Н. — И как же все это изменилось?
Л. — Начиная с 1930 г. удалось питать приемники от осветительной сети. В большинстве этих аппаратов использовали принцип преобразования частоты. Это позволило достичь высокой чувствительности, благодаря чему роль антенны смогла выполнять внутренняя рамка. Громкоговоритель также поместили в футляре аппарата.
Н. — Таким образом осуществлялась передача звука. А передача изображения?
Л. — Телевидение, эксперименты с которым проводились с середины 20-х годов, в 30-х годах перешло к регулярным передачам. Но вторая мировая война прервала эти начинания.
Н. — Разумеется, война останавливает прогресс техники.
Л. — Ты ошибаешься, Незнайкин. В интересах войны ученые быстро развили некоторые направления той техники, которая стала называться электроникой. Так, например, возник радиолокатор, использовавшийся для защиты городов от самолетов противника.
Н. — Ты прав. Как говорят, нет худа без добра… Я подозреваю, что после окончания военных действий наша техника пережила новый подъем.
Л. — Да, мой друг. Именно в это время она начала проникать во все сферы человеческой деятельности. А небывалому ускорению прогресса способствовало изобретение в 1948 г. транзистора. Родившаяся вместе с транзистором новая техника полупроводников привела к микроминиатюризации и колоссально расширила возможности практического применения электроники.
Н. — Спасибо, дорогой Любознайкин, за твой рассказ об истории телеграфии без проводов, которая, пройдя этап радио, превратилась в электронику. Твое повествование вызывает у меня большое желание заняться изучением электроники. Не сможешь ли ты изложить мне основные понятия и описать основные области применения электроники, какими являются радио и телевидение?
Л. — С удовольствием сделаю это. Но сначала я попрошу у моего дядюшки профессора Радиоля совета, в какой последовательности обучать тебя этой технике.
Н. — Я полагаю, что он не захотел бы видеть меня слишком несведущим в самых элементарных основах физики и особенно электричества.
Л. — Именно в такое положение попал я, когда мой дядюшка обучал меня основам электроники. Ну ладно, я передам ему магнитную ленту, на которой записан весь наш разговор. Таким образом, он будет точно знать, что нам потребуется. В этом случае электроника еще раз принесет нам пользу.
Комментарий профессора Радиоля
СТРОЕНИЕ ВЕЩЕСТВА
Профессор описывает строение молекул и атомов, взаимное притяжение противоположных электрических зарядов, поведение валентных оболочек и то, что характеризует проводники, диэлектрики и полупроводники.
Ты знаешь, что самая малая частица вещества, обладающая всеми его основными характерными свойствами, называется
Я полагаю, что теперь ты легче проникнешь в этот микромир, который по сравнению с окружающим нас миром столь же мал, как сам этот мир по сравнению со Вселенной, где расстояния измеряются световыми годами. А ты ведь знаешь, что световой год — это расстояние, которое свет, идущий со скоростью 300 000 км/с, проходит за год, т. е. примерно за 32·106 с.
Однако вернемся от макромира, где такие расстояния служат привычной единицей измерения (ведь говорят же о миллионах световых лет), к нашему микромиру, где крохотная молекула состоит из одного или нескольких атомов. Атом — слово греческого происхождения и означает «неделимый». На протяжении веков в самом деле думали; что атом — мельчайшая частица материи.
В микромире это далеко не самая малая частица, так как атом, в свою очередь, состоит из более мелких частиц: ядра и циркулирующих вокруг него электронов. Атом похож на солнечную систему с той, однако, разницей, что наши планеты движутся по орбитам, находящимся почти в одной и той же плоскости, тогда как орбиты электронов проходят по самым различным плоскостям. Если, несмотря на центробежную силу, планеты продолжают свое движение по кругу и не покидают солнечную систему, то причина кроется в гравитационных силах, определяющих взаимное притяжение между телами. Точно так же и электроны вращаются вокруг ядра и не покидают его, потому что имеется удерживающая их сила притяжения. Эта сила по своей природе электрическая. Электроны представляют собой элементарные отрицательные электрические заряды. Ядра же состоят из протонов, представляющих собой элементарные положительные электрические заряды.
Между отрицательными и положительными зарядами существует сила притяжения, удивительно напоминающая гравитационную. Последняя, как известно, пропорциональна массе тел и обратно пропорциональна квадрату расстояния между ними. А у электрических зарядов сила притяжения пропорциональна их величине и обратно пропорциональна квадрату расстояния между ними.
В ядре атомов кроме протонов находятся еще частицы, именуемые нейтронами (рис. 1), так как они нейтральны, т. е. не имеют никакого заряда. Присутствие этих частиц просто увеличивает массу атома.
Рис. 1.
Я тебе сказал, что в отличие от орбит наших планет орбиты электронов не находятся в одной плоскости. Но это не означает, что эти орбиты расположены беспорядочно. Они могут занимать только семь уровней или, если ты предпочтешь, семь сфер, центром которых служит ядро. Эти сферы обозначают буквами
Рис. 2.
Сфера
На орбите не может быть более двух электронов. Число же электронов на каждой сфере также ограниченно. На первой сфере может быть лишь два электрона. На остальных сферах предельное количество электронов пропорционально радиусу сферы. На сфере
Что же касается размеров различных частиц атома, то ты получишь лучшее представление, если вообразишь себе атом, увеличенный в его миллионов раз. В этом случае протоны будут иметь величину яблока, а электроны достигнут размеров футбольного мяча. Самая близкая орбита электронов, т. е. сфера
Ни один слон, конечно, не испытал на себе такого сжатия. Но этот процесс происходит на звездах, когда они стареют. Они как бы обрушиваются внутрь самих себя. И в результате такого направленного взрыва диаметр небесного светила сокращается в десятки тысяч раз. Чудовищная плотность вещества создает настолько сильное гравитационное поле, что это поле полностью отклоняет световые лучи с прямого пути. Поэтому стареющая звезда представляет собой лишь черную дыру на небе.
Вернемся еще раз от макромира к микромиру. Очень важное обстоятельство: обычно число электронов атома равно числу его протонов. Таким образом, сумма отрицательных зарядов равна общему количеству положительных зарядов. Они взаимно нейтрализуются, и уравновешенный таким образом атом называется нейтральным (рис. 3).
Рис. 3.
Однако у некоторых веществ электроны внешнего слоя меньше привязаны к ядру и могут его покинуть, если их притягивают соседние положительные заряды или если сам атом подвергся встряске в результате повышения температуры тела. В этом случае равновесие атома нарушится: положительный заряд ядра становится больше суммы отрицательных зарядов электронов. Атом, таким образом, становится положительным (рис. 4).
Рис. 4.
Говорят также, что он положительно ионизируется или что он превращается в положительный ион.
Но может произойти и обратное явление. Один или даже несколько находившихся по соседству электронов могут занять места на орбитах внешней оболочки атома. Добавив свой заряд к зарядам других электронов, они сделают атом отрицательным (рис. 5). В этом случае мы имеем дело с отрицательным ионом.
Рис. 5.
Внешняя электронная оболочка играет первостепенную роль в образовании молекул, этих ассоциаций атомов, из которых состоят различные вещества. Именно эта внешняя оболочка способна иметь общие для нескольких атомов электроны.
Как правило, внешняя оболочка чувствует себя удовлетворенной, когда на ее орбитах циркулируют 8 электронов. Поэтому, если атом имеет на этой оболочке только 7 электронов, он имеет сильное желание заполучить дополнительно еще один; тогда говорят, что атом
Рис. 6.
Рассмотрим случай с атомом хлора, имеющим на внешней оболочке
Рис. 7.
Ты видишь, что атомы, внешняя оболочка которых притягивает электроны от своих соседей, становятся ионизированными отрицательно, тогда как атомы, потерявшие свои электроны, оказываются ионизированными положительно. Затем отрицательный ион притягивается положительным, и объединение двух атомов образует устойчивую молекулу.
Ты убедился, что атом, на внешней оболочке которого находится меньше 8 электронов, имеет тенденцию объединяться со своими соседями. Но это совершенно не относится к неону, который на своей периферийной оболочке имеет как раз 8 электронов и поэтому остается в изоляции в виде газа. Когда количество периферийных электронов меньше 4, атом великодушно отдает их своим соседям. Так ведут себя все