Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Микроволновые печи нового поколения. Устройство, диагностика неисправностей, ремонт - Андрей Петрович Кашкаров на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

1.3.3. Возможные неисправности магнетронов

Внешний вид магнетрона представлен на рис. 1.11.

Возможные неисправности магнетронов таковы:

• анод магнетрона выполнен в виде медного цилиндра. Рабочее напряжение анода магнетрона (в зависимости от типа) колеблется в диапазоне 3800–4000 В. Мощность от 500 до 1200 Вт.

Таблица 1.2.

Магнетроны с безнакальным автокатодом



Рис. 1.11. Внешний вид популярного магнетрона типа 2M213-09F

Магнетрон крепится непосредственно на волноводе (см. рис. 1.3). В СВЧ-печах, где производитель располагает магнетрон с коротким волноводом, можно наблюдать такой дефект, как пробой слюдяной прокладки. Происходит это в результате загрязнения прокладки;

• при пробое прокладки колпачок магнетрона расплавляется (это случается с магнетронами типа 2M-218H(R), OM7S(20), 2M213-09F, 2М-219Н(В), 2M226-09F и конструктивно аналогичными). Его (колпачок) можно заменить аналогичным колпачком с другого магнетрона;

• как любая электронная лампа с накалом, он может терять свою эмиссию, в результате чего значительно сокращается мощность энергии и увеличивается время приготовления. Обычно средний срок службы магнетрона (к примеру, 2М213-хх) имеет предел 15 000 часов эксплуатации. Его КПД при этом составляет 75–80 %, что является эффективным показателем для магнетронов генераторов СВЧ-колебаний;

• пробой переходных конденсаторов можно обнаружить с помощью тестера в режиме измерения сопротивления. Пробой происходит на корпус магнетрона. Устраняется неисправность путем замены всего узла.

Отдельно магнетрон можно проверить, только сформировав все необходимые для его работы напряжения.

В микроволновой печи вторым по значимости элементом после магнетрона является источник питания (рис. 1.4). От его надежности зависит вся безопасная работа печи.

1.3.4. Инструментарий для диагностики и ремонта

Замечательным инструментом при ремонте и диагностике СВЧ-печи, в частности при диагностике магнетронов, являются токовые клещи, например ECT-650 «Escort». Они позволяют измерить ток, потребляемый печью, ток высоковольтной обмотки трансформатора.

Номинальный ток, потребляемый печью, 4,5–6 А, ток высоковольтной обмотки трансформатора 0,3–0,5 А.

Большие отклонения от указанных значений (особенно в сторону увеличения отдельных параметров) говорят о локальной неисправности магнетрона.

Вместе с тем занижение всех параметров может объясняться плохими контактами, начиная от сетевой розетки и заканчивая коммутационными элементами (реле, электрические выключатели, контакты).

Для того чтобы удостовериться в исправности магнетрона и достаточном уровне СВЧ-излучения внутри корпуса печи, его проверяют детектором.

Детекторы СВЧ-излучения

Выше на рис. 1.8 уже был представлен промышленный детектор СВЧ-излучения, который можно приобрести в магазинах электротоваров.

Расскажем о нем подробнее. Это устройство фиксирует не только СВЧ-импульсы, которые можно проверить, поднеся прибор непосредственно во время работы печи к ее стенкам. Оно также окажется полезным для поиска «жучков», работающих на сверхвысокой частоте, поиска сотовых телефонов и проверки их работы. Стоит такой промышленный тестер менее 1000 руб.

Питается прибор от батареи типа 6F22 с напряжением 9 В. Ток потребления устройства в режиме ожидания – единицы мкА, поэтому элемент питания служит долго. В верхней части корпуса размещен индикаторный светодиод. Он загорится, когда в области детектора (показан на корпусе стрелочкой) будет присутствовать СВЧ-излучение.

Устройство не измеряет мощность излучения, но фиксирует его наличие.

С помощью данного детектора можно проверять не только рабочие камеры микроволновых печей и наличие вне их корпуса вредоносного излучения, но и (как было отмечено выше) наличие излучения сотовых телефонов. Сделать это несложно.

Надо поднести детектор к источнику излучения, к примеру к корпусу сотового телефона, на расстояние 2-10 см.

При активности сотового телефона: при входящем и исходящем вызове, несанкционированном «общении» сотового телефона с базовой станцией, при регистрации сотового телефона в сети (например, при включении сотового телефона) и в других случаях индикатор детектора покажет наличие СВЧ-излучения.

Внимание, важно!

Этот наглядный урок не мешало бы использовать на уроках физики в школах, для того чтобы люди понимали, насколько вредно или полезно постоянно носить сотовый телефон близко к собственному телу (на груди, на поясе, в кармане, особенно нагрудном). Результаты вредоносного СВЧ-излучения (особенно при постоянном воздействии) лучше прокомментируют ученые и медицинские работники. От себя добавлю лишь то, что СВЧ-излучение подобно атому, который бывает как мирным, так и агрессивным (в зависимости от различных причин), что надо четко понимать, даже эксплуатируя как будто бы безобидный сотовый телефон или микроволновую печь.

В качестве детектора излучения СВЧ можно применить и другой промышленный прибор, предназначенный для автомобилистов, который называется «индикатор искры». В продаже имеются такие устройства, одно из которых представлено на рис. 1.12.


Рис. 1.12. Внешний вид детектора СВЧ-излучения – индикатора искры

Прибор предназначен для проверки высоковольтных цепей зажигания автомобилей. Внутри корпуса установлен датчик (такая же петля, как на схеме рис. 1.5, только в миниатюре), реагирующий, как показала практика, не только на высокое импульсное напряжение в зажигании автомобиля, но и на СВЧ-излучения микроволновой печи и сотового телефона.

Индикатором СВЧ-излучения также служит светодиод красного свечения, установленный у стрелки «высокое напряжение».

На выносных проводах индикатор питается от любого источника питания с постоянным напряжением 8-15 В, в том числе от батареи типа «Крона» или автомобильного аккумулятора.

Особенность устройства – в том, что оно имеет регулировку чувствительности (ручка регулировки вынесена на верхнюю часть корпуса). Стоит такой прибор в пределах 300 руб. Имея его, уже можно не заботиться о других детекторах СВЧ-излучения.

1.4. Обязательные правила при замене магнетрона

При замене магнетрона необходимо строго соблюдать правила:

1. Диаметр антенны (коаксиальной линии) и крепеж должны точно совпадать с оригиналом.

2. Магнетрон должен плотно соприкасаться с волноводом.

3. Длина антенны должна точно соответствовать оригиналу.

4. Мощность заменяемого магнетрона должна совпадать с мощностью штатного.

Внимание, пример!

В случае замены магнетрона с М112 на М136 необходимо обратить внимание, чтобы крепежные гайки плотно его притянули или установить под гайки дополнительные прокладки. При замене М151 на М141 совместно с магнетроном необходимо заменить термопредохранитель. В первом случае он рассчитан на температуру 95 °C, а необходим на температуру не менее, чем 120 °C.

1.5. Меры безопасной работы

при ремонте и обслуживании СВЧ-печей

Этот раздел в книге крайне важен. Несоблюдение данных правил может привести к поражению электрическим током, травмам и выходу из строя достаточно дорогих компонентов СВЧ-установки. Самым опасным (из всех доступных в бытовых условиях) для человека является переменный ток частотой 50 Гц, а также СВЧ-излучение. СВЧ-печь, подключенную к сети 220 В (под напряжением), можно ремонтировать и проверять только в тех случаях, когда выполнение работ в отключенном от сети аппарате невозможно (настройка, регулировка, измерение режимов, поиск плохих контактов в виде «холодной пайки» и в аналогичных случаях).

При этом необходимо соблюдать осторожность во избежание воздействия опасного напряжения. Следует остерегаться ожога от нагревающихся элементов.

Во всех случаях работы с включенной печью необходимо пользоваться инструментом с изолированными ручками. Работать следует одной рукой, в одежде с длинными рукавами или в нарукавниках.

Другой рукой в это время нельзя прикасаться к корпусу печи и другим заземленным предметам (трубам центрального отопления, водопровода). Провода измерительных приборов должны оканчиваться щупами и иметь хорошую изоляцию.

Это общие правила электробезопасности.

Внимание, опасно:

• пайка элементов печи, находящейся под напряжением;

• ремонтировать печь, включенную в электрическую сеть, в помещении сыром либо имеющем цементный или иной токопроводящий пол;

• находиться возле установки лицам, не ремонтирующим ее;

• как и любой источник СВЧ-излучения, излучение магнетрона при прямом воздействии может вызвать повреждение глаз или ожоги кожи. СВЧ-излучения человеческий глаз не видит;

• при замене магнетрона будьте особенно внимательны. Не оставляйте монтажного мусора в волноводе;

• перед заменой всегда разрежайте конденсатор в цепи питания магнетрона отрезком изолированного провода (шунтирующий резистор иногда выходит из строя).

Кроме того, при эксплуатации печи не допускается:

• включать печь при открытой дверце либо сетке (она и сама не включится, так как есть защита, но этот пункт актуален для тех, кто пренебрегает этой защитой, отключая ее);

• нельзя делать отверстия в корпусе (домохозяйки, мечтающие повесить печь на стену, словно хлебницу, да оставят такие мысли).

Обслуживание СВЧ-печи и вопросы безопасности «микроволнового излучения» очень важны.

Излучение сверхвысоких частот (СВЧ), или микроволновое излучение, неблагоприятно воздействует на организм человека. Чтобы обезопасить себя и своих близких от последствий этого вида излучения, применяют детекторы различной сложности, индицирующее излучение микроволновых печей, сотовых телефонов и других устройств. Об обслуживании «микроволновой печи», устройствах детекторов и практике их применения рассказано в книге.

Кроме потенциально опасного СВЧ-излучения, печь создает сильное электромагнитное излучение, которое, не являясь опасным для человека, оказывает отрицательное воздействие на наручные часы и магнитные ленты.

Необходимо учитывать, что при попадании СВЧ-печи из холодного помещения в теплое или в помещение с повышенной влажностью на элементах СВЧ-печи может конденсироваться влага, присутствие которой отрицательно влияет на нормальную работу.

1.6. Схемотехника СВЧ-печей нового поколения

После уточнения знаний о составе СВЧ-печи рекомендую уделять внимание процессам, происходящим при эксплуатации бытовой СВЧ-печи, и рекомендациям по устранению некоторых, наиболее часто встречающихся неисправностей (отказов) в работе СВЧ-печи.

В данном случае для нас практически не важен производитель бытовой установки, так как все они устроены по одному принципу и могут различаться только уровнем надежности, мощности и набором сервисных функций.

Неисправности СВЧ-печи условно могут возникнуть по всей конструктивной цепи: источник СВЧ-энергии (магнетрон) – линия передачи – рабочая камера – система загрузки-выгрузки.

Важнейший компонент СВЧ-печи – магнетрон – это электровакуумный диод, предназначенный для генерирования колебаний сверхвысокой частоты. Колебательная система – анодный блок магнетрона содержит резонаторы, форма и размеры которых выбираются в зависимости от рабочей длины волны.

При работе магнетрона выделяется мощность, которая переходит в тепло, и внутри рабочей камеры создается тепловое СВЧ-элект-ромагнитное поле. Генерируемая магнетроном мощность поступает по волноводу, выполняющему роль линии передачи энергии, в рабочую зону СВЧ-печи, представляющую собой прямоугольную камеру (рабочая камера).

Рядом с волноводным выходом расположен вращающийся столик, на который помещают обрабатываемый продукт. Он необходим для того, чтобы получать равномерное распределение СВЧ-поля по объему камеры и, следовательно, обеспечить равномерный нагрев продукта.

Для бытовой термообработки в диапазоне СВЧ наиболее часто используются электромагнитные колебания на частотах от 433, 915, 2375 (2450) МГц у старых моделей до 10–12 ГГц в современных печах.

1.6.1. Источник питания магнетрона

На рис. 1.13 представлена типовая электрическая схема источника питания магнетронов типа 2М-219хх.


Рис. 1.13. Типовая электрическая схема источника питания магнетронов типа 2М-219хх

Узел соединения магнетрона с источником питания содержит переходные конденсаторы, которые вместе с дросселем образуют СВЧ-фильтр для защиты от проникновения СВЧ-излучения из магнетрона.

Источник питания магнетрона обеспечивает выработку питающих напряжений: анодное напряжение Uа = 4000 В, ток I = 300 мА. Напряжение накала U = 3,15 В, I = 10 А.

Переменное напряжение 220 В подается на первичную обмотку силового трансформатора Т1 через схему управления.

Далее с помощью силового трансформатора Т1 (который выполняет также роль стабилизатора) напряжение подается на схему удвоения напряжения, собранную на элементах VD1, C1. Сопротивление R1 выбрано от 0,1 до 1 мОм. Оно обеспечивает разряд конденсатора С1 при выключенной печи. Это резистор смонтирован внутри высоковольтного конденсатора. Предохранительный диод VD2 служит для защиты трансформатора от перегрузки в случае внутреннего замыкания в магнетроне или чрезмерного повышения напряжения на конденсаторе С1.

При внутреннем замыкании в магнетроне резко повышается ток во вторичных обмотках Т1, что ведет к увеличению тока в первичных обмотках, и тогда выходит из строя предохранитель.

Диод VD2 можно не устанавливать, но в этом случае необходимо устанавливать предохранитель строго по номиналу. Если замерить напряжение на катоде магнетрона, оно будет равно -4000 В (отрицательное), значит, на аноде относительно катода напряжение будет примерно равно +4000 В.

1.6.2. Высоковольтный диод

Представляет собой большое количество соединенных последовательно диодов в одном корпусе. Проверить обычным тестером в режиме измерения сопротивления невозможно, так как высоковольтный диод предназначен для выпрямления тока в цепях с напряжением в несколько киловольт. Однако есть простой метод, позволяющий с определенной точностью проверить такой диод: для этого надо выключить из схемы микроволновой печи и подключить последовательно с вольтметром постоянного тока в сеть 220 В. При исправном диоде вольтметр покажет постоянное напряжение примерно 220 В. Вольтметр – любой с пределом измерения постоянного напряжения не менее 250 В.

Внимание, пример

Микроволновая печь Samsung M1774R, пробило защитный высоковольтный диод HVR-1x3. После замены диода и включения пробило опять. В данном случае можно включить печь и без диода. Симптомы: посторонних звуков нет, но нет и генерации (нагрева). При этом конденсатор тестером «прозванивается» нормально.

Те же симптомы могут быть (из-за технологической схожести и электрических параметров) у печей с магнетронами ОМ7S(20), 2M213-09F. Также в аналогичном случае можно проверить магнетрон ОМ75S(31). Если вновь пробивается высоковольтный диод, и он имеет сопротивление 20–40 Ом, то придется менять магнетрон. Отдельно магнетрон можно проверить, только сформировав все необходимые для него напряжения.

В данном случае «прозвонкой» можно лишь проверить целостность накала (между двумя клеммами – 0 Ом) и проходных конденсаторов (отсутствием сопротивления между одной клеммой и корпусом).

1.7. Рекомендации по ремонту

Чаще всего выходит из строя высоковольтный диод, реже выходит из строя магнетрон. Не на последнем месте – слюдяная прокладка.

При ремонте проверьте наличие напряжения питания магнетрона -2500-3500 В.

На магнетрон приходят два силовых проводника, подающих напряжения на катод и напряжение накала.



Поделиться книгой:

На главную
Назад