики продолжали рьяно защищать старые представления, не желая уступать новым идеям и объяснениям. Так, известный изобретатель паровой машины Джемс Уатт (1736–1819), производивший почти одновременно с Кавендишем и Лавуазье опыты по сжиганию «горючего воздуха», утверждал в 1783 г., что «вода состоит из дефлогистированного и горючего воздуха, или флогистона, лишенного части своей скрытой теплоты; что дефлогистированный, или чистый, воздух состоит из воды, лишенной своего флогистона и соединенной с теплом и светом; а если свет есть лишь одна из модификаций тепла, или составная часть флогистона, то значит чистый воздух (т. е. кислород. — Н. Ф.) состоит из воды, лишенной своего флогистона и своей скрытой теплоты?» (39).

Такого рода выступления флогистиков, цеплявшихся за традиционные объяснения, требовали от Лавуазье еще более широкого и детального изучения явлений, которые могли бы служить опорой для аргументации флогистиков и которые не были достаточно хорошо изучены. И ему приходилось продолжать свои опыты в самых различных направлениях, постепенно, шаг за шагом отвоевывая у флогистиков их позиции.

Так, в связи с опытами по получению «горючего воздуха» Лавуазье пришлось, в частности, исследовать действие разбавленных кислот на металлы, с тем чтобы выяснить, откуда же, собственно, происходит образующийся при этом водород. Образование «горючего воздуха» при действии кислот на металлы флогистики объясняли, как мы уже видели, разложением металла с потерей им флогистона, или «горючего воздуха». В нескольких сообщениях, в частности в представленном в Академии наук в конце 1783 г. мемуаре о растворении металлов, Лавуазье рассматривает (совместно с Лапласом) этот вопрос и приходит к выводу, что образование водорода происходит лишь в результате разложения воды[39]. Этим выводом он не только устранил существенное возражение флогистиков, но и получил еще одно веское доказательство в пользу новых взглядов.

Значительно более трудной оказалась для Лавуазье проблема объяснения природы «огненной материи», или теплоты. Лавуазье не мог обойти эту проблему в своих исследованиях уже просто потому, что все явления горения, как он сам констатировал, сопровождаются выделением тепла и света. Поэтому уже с самого начала своих исследований о горении тел Лавуазье заинтересовался природой теплоты и в 1777 г. выступил с сообщением, посвященным «соединению огненной материи с испаряющимися жидкостями».

Все дальнейшие исследования о природе теплоты и ее роли в различных процессах Лавуазье вел совместно с Лапласом. Наиболее важные исследования по этим вопросам были опубликованы в 1780-х годах, т. е. тогда, когда основные контуры кислородной теории были уже вполне отчетливы.

Представления о природе теплоты у Лавуазье были недостаточно определенны и в этом отношении не соответствовали его новым взглядам на химические явления. Лавуазье колебался между двумя точками зрения при объяснении природы теплоты. Ему достаточно хорошо была известна молекулярно-кинетическая теория теплоты, но он был более склонен придерживаться старой теории теплотворного флюида. Приведем некоторые высказывания Лавуазье, характеризующие его отношение к молекулярно-кинетической теории теплоты. В «Мемуаре о теплоте» Лавуазье и Лапласа имеется следующее высказывание: «… Физики расходятся во взглядах на природу теплоты… Многие придерживаются теории теплового флюида… Другие физики полагают, что теплота есть не что иное, как результат незаметных движений молекул материи. Известно, что тела, даже самые плотные, содержат большое число пор, или маленьких пустот, объем которых может значительно превзойти объем находящейся в них материи; эти пустые пространства оставляют своим неощутимым (по Ломоносову «нечувствительным». — Н. Ф.) частицам свободу колебаний во всех направлениях, и естественно думать, что эти частицы находятся в непрерывном волнении, которое, если оно возрастает до известной степени, может расчленить и разложить тела; именно это внутреннее движение представляет собой теплоту, по взглядам тех физиков, о которых мы говорим» (40).

Обсуждая эту точку зрения физиков, Лавуазье и Лаплас объясняют на ее основе явление теплопередачи и высказывают следующее положение: «В этой гипотезе, которую мы рассматриваем, теплота есть живая сила, происходящая от неощутимых движений молекул тела: она есть сумма произведений массы каждой молекулы на квадрат ее скорости» (41).

Однако далее Лавуазье и Лаплас замечают, что теория теплородного флюида одинаково хорошо объясняет многие явления, как и молекулярно-кинетическая теория теплоты.

В конце концов Лавуазье совершенно отказался от молекулярно-кинетической трактовки природы теплоты и окончательно склонился к теории «теплового флюида», т. е. теплорода. Это было далеко не единственной данью великого ученого традиционным представлениям и верованиям того времени.

Лавуазье дал следующую характеристику теплотворному флюиду: «Флюид особый в своем роде, очень тонкий, очень упругий, столь мало весомый, что его вес ускользает от всех инструментов, которые были применены до сих пор для его определения, который, по-видимому, проникает во все тела, даже те, которые мы считаем наиболее плотными; этот флюид современные физики именуют теплородом (calorique)» (42). Тут же он приводит и характеристики остальных флюидов, существование которых он принимает: «Многочисленные флюиды, гораздо более тонкие, чем газы, однако менее тонкие, чем теплород, которые проникают сквозь поры отдельных веществ с большей или меньшей легкостью, но которые все же проникают через поры всех тел; таков флюид магнитный, флюид электрический и, без сомнения, многие другие, которые нам еще неизвестны» (43).

В дальнейшем в своих «Началах элементарной химии» («Traite elementairede Ghimie») Лавуазье также обсуждает вопрос о природе теплоты и других невесомых флюидов с тех же самых позиций. В частности, его занимает вопрос, представляют ли невесомые флюиды (свет и теплотвор) собой модификации одной и той же «материи» или же они — различные «вещества» (44).

Несмотря на такие отсталые взгляды на природу теплоты Лавуазье, ему принадлежит большая историческая заслуга в исследовании явлений, сопровождающихся выделением и поглощением тепла. Совместно с Лапласом Лавуазье при помощи сконструированного ими ледяного калориметра провел в течение 15 лет много определений теплот горения и различных тепловых эффектов, а также теплоемкости, коэффициентов теплового расширения и других тепловых характеристик различных веществ. Результаты всех этих исследований положили начало термохимии. Однако не будем касаться здесь ни описаний разработанных ими методов измерений, ни полученных результатов, хотя в истории физики и химии эти определения имели большое значение. Отметим далее роль Лавуазье в основании органической химии. В «Мемуаре о соединении кислородного начала с винным спиртом, растительным маслом и различными другими горючими веществами» (1784 г.), в частности, обсуждается вопрос об образовании в различных случаях воды. Лавуазье показал экспериментально, что вода может быть получена не только путем сжигания «горючего воздуха», но и сжиганием, например, винного спирта и других органических веществ. В связи с этим он подробно исследовал получаемые при сжигании различных веществ продукты и установил, что помимо воды при сжигании органических веществ образуется углекислый газ. На основании этих исследований Лавуазье пришел к выводу, что так называемые органические вещества в основном состоят из углерода и водорода.

Лавуазье не оставил без внимания и вопрос о роли воды в питании растений и о механизме беспрерывного выделения кислорода листьями растений. Этот вопрос привлекал в то время широкое и пристальное внимание биологов, физиков и химиков. В мемуаре, озаглавленном «Размышления о разложении воды растительными и животными веществами» (1786 г.), Лавуазье на основании опытов высказывав мысль, что при вегетационных процессах вода в растениях разлагается с образованием «жизненного воздуха».

В большинстве своих экспериментальных исследований, получивших исключительно важное значение для дальнейшего развития химии, Лавуазье действовал скорее как физик, нежели химик. Часто он, не вдаваясь в тонкости химического анализа, основывался лишь на достаточно точных физических определениях, делал свои далеко идущие выводы, обычно хорошо подтверждавшие первоначально выдвигавшуюся рабочую гипотезу. Кроме того, в своих исследованиях он всегда придерживался некоторых общих положений науки, которые были приняты в то время. К числу таких положений следует отнести прежде всего принцип неуничтожаемости материи.

Во времена Лавуазье этот принцип считался само собой разумеющейся истиной и молчаливо, без деклараций, принимался большинством естествоиспытателей и философов. Однако при этом он странным образом уживался с признанием существования и роли в химических и жизненных процессах невесомых флюидов. Лишь весьма немногие естествоиспытатели в те времена вполне сознавали важное значение этого принципа и сознательно пользовались им, последовательно проводя его в жизнь. К числу таких ученых принадлежал М. В. Ломоносов, который еще в 1748 г., основываясь на своих исследованиях, считал необходимым положить этот принцип вместе с атомно-молекулярным учением в основу химии и физики («корпускулярная философия»). Ломоносов был первым, кто отчетливо сформулировал этот «всеобщий естественный закон» сохранения веществ и движения. В своих исследованиях он применял этот принцип последовательно и безоговорочно.

Лавуазье же, как мы видели, был сторонником и даже своего рода «укрепителем» учения о невесомых флюидах, признание существования которых, как показал Ломоносов, противоречило принципу неуничтожаемости материи. Тем не менее, работая с разнообразными веществами, в том числе и с газами, Лавуазье стоял на почве этого принципа и придавал особое значение количественной характеристике явлений, взвешиванию объемов газов и т. д. По мнению Лавуазье, «нет лучшего средства для определения количества материй, которые употребляются в химических операциях и которые получаются в результате опытов, как сравнение этих количеств с эталонами при помощи весов» (45).

Лавуазье имел в своем распоряжении несколько весов различной точности и для разных нагрузок и постоянно пользовался этими приборами в своих опытах. Исходя из убеждения в полной справедливости положения о неуничтожаемости материи и независимо от признания существования невесомых флюидов, Лавуазье сформулировал этот принцип следующим образом: «Ничто не творится ни в искусственных, ни в природных процессах, и можно принять в качестве принципа, что во всякой операции количество материи одинаково до и после операции, что качество и количество начал остаются теми же самыми, что происходят лишь превращения, видоизменения. На этом принципе основано все искусство делать опыты в химии; необходимо предполагать существование настоящего равенства или отношения между составными началами исследуемых тел и началами, получаемыми из них посредством анализа. Таким образом, например, виноградный сок дает газ угольной кислоты и алкоголь, и я могу сказать, что виноградный сок — угольная кислота + алкоголь» (46).

Таким образом, на примере образования алкоголя при брожении виноградного сока Лавуазье представил химический процесс в виде уравнения реакции. Это первый пример в истории химии пользования химическим уравнением для изображения материального процесса.

Все эти и другие многочисленные исследования, выводы и общие представления Лавуазье существенным образом дополняли и обосновывали его основную концепцию — «антифлогистическую, кислородную теорию» горения и дыхания. Являясь во многих случаях прямым следствием этой теории, такие выводы и обобщения давали в руки Лавуазье новые аргументы в пользу развитых им представлений и в борьбе против теории флогистона. При этом часто они становились основными и важными деталями здания новой химии, контуры которого все более и более отчетливо вырисовывались для Лавуазье.

По-видимому, в середине 1780-х годов у Лавуазье возникла мысль обобщить все полученные им ранее результаты исследований и объяснений разнообразных явлений и изложить их в систематизированном виде в курсе элементарной химии. Основной материал для такого курса уже имелся. Принципы кислородной теории, рационально объяснившие явления горения, обжига металлов, физиологию дыхания и другие явления, оказались ключом для разрешения многих других неясных вопросов, связанных с трактовкой химических явлений.

Однако для создания курса элементарной химии, основанного на новых принципах, Лавуазье должен был преодолеть еще некоторые затруднения и полностью устранить еще остававшиеся неясные вопросы, которые могли бы сделаться опорными пунктами теории флогистона. Такими опорными пунктами старой химии еще оставались учение о принципах тел, или началах (элементы), и старая химическая номенклатура — наследие алхимического, иатрохимического и флогистического периодов в развитии химии.

УЧЕНИЕ О ПРОСТЫХ ТЕЛАХ И ЭЛЕМЕНТАХ. НОВАЯ ХИМИЧЕСКАЯ НОМЕНКЛАТУРА. ЭЛЕМЕНТАРНЫЙ КУРС ХИМИИ ЛАВУАЗЬЕ

Как мы видели, Р. Бойль еще в 1661 г. дал новое определение понятия «элемент», или «простое тело», что для того времени было равнозначным. Хотя Бойль, выдвинувший новое определение понятия «элемент», и не назвал ни одного примера реального элемента в новом понимании, его определение было постепенно признано многими химиками с начала «аналитического периода» в развитии химии.

Именно поэтому главной задачей химии в этот период стали считать анализ — разложение сложных веществ с целью получения первоначальных простых тел, обычно называвшихся элементами по аналогии с «началами» Аристотеля и «принципами» алхимиков.

В качестве примера взглядов на новые задачи химии приведем выдержку из «Авторова предисловия» к «Начальным основаниям деятельной химии» Макёра. Обосновывая содержание своей книги (ч. 2), Макёр писал: «Итак, я положил, что будто все тела разрушены и приведены к самым простейшим их началам, дабы, узнав главные свойства сих первых начал, можно было по ним исследовать различные их соединения и иметь некоторое главное познание о свойствах сложенных тел, которые из соединения оных происходят» (47).

Лавуазье также стоял на этой же точке зрения. Он неоднократно высказывался в том смысле, что основная задача химии состоит в разложении сложных тел с получением составляющих их простых тел. При этом он принимал в качестве простых тел лишь те вещества, которые реально можно получить в свободном виде при разложении сложных веществ, при помощи имевшихся в то время методов и средств анализа. В 1787 г. он высказал следующее определение понятия «простое тело». По его мнению, следует называть «простыми [телами] все тела, которые мы не можем разложить, которые мы получаем в последнем итоге путем химического анализа. Несомненно, настанет день, когда эти вещества, являющиеся для нас простыми, будут в свою очередь разложены… Но наше воображение не должно опережать фактов, и нам не следует говорить об этом больше того, что сообщает нам природа» (48).

В дальнейшем, уже в своем учебнике химии, он снова подчеркнул эту же мысль: «Итак, химия идет к своей цели, к своему совершенству, разделяя, подразделяя и еще подразделяя тела, и мы не знаем, каков будет предел ее успехов. Мы не можем поэтому утверждать, что то, что сегодня признается простым, действительно является простым. Мы можем только сказать, что то или иное вещество является лишь пределом делимости посредством химического анализа и что оно не может быть разделено далее при современном состоянии наших знаний» (49).

Лавуазье очень осторожно и даже неопределенно говорит о том, что именно он понимает под «элементом», или «простым телом». В «Предварительном рассуждении» к своему курсу элементарной химии Лавуазье писал: «Все, что можно сказать о числе и природе элементов, по моему мнению, сводится к чисто метафизическим спорам; это неопределенные задачи, допускающие бесчисленное множество решений, из которых, по всей вероятности, ни одно, в частности, не согласуется с природой. Итак, я скажу лишь, что если названием элементов обозначить простые и неделимые молекулы, составляющие тела, то, вероятно, мы их не знаем; если же, напротив, мы свяжем с названием элементов, или начал тел, представление о последнем пределе, достигаемом анализом, то все вещества, которые мы еще не смогли никаким образом разложить, являются для нас элементами» (50).

Подобные неопределенные точки зрения, которые Лавуазье неоднократно высказывал в 1780-х годах, послужили своего рода «теоретической базой» для составления списка простых тел. Необходимость установления круга простых тел в «Начальном курсе химии» вызывалась двумя соображениями. Во-первых, введение новой, антифлогистической номенклатуры химических соединений, естественно, должно было базироваться на каком-то списке простых веществ, названия которых должны быть положены в основу номенклатуры. Во-вторых, как пишет сам Лавуазье в предисловии к «Начальному курсу химии», без такого списка простых веществ в элементарном курсе новой химии вообще невозможно обойтись: «Отсутствие в начальном курсе химии главы о составных и элементарных частях тел неминуемо вызовет удивление, но я позволю себе здесь заметить, что стремление считать все тела природы состоящими лишь из трех или четырех элементов происходит от предрассудка, перешедшего к нам от греческих философов» (51).

Обстоятельства, предшествующие созданию списка простых тел, таковы. Известно, что до конца XVIII в. химики пользовались названиями веществ, возникшими в отдаленные времена, большей частью случайно, по предложениям ремесленников, врачей, аптекарей и алхимиков. Среди названий веществ, фигурировавших в алхимических и старых химических сочинениях, имелось множество странных и трудно запоминаемых. В том же предисловии к «Начальному курсу химии» Лавуазье приводит несколько примеров таких названий. Это «альгаротов порошок» (хлорокись сурьмы), «алембротова соль» (двойная соль хлорной ртути и хлористого аммония), «помфоликс» (окись цинка), «фогеденическая вода» (фармацевтический препарат, представляющий собой смесь раствора хлорной ртути и известковой воды с осадком желтой окиси ртути), «минеральный турпет» (основная сернортутная соль), «колькотар» (остаток после перегонки железного купороса, состоящий из окиси железа) и др. (52)

Естественно, что даже химики-флогистики, незначительной степени унаследовавшие от алхимиков и иатрохимиков-арканистов манеру выражаться туманно и, в частности, пользоваться старинными названиями веществ, ощущали потребность в упорядочении химической номенклатуры и, прежде всего, в ее упрощении. В 1782 г. один из видных в то время химиков-флогистиков Гитон де Морво составил проект реформы химической номенклатуры. Предложенная им новая номенклатура была чисто флогистической и в общем не соответствовала состоянию химии в то время. Между тем новые антифлогистические представления и теории Лавуазье оказались настолько наглядными и убедительными, что некоторые химики-флогистики стали союзниками Лавуазье. В 1785 г. на сторону Лавуазье перешел К. Л. Бертолле и сделался активным пропагандистом идей новой химии. В следующем году к Лавуазье открыто примкнули А. Фуркруа и Гитон де Морво. Летом 1786 г. все эти химики вместе с Лавуазье приступили к разработке новой химической номенклатуры на основе старой работы Гитона де Морво. В своем докладе Академии наук 18 апреля 1787 г., опубликованном в то же году (53), они изложили принципы образования новых наименований веществ в сопоставлении со старыми названиями. Создание новой номенклатуры было новым ударом по отжившей теории флогистона. Упорные защитники этой теории резко выступили против новой номенклатуры. Лавуазье замечает по этому поводу: «Когда мы напечатали наш „Опыт химической номенклатуры", нас упрекали в том, что мы изменяем язык, на котором говорили наши учителя, создавшие ему славу и оставившие его нам в наследство. Но упрекавшие нас забыли, что не кто-либо иной, а сами Бергман и Макёр требовали этой реформы. Ученый, упсальский профессор Бергман писал Морво в последний период своей жизни: «Не щадите ни одного неправильного наименования; знающие поймут всегда, незнающие поймут тем скорее» (54). Новая химическая номенклатура базировалась на разделении всех известных веществ на классы — простые и сложные. Основой номенклатуры явилась, таким образом, таблица простых тел. Все вещества, признанные Лавуазье простыми, были разделены на четыре группы[40]:

«I. Простые вещества, представленные во всех трех царствах природы, которые можно рассматривать как элементы тел: 1) свет, 2) теплород (теплота, принцип теплоты, флюид огня, огонь, материя огня и теплоты), 3) кислород (дефлогистированный воздух, райский воздух, жизненный воздух, основание жизненного воздуха), 4) азот (мофетический воздух, флогистированный газ, основание мофетического воздуха), 5) водород (воспламеняющийся газ, основание воспламеняющегося газа).

II. Простые неметаллические вещества, окисляющиеся и дающие кислоты: 1) сера, 2) фосфор, 3) уголь (чистый уголь), 4) радикал муриевой кислоты (ранее неизвестен), 5) радикал плавиковой кислоты (ранее неизвестен), 6) радикал буровой кислоты (или борной; также ранее неизвестен).

III. Простые металлические вещества, окисляемые и дающие кислоты: 1) сурьма, 2) серебро, 3) мышьяк, 4) висмут, 5) кобальт, 6) медь, 7) олово, 8) железо, 9) марганец, 10) ртуть, 11) молибден, 12) никель, 13) золото, 14) платина, 15) свинец, 16) вольфрам (или тунгстен), 17) цинк.

IV. Простые вещества, солеобразующие и землистые: 1) известь (известковая земля), 2) магнезия (основание эпсомской соли[41]), 3) барит (тяжелая земля), 4) глинозем (глина, квасцовая земля, основание квасцов), 5) кремнезем (кремнистая земля, остекловывающаяся земля)» (55).



Поделиться книгой:

На главную
Назад