$ strace cat /dev/null
Из главы 1 вы узнали о том, что, когда процесс собирается запустить другой процесс, он задействует системный вызов fork(), чтобы создать ответвленную копию, которая затем использует один из системных вызовов семейства exec(), чтобы запустить новую команду. Команда strace начинает работать с новым процессом (копией исходного процесса) сразу после вызова fork(). Следовательно, первые строки вывода данной команды должны показать команду execve() в действии, за которой следует вызов инициализации памяти, brk(), как приведено ниже:
execve("/bin/cat", ["cat", "/dev/null"], [/* 58 vars */]) = 0
brk(0) = 0x9b65000
Следующая часть вывода относится главным образом к загрузке совместно используемых библиотек. Можете пропустить это, если вы не стремитесь узнать о том, что делает система совместно используемых библиотек.
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
mmap2(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, — 1, 0) = 0xb77b5000
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
— snip—
open("/lib/libc.so.6", O_RDONLY) = 3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\200^\1"…, 1024)= 1024
Кроме того, пропустите вывод до команды mmap включительно, пока не встретите строки, подобные следующим:
fstat64(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 6)…}) = 0
open("/dev/null", O_RDONLY|O_LARGEFILE) = 3
fstat64(3, {st_mode=S_IFCHR|0666, st_rdev=makedev(1, 3)…}) = 0
fadvise64_64(3, 0, 0, POSIX_FADV_SEQUENTIAL)= 0
read(3,"", 32768) = 0
close(3) = 0
close(1) = 0
close(2) = 0
exit_group(0) =?
Эта часть вывода показывает команду в действии. Сначала посмотрите на вызов open(), который открывает файл. Число 3 — результат, означающий успешное завершение (это файловый дескриптор, который ядро возвращает после открытия файла). Под ним вы видите, где команда cat выполняет чтение из устройства /dev/null (вызов read(), который также обладает файловым дескриптором 3). Считывать больше нечего, поэтому команда закрывает файловый дескриптор и выходит с помощью вызова exit_group().
Что происходит, если возникает ошибка? Попробуйте запустить команду strace cat not_a_file и посмотрите на системный вызов open() в результатах вывода:
open("not_a_file", O_RDONLY|O_LARGEFILE) = -1 ENOENT (No such file or directory)
Поскольку команде open() не удалось открыть файл, она возвратила значение -1, чтобы сообщить об ошибке. Видно, что команда strace выводит название ошибки и дает ее краткое описание.
Отсутствующие файлы являются наиболее частым источником ошибок в командах Unix, поэтому если системный журнал и другая информация оказываются не слишком полезными, а обратиться больше не к чему, то команда strace может оказать существенную помощь. Ее можно применить даже для демонов, которые откреплены. Например, так:
$ strace — o crummyd_strace — ff crummyd
В данном примере параметр — o команды strace заносит в журнал действия любого дочернего процесса, который демон crummy породил в crummyd_strace.
8.3.2. Команда ltrace
Команда ltrace отслеживает вызовы совместно используемых библиотек. Результаты ее работы напоминают вывод команды strace, и именно поэтому я упоминаю о ней здесь, но она не отслеживает ничего на уровне ядра. Имейте в виду: вызовов совместно используемых библиотек
примечание
См. подраздел 15.1.4, содержащий дополнительную информацию. Команда ltrace не работает для статически связанных двоичных файлов.
8.4. Потоки
В Linux некоторые процессы разделены на части, называемые
8.4.1. Однопоточные и многопоточные процессы
Многие процессы обладают только одним потоком. Процесс с одним потоком является
примечание
Если процесс является однопоточным, то о потоках вообще довольно редко упоминают. В этой книге на потоки не обращается внимание, если многопоточные процессы не отражаются на том, что вы видите или осуществляете.
Основное преимущество многопоточных процессов таково: когда процесс должен выполнить много работы, потоки могут быть запущены одновременно на нескольких процессорах, что потенциально ускоряет вычисления. Хотя одновременные вычисления можно организовать и с помощью нескольких процессов, потоки запускаются быстрее процессов и потокам часто бывает проще и/или эффективнее взаимодействовать между собой при совместном использовании памяти по сравнению с процессами, которые взаимодействуют через сетевое соединение или канал.
Некоторые команды применяют потоки, чтобы обойти проблемы при управлении несколькими ресурсами ввода/вывода. Традиционно процесс использовал бы что-либо вроде команды fork(), чтобы запустить новый подпроцесс для работы с новым потоком ввода или вывода. Потоки предлагают похожий механизм без излишнего запуска нового процесса.
8.4.2. Просмотр потоков
По умолчанию в выводе команд ps и top отображаются только процессы. Чтобы показать информацию о потоке в команде ps, добавьте параметр m (пример 8.1).
Пример 8.1. Просмотр потоков с помощью команды ps m
$ ps m
PID TTY STAT TIME COMMAND
3587 pts/3 — 0:00 bash
— Ss 0:00 -
3592 pts/4 — 0:00 bash
— Ss 0:00 -
12287 pts/8 — 0:54 /usr/bin/python /usr/bin/gm-notify
— SL1 0:48 -
— SL1 0:00 -
— SL1 0:06 -
— SL1 0:00 -
В примере 8.1 процессы показаны вместе с потоками. Каждая строка с номером в столбце PID (эти строки отмечены символами
Если вы желаете просмотреть идентификаторы потоков с помощью команды ps, можно использовать специальный формат вывода. В примере 8.2 показаны только идентификаторы процессов и потоков, а также сама команда.
Пример 8.2. Отображение идентификаторов процессов и потоков с помощью команды ps m
$ ps m — o pid,tid,command
PID TID COMMAND
3587 — bash
— 3587 -
3592 — bash
— 3592 -
12287 — /usr/bin/python /usr/bin/gm-notify
–12287 -
–12288 -
–12289 -
–12295 -
Приведенный в примере 8.2 вывод соответствует потокам, показанным в примере 8.1. Обратите внимание на то, что идентификаторы потоков для однопоточных процессов совпадают с идентификаторами процессов: это главные потоки. Для многопоточного процесса 12287 поток 12287 также является главным потоком.
примечание
Как правило, вам не придется взаимодействовать с отдельными потоками так, как вы это делали бы с процессами. Вам потребуется узнать довольно много о том, как была написана многопоточная команда, чтобы воздействовать на один из потоков в какой-либо момент, но даже в этом случае такая идея не слишком хороша.
Потоки могут вызвать путаницу при отслеживании ресурсов, поскольку отдельные потоки в многопоточном процессе могут одновременно пользоваться ресурсами. Например, команда top по умолчанию не отображает потоки; необходимо нажать клавишу H, чтобы включить их показ. Для большинства инструментов отслеживания ресурсов, о которых вы скоро узнаете, потребуется выполнить небольшую дополнительную работу, чтобы включить отображение потоков.
8.5. Введение в отслеживание ресурсов
Сейчас мы обсудим некоторые моменты, относящиеся к отслеживанию ресурсов, включая время центрального процессора, память и дисковый ввод/вывод. Мы рассмотрим использование ресурсов как в масштабе всей системы, так и для отдельных процессов.
Многие пользователи вникают в устройство ядра системы Linux в целях улучшения производительности. Однако большинство версий систем прекрасно работает с установками по умолчанию, и вы можете потратить несколько дней, пытаясь настроить производительность компьютера без существенных результатов, особенно если вы не знаете, что искать. По этой причине, когда вы будете экспериментировать с инструментами, описанными в этой главе, думайте не о производительности, а о том, как действует ядро, распределяя ресурсы между процессами.
8.6. Измерение процессорного времени
Чтобы отследить один или несколько процессов с течением времени, используйте параметр — p в команде top с таким синтаксисом:
$ top — p
Чтобы выяснить, какое количество процессорного времени применяет команда для своей работы, используйте команду time. В большинстве оболочек есть встроенная команда time, которая не приводит подробную статистику, поэтому может потребоваться запуск команды /usr/bin/time. Например, чтобы измерить процессорное время, использованное командой ls, запустите такую команду:
$ /usr/bin/time ls
По окончании работы команды ls команда time должна вывести результаты, подобные приведенным ниже. Ключевые поля выделены жирным шрифтом:
0.05user 0.09system 0:00.44elapsed 31%CPU (0avgtext+0avgdata 0maxresident)k
0inputs+0outputs (125major+51minor)pagefaults 0swaps
Время пользователя. Количество секунд, которое центральный процессор потратил на выполнение собственного кода команды. В современных процессорах некоторые команды запускаются настолько быстро и процессорное время настолько мало, что значение округляется до нуля.
Время системы. Какое количество времени ядро затрачивает на выполнение работы процесса (например, на чтение файлов и каталогов).
Время работы. Общее количество времени, которое требуется на работу процесса, от его запуска до завершения, включая время, затраченное процессором на выполнение других задач. Эта величина, как правило, не слишком пригодна для измерения производительности, однако, если вычесть из нее значения времени пользователя и времени системы, можно получить общее представление о том, как долго процесс пребывает в ожидании системных ресурсов.
Остальная часть вывода содержит главным образом подробности об использовании памяти и ресурсов ввода/вывода. Подробнее об ошибках отсутствия страницы вы прочитаете в разделе 8.9.
8.7. Настройка приоритетов процессов
Можно изменить распорядок, который ядро назначает процессам, чтобы предоставить какому-либо процессу больше или меньше процессорного времени по сравнению с другими процессами. Ядро запускает каждый процесс в соответствии с назначенным ему