Введение.
Рассмотрение обращения Луны вокруг Земли, наряду с орбитальными движениями планет, сыграло важную роль в работе Ньютона над законом всемирного тяготения. Среднее удаление Луны от Земли соответствует среднему периоду обращения Луны как раз в согласии с этим законом. Ещё Лаплас в своей «Системе мира» [1] провозгласил о том, что полное согласие движения Луны с законом всемирного тяготения является неоспоримой научной истиной.
Но давайте сопоставим некоторые факты. Достоверно известно (см. ниже), что линейные параметры орбиты Луны испытывают периодические изменения; в частности, большая полуось изменяется, с периодом в 7 синодических месяцев, примерно на 5500 км. Такому размаху изменений большой полуоси орбиты Луны, согласно третьему закону Кеплера, должны соответствовать изменения периода обращения примерно на 14 часов. В действительности же вариация длительности между последовательными новолуниями составляет около 5 часов, т. е. почти в три раза меньше той, которая должна быть согласно закону всемирного тяготения. К тому же, период изменений длительности между новолуниями не совпадает с периодом изменений большой полуоси: первый больше второго в два раза.
Несомненно, об этой проблеме знали уже первые теоретики движения Луны — в частности, тот же Лаплас. Несомненно, они понимали: никакие «возмущения орбиты» не помогут решить эту проблему, ибо, согласно закону всемирного тяготения, не бывает возмущений, которые приводили бы к тому, что линейные размеры орбиты и период обращения по ней изменяются так несогласованно — и по амплитуде, и по периодичности. Выяснить, почему Луна движется таким странным, с точки зрения закона всемирного тяготения, образом, означало бы вынести приговор этому закону. Поэтому теорию движения Луны строили весьма своеобразно: «…теоретики отказались от представления оскулирующих элементов орбиты Луны в виде рядов (если они вообще когда-либо всерьёз об этом думали) и предпочитают разлагать в ряд сами координаты» [2]. Такой подход, на наш взгляд, и привёл к тому, что задача о движении Луны превратилась в «одну из самых трудных проблем небесной механики» [2]. Об ущербности этого подхода косвенно свидетельствует даже тот факт, что получаемые ряды «очень медленно сходятся» [2], так что в современных теориях число членов этих рядов «измеряется уже тысячами» [3]. Первые их сотни приведены, например, в справочном руководстве [4].
И сегодня, прежде чем пытаться разобраться с причинами, определяющими движение Луны, следует вначале прояснить вопрос о том,
Реальность периодических изменений линейных параметров лунной орбиты.
Авторитетные справочники и даже специализированные издания внушают нам, что орбита Луны является эллипсом с неизменными удалениями в апогее и перигее. Сопоставим данные из подобных источников:
Источник
информации,
год издания
Геоцентрическое расстояние
до Луны, км
в перигее
в апогее
[5], 1954
354000
406000
[6], 1969; [7], 1974
363300
405500
[8], 1974
356400
406800
[9], 1976
356410
406740
[10], 1976; [11], 1977
356400
406700
[12], 1990
363300
405500
Разброс этих данных совершенно не согласуется с заверениями специалистов о том, что уровень точности измерения расстояния до Луны в пятидесятые годы был стометровым, в семидесятые — метровым, а в восьмидесятые, благодаря лазерной локации — дециметровым. Правду о расстояниях до Луны в апогеях-перигеях мы нашли в [13]: «…выяснилось, что при каждом обороте вокруг Земли Луна приближается к ней и удаляется от неё на неодинаковые расстояния: перигейное расстояние Луны систематически изменяется в пределах от 356410 км до 369960 км, а апогейное расстояние — от 404180 км до 406740 км» — что, кстати, сопровождается соответствующими изменениями видимого углового диаметра Луны. К сожалению, автор [13] не указал периода этих систематических изменений, и не сопоставил их с фазами Луны. Приведём схематическую диаграмму для геоцентрического расстояния до Луны, на 2004-05 гг., по данным Астрономических ежегодников [14,15]:
Эту картину периодических изменений апогейных-перигейных расстояний до Луны будем далее называть
Теперь посмотрим — не коррелируют ли с девиацией дальностей апсид периодические поправки в углах, характеризующих положение Луны на небесной сфере. Исторически, именно «расписание движения» Луны по небесной сфере представляло большой практический интерес. Поэтому главные нарушения «ровного расписания» хорошо известны, и для них даже имеется специальное название: неравенства в движении Луны. Самым значительным неравенством в долготе является т. н. большое эллиптическое неравенство, обусловленное эллиптичностью лунной орбиты; оно описывается выражением 22639І
Вторым по величине периодическим неравенством в долготе является т. н.
Можно сказать, что эвекция и соответствующие ей изменения параллакса отражают переменные деформации лунной орбиты, а
«Невзаимная» кинематика у пары Земля-Луна.
Из вышеизложенного напрашивается вывод: движение Луны не обеспечивается действием только закона всемирного тяготения. Этот вывод не является для нас неожиданным, поскольку в предыдущих статьях мы уже рассматривали ряд феноменов (см., например, перечень в [17]), объяснение которых в рамках закона всемирного тяготения оказывается весьма проблематичным — так что предпочтительнее выглядит наша модель, в которой тяготение порождается не массивными телами, а «чисто программными средствами» [17]. Но, в случае с движением Луны, такой подход срабатывает, на наш взгляд, с особенной эффективностью.
Напомним, что, согласно закону всемирного тяготения, каждое тело притягивает каждое другое тело. При этом весьма сложно обрабатывать ситуации, когда пробное тело притягивается сразу к нескольким большим космическим телам, которые, к тому же, притягиваются друг к другу. Практически, решение задачи даже трёх тел оказывается весьма проблематичным. Напротив, принцип унитарного действия тяготения [18] радикально упрощает работу алгоритмов, обеспечивающих приобретение пробным телом ускорения свободного падения. А именно, согласно этому принципу, пробное тело всегда притягивается только к одному силовому центру, будучи в соответствующей сфере действия (или, по нашей терминологии, на склоне соответствующей частотной воронки).
Таким образом, если подходить к задаче движения Луны с мерками закона всемирного тяготения, то налицо ярко выраженная проблема трёх тел. Если же подходить к этой задаче с мерками унитарного действия тяготения, то и здесь мы усматриваем проблему, связанную с аномальной для Солнечной системы геометрией. Действительно, сферы действия планет, радиусы орбит которых подчиняются закономерности Тициуса — Боде [18], никогда не перекрываются — как мы подозреваем, именно для обеспечения беспроблемного унитарного действия тяготения [18]. В случае же Луны ситуация, действительно, аномальная: Луна движется внутри сферы действия Земли — где, по логике унитарного действия тяготения, могут двигаться лишь болванки, не имеющие собственного тяготения. Если бы Луна действительно вела себя как такая болванка, задача о её движении невероятно упростилась бы, поскольку Солнце на Луну-болванку не действовало бы, а сообщало бы ускорение только частотной воронке Земли, по склонам которой двигалась бы Луна-болванка.
Именно этот тезис и является нашим отправным пунктом: несмотря на наличие собственного тяготения, Луна движется вокруг Земли как пробное тело — как болванка, не вызывающая у Земли динамической реакции, т. е. обращения Земли (и её частотной воронки) около центра системы Земля-Луна. Конечно, нам известно о фактах, которые, как считается, доказывают наличие у Земли динамической реакции на Луну. Речь идёт о колебаниях видимой долготы Солнца с амплитудой около 6І.4 и периодом в синодический месяц [19,20] — что, вместе с соответствующими результатами наблюдений некоторых малых планет [20], интерпретируется как колебания гелиоцентрической долготы Земли (т. н. лунное неравенство). Обратите внимание: здесь доказано лишь то, что Земля совершает колебания вперёд-назад вдоль того участка своей орбиты, по которому она движется. Доказательства же того, что Земля колеблется ещё и поперёк этого участка орбиты — что происходило бы при её полноценной динамической реакции — отсутствуют. Таким образом, в системе Земля-Луна формально возможен необычный феномен: при том, что Луна выписывает двумерную кривую около центра системы, Земля совершает одномерные колебания около этого центра. На первый взгляд, допущение подобной кинематики у пары Земля-Луна является абсурдом, ибо такие «невзаимные» перемещения Земли и Луны с очевидностью проявились бы через соответствующие неравенства в движении Луны. Но ведь результатом именно таких «невзаимных» перемещений Земли и Луны может являться
Действительно, именно такие, как у
С учётом вышеизложенного,
Теперь попробуем объяснить происхождение «невзаимной» кинематики пары Земля-Луна.
Синхронизатор орбитального движения Луны.
Ясно, что колебания Земли и её частотной воронки, вперёд-назад вдоль локального участка околосолнечной орбиты, порождаются не воздействиями Луны и не воздействиями Солнца. Нам придётся допустить, что эти колебания были специально организованы, для чего в алгоритм, управляющий тяготением пары Солнце-Земля [21], потребовалось внесение модификации. Эта модификация, как можно предположить, заключалась в добавлении слабой амплитудной модуляции гравитационной постоянной исключительно для пары Солнце-Земля — что, надо полагать, не сильно усложнило базовый алгоритм. Такая модуляция, с периодом в синодический месяц, практически не сказывается на текущем расстоянии между Солнцем и Землёй, и поэтому должна приводить лишь к соответствующей модуляции орбитальной скорости земной частотной воронки. При известной амплитуде
Теперь ответим на вопрос о том, зачем потребовалась такая модуляция гравитационной постоянной для пары Солнце-Земля. Вследствие этой модуляции, как можно видеть, земная частотная воронка не находится в чистом орбитальном «свободном падении», а испытывает периодические ускорения-замедления хода своего орбитального движения, так что Луна-болванка движется по склонам этой «болтающейся» частотной воронки. Из равенства синодическому месяцу периода этой «болтанки» напрашивается вывод: принудительные колебания земной частотной воронки требуются для того, чтобы быть синхронизатором орбитального движения Луны, играя роль параметрического задатчика периода её обращения. Речь идёт именно о синодическом периоде, поскольку синхронизирующее воздействие, практически, всегда ортогонально линии Солнце-Земля. Заметим: равенство синодическому месяцу периода синхронизации приобретает совершенно особенное значение, если верна высказанная в [22] догадка о том, что земная частотная воронка, по мере своего годичного движения вокруг Солнца, медленно поворачивается относительно «неподвижных звёзд», делая один собственный оборот за год — т. е. что она обращена к Солнцу всё время «одной и той же стороной».
Покажем, что на основе допущения о синхронизаторе орбитального движения Луны можно объяснить происхождение переменных деформаций лунной орбиты. Ускорения земной частотной воронки, обусловленные синхронизирующими колебаниями, должны приводить к противоположным «ускорениям сноса» Луны-болванки (в геоцентрической системе отсчёта). Эти «ускорения сноса» можно рассматривать как малые возмущающие ускорения, приводящие к эволюции параметров лунной орбиты. По логике вышеизложенного, синхронизирующая «болтанка» земной частотной воронки всегда происходит вдоль линии квадратур — т. е., в процессе годичного обращения пары Земля-Луна, линия синхронизирующей «болтанки» поворачивается относительно линии апсид. Таким образом, можно ожидать ту же самую периодичность изменений параметров лунной орбиты, которая видна на приведённом выше графике.
Теперь посмотрим, какова должна быть величина этих изменений. Выражения из [16], описывающие эволюцию перигейного
(
(
(
где
Таким образом, предсказываемые нами периодические изменения параметров орбиты Луны, которые обусловлены работой синхронизатора её орбитального движения, согласуются, в первом приближении, с фактическими изменениями этих параметров — и по фазе, и по амплитуде.
Небольшое обсуждение.
Наш подход основан на принципе унитарного действия тяготения [18], в согласии с которым Луна движется в частотной воронке Земли как пробное тело: Солнце не действует на Луну, а Луна не действует на Землю. И при этих парадоксальных допущениях объясняются главные неравенства в движении Луны, в частности,
Вот так мы и объясняем тот феномен, что большая полуось лунной орбиты и период орбитального обращения Луны изменяются, как упоминалось выше, несогласованно — и по амплитуде, и по периодичности. Здесь мы усматриваем главное преимущество нашего подхода перед подходом на основе закона всемирного тяготения, в котором этот феномен не объясняется.
Заключение.
Мы не ставили себе задачу построить теорию движения Луны с тем уровнем точности, который требуется для современных практических приложений. Наша задача была гораздо скромнее: объяснить хотя бы главные особенности движения Луны наряду с феноменом несогласованного изменения его параметров.
И, если этот феномен не объясняется на основе закона всемирного тяготения, то для его объяснения мы были вынуждены предложить дополнительный механизм — который, впрочем, выстроен на нашей модели тяготения и придаёт ей дальнейшее развитие.
Вместе с тем, остаётся открытым вопрос — почему Луна, имея собственное тяготение, движется в земной частотной воронке, не вызывая у неё динамической реакции. Аномальное собственное тяготение Луны — это тема для отдельного исследования.
Автор благодарит В. И. Беленко, А. В. Новосёлова и Д. Вибе за важные критические замечания.
Ссылки.
1. Пьер Симон Лаплас. Изложение системы мира. «Наука», Л., 1982.
2. Физика и астрономия Луны. З. Копал, ред. «Мир», М., 1973.
3. Веб-ресурс http://www.astrolab.ru/cgi-bin/print.cgi?s=manager&id=33num=495
4. Справочное руководство по небесной механике и астродинамике. Г. Н. Дубошин, ред. «Наука», М., 1976.
5. БСЭ, Т. 25. «БСЭ», 1954.
6. В. Н. Жаров, В. А. Паньков и др. Введение в физику Луны. «Наука», М., 1969.
7. В. И. Левантовский. Механика космического полёта в элементарном изложении. «Наука», М., 1974.
8. БСЭ, Т. 15. «БСЭ», 1974.
9. А. С. Енохович. Справочник по физике и технике. «Просвещение», М., 1976.
10. Таблицы физических величин. Справочник под ред. И.К.Кикоина. «Атомиздат», М., 1976.
11. К. У. Аллен. Астрофизические величины. «Мир», М., 1977.