Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Самое грандиозное шоу на Земле - Ричард Докинз на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Хотите получать высокие надои — на много порядков выше, чем требуется корове, чтобы выкормить теленка? Пожалуйста, к вашим услугам искусственный отбор. Можно добиться того, чтобы вымя коровы увеличивалось до огромных размеров и продолжало вырабатывать молоко еще долго после окончания естественного периода кормления. «Молочных» лошадей никто не выводил, но есть ли у кого-либо сомнения в том, что если бы мы захотели, мы смогли бы? Это же, кстати, справедливо для «молочных» людей, если бы кому-нибудь это понадобилось. Слишком много женщин, сведенных с ума мифом о том, что огромные, как дыни, груди привлекательны, платят хирургам огромные деньги за имплантанты, добиваясь весьма непривлекательных — для меня, во всяком случае — результатов. Неужели кто-либо сомневается, что подобное искажение человеческого тела может быть достигнуто за несколько поколений путем искусственного отбора, как это было проделано, например, с коровами фризской породы?

Лет двадцать пять назад я придумал компьютерную модель, прекрасно иллюстрирующую мощь искусственного отбора: компьютерную игру, имитирующую выращивание выставочных роз, собак или коров. Игрок видит на экране девять фигур-биоморфов, средняя из которых — «родитель» остальных восьми. Все формы образованы на основании примерно дюжины «генов» — набора чисел, передающегося от «родителя» «потомству» с небольшой вероятностью «мутации» — малого изменения численного значения. Каждая форма, таким образом, моделируется на основании уникального набора генов. Игрок, в свою очередь, о генах не знает; он видит девять форм на экране и может выбрать форму, которую он хочет размножать дальше. Остальные биоморфы пропадают с экрана. Отобранная форма перемещается в центр и «порождает» восьмерых «потомков». Игра продолжается так долго, как позволяет время или запас терпения. Внешний вид «организмов» на экране с каждым «поколением» меняется. «Потомкам» передаются только «гены», и игрок, отбирая биоморфов по внешним признакам, неосознанно выделяет и определенный комплект «генов». Точно так поступают и селекционеры.


Биоморфы, созданные программой «Слепой часовщик»

С генетикой, пожалуй, все. Игра становится еще интереснее, если ввести в нее «эмбриологическую» составляющую. «Эмбриология» биоморфа — это процесс, при помощи которого численные значения «генов» влияют на форму биоморфа. Можно представить себе множество эмбриологических схем, и немалое их количество я перепробовал. «Слепой часовщик» — первая программа, которую я написал, — основывается на модели бинарного дерева: «ствол» разделяется на две «ветви», каждая из них — еще на две, и так далее. Количество ветвей, их длина и угол соединения со стволом определяются численными значениями «генов». Важно отметить, что неотъемлемым свойством бинарных деревьев является их рекурсивность. Читателю, желающему узнать об этом больше, следует вооружиться книгой об информатике. Скажу только, что рекурсивность подразумевает: мутация влияет на все дерево, а не на отдельный его участок.

Несмотря на то, что мой «Слепой часовщик» начинает с простого бинарного дерева, он довольно быстро порождает целый калейдоскоп эволюционно развитых форм, многие из которых по-своему красивы, а некоторые (в зависимости от устремлений игрока) могут сильно походить на знакомых нам насекомых, пауков и морских звезд. На иллюстрации вы видите бестиарий, собранный в потаенных уголках компьютерной страны чудес одним-единственным игроком (мною). В следующих версиях программы эмбриологические алгоритмы были усовершенствованы. Это позволило «генам» изменять окраску и форму «ветвей» при помощи мутаций.

Следующую, более сложную программу — «Артроморфы» — я написал вместе с Тедом Келером (тогда он работал в «Эппл»). Эмбриологический алгоритм этой программы учитывает особенности строения насекомых, пауков, многоножек, других членистоногих и предназначен для создания артроморфов — существ, сходных с членистоногими. В книге «Восхождение на пик Невероятности» я подробно описал артроморфов, биоморфов, конхоморфов (компьютерных моллюсков) и подобных им существ.


Конхоморфы — смоделированные компьютером раковины

По стечению обстоятельств, математические свойства алгоритмов развития раковин моллюсков глубоко разработаны и в целом выяснены; поэтому моя программа «Конхоморф» способна создавать формы, чрезвычайно близкие к существующим. В главе 13 я вернусь к этим программам. Сейчас я упомянул о них, чтобы продемонстрировать могущество искусственного отбора, огромное даже в сильно упрощенном пространстве компьютерной модели. В реальном мире сельского хозяйства и животноводства, в мире голубятника и заводчика собак, искусственный отбор может достичь куда большего. Биоморфы, конхоморфы и артроморфы только иллюстрируют принцип. По большому счету, сам искусственный отбор иллюстрирует принцип отбора естественного (речь об этом — в следующей главе).

Дарвин не понаслышке знал о возможностях искусственного отбора и воздал ему должное в первой главе «Происхождения видов». Он рассчитывал подготовить читателя к восприятию величайшего своего открытия — могуществу естественного отбора. Если человек смог превратить волка в пекинеса, а дикую капусту — в цветную, и это за несколько сотен или тысяч лет, то почему неслучайное выживание растений и животных на протяжении миллионов лет не должно иметь сходных последствий?

Глава 3

Усыпанный розами путь к макроэволюции

В предыдущей главе я показал, как человек за многие поколения придал собачьей плоти множество форм, окрасок, размеров и характеров при помощи одного лишь селективного скрещивания. Однако мы привыкли делать сознательный выбор и принимать запланированные решения. Есть ли на свете другие животные, делающие то же самое и достигающие тех же результатов, пусть неосознанно? Да, есть, и они помогут нам еще на шаг приблизиться к пониманию эволюции. В этой главе мы будем не спеша двигаться от хорошо знакомого искусственного отбора и разведения собак к величайшему открытию Дарвина — естественному отбору. Первый шаг на этом пути (он буквально усыпан розами, согласны?) ведет в мир цветов.

Дикая роза — вполне симпатичный небольшой цветок, привлекательный, но до Peace, Lovely lady или Ophelia ему как до звезды небесной. Нежный аромат диких роз невозможно перепутать с каким-либо другим, но ему далеко до запаха Memorial Day, Elizabeth Harkness или Fragrant Cloud. Человеческие глаза и носы изрядно поработали над дикими розами, изменяя их размер и форму, удваивая количество лепестков, играя с окраской, усиливая природный запах (иногда до головокружительной силы), переворачивая с ног на голову климатические привычки и подвергая веточки сложнейшим гибридизационным процедурам. Теперь, спустя многие десятилетия искусного выведения, существуют сотни чудесных разновидностей, каждая со своим именем. Какой даме, в конце концов, не хочется, чтобы в ее честь назвали розу?

Насекомые — древнейшие специалисты по одомашниванию

История о розах по большому счету не отличается от рассказанной мною истории о собаках, но все же разница между ними есть, причем серьезная. Цветок розы существует именно потому, что за миллионы лет до того, как за него принялись человеческие глаза и носы, над его формированием потрудились глаза и носы насекомых (вернее, антенны, которыми они улавливают запахи). Следует заметить, что это утверждение верно для всех цветов, украшающих наши сады.

Подсолнечник Helianthus annuus — североамериканское растение, в дикой природе похожее на астру или крупную маргаритку. В конце концов цветы культурного подсолнечника стали достигать размера тарелки[25]. В России был выведен гигантский подсолнечник, имеющий стебель длиной четыре-пять метров и соцветия не менее тридцати сантиметров в диаметре — почти вдесятеро больше, чем у дикого цветка. Кроме того, в отличие от дикой формы, каждое растение несет только один крупный цветок, а не множество мелких. Русские, кстати, начали выращивать это заморское растение по религиозным причинам. Во время Великого поста православная церковь запрещала использовать масло при приготовлении пищи. К счастью, по некоторым причинам (не очень понятным мне, недостаточно знакомому с теологическими тонкостями) подсолнечное масло под запрет не попадало[26]. Это обеспечило экономические предпосылки для выведения подсолнечника в его нынешнем виде. Однако задолго до наших дней коренные жители Северной Америки разводили эти прекрасные цветы ради пищи, красителей и просто ради красоты. Они достигли промежуточных результатов между дикой формой и растением, которое вывели современные селекционеры. Но, как и все остальные ярко окрашенные цветы, подсолнухи подвергались селекции еще до появления человека. И обязаны они своим появлением насекомым.

Это верно для подавляющего большинства цветов, о которых мы знаем, и, вероятно, вообще для всех цветов, имеющих окраску кроме зеленого и запах кроме среднего растительного. Заметим, что не всегда первичный отбор производился именно насекомыми (иногда в роли основного опылителя, осуществляющего селективное размножение растения, выступают колибри, летучие мыши или даже лягушки), но принцип остается тем же. Мы улучшили и усилили не одно свойство диких цветов, сделав их декоративными, однако мы обратили на них внимание только благодаря кропотливой работе многих поколений насекомых, колибри или каких-нибудь других опылителей. Чем не селекция? Разница только в том, что растения отбираются не людьми, а насекомыми или птицами. Мне кажется, что эта разница несущественна. Не согласны? Значит, наш усеянный розами путь еще не окончен.

Почему эта разница может казаться существенной? С одной стороны, человек сознательно ставит себе целью вывести, скажем, самую темную на свете фиолетовую розу, причем делает это, чтобы удовлетворить свою жажду прекрасного, либо рассчитывает на материальную выгоду. Насекомые не руководствуются эстетическими соображениями. Они делают это потому, что… гм, пожалуй, здесь нам надо слегка отступить от темы и обсудить, в каких отношениях находятся цветы и их опылители. Устроено это примерно так. При половом размножении самое важное — не оплодотворять себя. В обсуждение причин этого я вдаваться не буду, но суть в том, что самооплодотворение лишает смысла саму идею полового размножения. Пыльца должна как-то переноситься с одного растения на другое. Двудомные растения, имеющие в одном цветке и мужские, и женские репродуктивные органы, часто используют весьма замысловатые способы, чтобы воспрепятствовать самооплодотворению. То, как это происходит у первоцветов, изучал и сам Дарвин.

Уверившись в том, что перекрестное опыление растениям необходимо, зададимся вопросом: как же они перенесут пыльцу через пространство, разделяющее цветы одного вида? Самый очевидный способ — при помощи ветра, и им пользуется множество цветов. Пыльца — мелкий, легкий порошок. Если выбросить достаточное его количество в ветреный день, одна или две пылинки могут попасть на нужную часть цветка своего вида. Но опыление ветром очень расточительно. Пыльцу приходится производить в огромном избытке, о чем прекрасно знают все страдающие аллергическим ринитом. Подавляющее большинство пылинок оказывается совсем не там, где следует, и это ведет к огромным потерям энергии и ценных ресурсов. Есть гораздо более эффективные способы направленной доставки пыльцы.

Почему растения не идут по пути, который выбрали животные? Казалось бы, почему просто не обойти окрестности, чтобы найти растение своего вида и совокупиться с ним? Кстати, ответить на этот вопрос гораздо труднее, чем может показаться.

Утверждения, что это так потому, что растения не умеют ходить, мало, но пока удовлетворимся им[27]. Факт остается фактом: растения не ходят. Зато ходят животные. Они также летают. И у них есть нервные системы, способные направить их к конкретным целям, которые можно опознать по форме и цвету. Остается только придумать, как заставить животное вымазаться в пыльце, а потом дойти, а лучше долететь, до цветка того же вида, и дело в шляпе.

Именно это и происходит. В некоторых случаях все довольно запутанно, но во всех случаях — изумительно. Многие цветы дают «взятку» едой — нектаром. Вы скажете: «взятка» — слишком громко сказано. А если так: «плата за услуги»? Мне нравится и тот, и другой вариант — до тех пор, пока мы не воспринимаем эти метафоры слишком по-человечески. Нектар — это сладкий сироп, вырабатываемый растениями именно (и только) для того, чтобы обеспечивать горючим и «оплачивать труд» пчел, бабочек, колибри, летучих мышей и другого «наемного транспорта». На изготовление сиропа уходит существенная доля солнечной энергии, улавливаемой листьями — солнечными батареями растения. С точки зрения насекомых и колибри, это отличное авиатопливо. Энергия, заключенная в сахарах нектара, могла бы быть потрачена множеством других способов, например на «строительство» корней, или наполнение подземных хранилищ, которые мы называем клубнями и луковицами, или даже на создание огромного количества пыльцы и выбрасывание ее на все четыре стороны. Очевидно, что для большого числа видов растений бухгалтерия сходится в пользу оплаты крыльев насекомых и птиц и питания их мышц своими сахарами. С другой стороны, это не дает безоговорочного преимущества: некоторые растения по-прежнему пользуются ветроопылением, вероятнее всего потому, что их экономические обстоятельства сдвигают баланс именно в эту сторону. Важно помнить, что у растений действительно есть некая энергетическая экономика, и, как и с любой экономической ситуацией, выбор оптимального курса зависит от обстоятельств. Это, кстати, очень важный эволюционный урок. Разные виды решают одни и те же задачи по-разному, и зачастую нам не удается понять причину различий, пока мы не изучим в подробностях экономику вида.

Если на одном краю спектра приемов перекрестного опыления находится опыление ветром (стоит ли нам назвать его «пределом расточительности»?), то что же находится на другом (его можно назвать «волшебная пуля»[28])? Не многие насекомые будут перелетать с цветка, на котором они собрали пыльцу, непременно на цветок того же вида. Некоторые полетят к первому попавшемуся цветку, другие — к любому цветку той же окраски, и вопрос, попадется ли на пути цветок того же вида, который только что оплатил услуги переносчика нектаром, по-прежнему остается в ведении фортуны. Тем не менее есть прекрасные примеры цветов, подошедших очень близко к изобретению «волшебной пули», и не последнее место среди них занимают орхидеи. Нет ничего удивительного в том, что Дарвин посвятил им целую книгу.

И Дарвин, и Уоллес, сооткрыватель естественного отбора, обратили внимание на удивительную мадагаскарскую орхидею Angraecum sesquipedale (цветная вклейка 4), и оба они сделали одно и то же замечательное предсказание, позднее триумфально подтвердившееся. Эта орхидея имеет трубчатые нектарники, имеющие в длину не менее 28 сантиметров. Ее родственник Angraecum longicalcar имеет нектароносные отростки длиной до 40 сантиметров. Исходя только из факта существования A. sesquipedale на Мадагаскаре, Дарвин в книге об орхидеях, изданной в 1862 году, предсказал открытие бабочек, способных дотянуться хоботком до глубины 25,5–28 сантиметров. Пять лет спустя Уоллес (неизвестно, читал ли он Дарвина) упоминал о нескольких видах бражников, хоботки которых практически удовлетворяли этому требованию.

Я тщательно измерил длину хоботка[29] представителя южноамериканского вида Macrosila cluentius из коллекции Британского музея и обнаружил, что он имеет длину девять с четвертью дюймов [23,5 сантиметра]. Другой бражник из тропической Африки (Macrosila morganii) имеет хоботок в семь с половиной дюймов [19 сантиметров]. Особи вида, имеющего хоботок всего на два-три дюйма длиннее, смогли бы доставать нектар из самых крупных цветков Angraecum sesquipedale, нектарники которых имеют длину от десяти до четырнадцати дюймов. Можно с уверенностью сказать, что такая бабочка действительно существует и обитает на Мадагаскаре. Любой натуралист, посещающий этот остров, может искать ее с уверенностью астрономов, искавших Нептун, и поиски будут в той же степени успешными.

В 1903 году, когда Дарвин умер, а Уоллес еще был жив, ученые открыли прежде неизвестный вид мадагаскарского бражника, заслуженно получивший подвидовое имя praedicta («предсказанный»). Однако даже хоботок Xantophan morgani praedicta, «бражника Дарвина», слишком короток, чтобы добраться до нектара орхидеи A. Longicalcar, и это заставляет нас предполагать существование бабочки с хоботком еще более длинным, причем предполагать с той же уверенностью, какую Уоллес иллюстрировал предсказанным открытием Нептуна. (Этот пример, кстати, демонстрирует ложность утверждения, будто эволюционная наука не может быть предсказательной. Предсказание Дарвина и Уоллеса было настоящим предсказанием, несмотря на то, что в момент его опубликования Xantophan morgani praedicta уже существовал. Суть предсказания сводилась к тому, что в будущем обязательно обнаружат бабочку, хоботок которой будет достаточно длинным для того, чтобы доставать нектар из цветка A. sesquipedale.)

Насекомые хорошо различают цвета, но видимая область у них сильно сдвинута в ультрафиолетовую часть спектра. Как и мы, они видят желтый, зеленый, синий и фиолетовый. Кроме того, в отличие от нас, они прекрасно видят в ультрафиолетовом диапазоне, но не различают красного. Если в вашем саду есть красный трубчатый цветок, то в дикой природе его скорее всего (но не наверняка) опыляют не насекомые, а птицы, которые прекрасно различают красную часть спектра — колибри (если это растение из Нового Света) или нектарницы (если из Старого). Цветы, которые кажутся нам однотонными, на самом деле могут быть богато украшены точками или полосками, которые видят только насекомые. Мы не можем различить этот узор, поскольку не видим в ультрафиолете. Более того, многие цветы направляют пчел при помощи ультрафиолетовой «посадочной разметки», недоступной человеческому глазу.

Энотера Oenothera выглядит как желтый цветок. Но фотография, сделанная через ультрафиолетовый фильтр, покажет привлекающий пчел рисунок, который мы невооруженным глазом различить не можем (цветная вклейка 5). На фотографии он кажется красным, но это «ложный цвет», определяемый технологией фотосъемки. Это совершенно не означает, что пчела видит этот рисунок красным. Никто не знает, каким пчела видит красный в ультрафиолете (или желтый, или любой другой цвет). (Напомню старый парадокс: «Я даже не знаю, каким вы видите красный цвет».)

Заросшая цветами лужайка — это природная Таймс-сквер или Пикадилли. Она вся как один большой неоновый знак, меняющийся, когда одни цветы сменяют другие, расцветая согласно с другими цветами своего вида под воздействием, скажем, смены длины светового дня. Эта композиция на зеленом холсте лужайки была расцвечена, сформирована, выпестована животными: пчелами, бабочками, мухами-журчалками. К этому списку следует прибавить колибри, если наша лужайка находится в Новом Свете, и нектарниц, если в Старом.

Кстати, колибри и нектарницы — не близкие родственницы. Они выглядят и ведут себя практически одинаково потому, что ведут похожую жизнь, которая вертится в основном вокруг цветов и нектара (хотя и те, и другие питаются не только нектаром, но и насекомыми). Обе группы птиц обладают длинными клювами и еще более длинными языками, необходимыми для того, чтобы доставать нектар. Колибри лучше зависают в воздухе и могут даже летать задом наперед подобно геликоптеру. Другой конвергентной группой, хоть и дальше отстоящей по древу жизни, являются бабочки-языканы (хоботники) — тоже превосходные зависатели с поразительно длинными языками (представители всех трех групп нектароголиков изображены на цветной вклейке 5).

После того, как мы усвоим суть естественного отбора, мы вернемся к понятию конвергентной эволюции. В этой же главе нас ведут цветы, постепенно, шаг за шагом прокладывая тропинку к этому пониманию. Колибри, журчалки, бабочки, пчелы и бражники, поколение за поколением, критически осматривают дикорастущие цветы, придают им новую форму, раскрашивают, заштриховывают и разлиновывают почти так же, как человеческие глаза поступают с садовыми цветами, собаками, коровами, капустой и пшеницей.

Переход от разорительной модели ветроопыления к направленному опылению насекомыми дает цветам огромную экономию. Даже если пчела посещает растения разных видов, изменяя лютику с васильком, а маку — с чистотелом, застрявшая на пушистом брюшке частичка пыльцы имеет куда больше шансов попасть в цель, то есть на второй цветок того же вида, чем если бы она была просто выброшена на ветер. Если бы пчела предпочитала какой-нибудь определенный цвет, например синий, было бы чуть легче. Или, например, если бы пчела не имела постоянных цветовых предпочтений, но вырабатывала временные привычки и посещала несколько похожих цветков подряд. Лучше всего, естественно, было бы, если бы пчела посещала цветы только одного вида. Соответственно, есть цветы вроде вдохновившей Дарвина и Уоллеса мадагаскарской орхидеи, нектар которых доступен только специализирующимся на этих цветах насекомым, получающим от подобной монополии барыши. Эти мадагаскарские бражники — настоящие «волшебные пули».

С точки зрения бражника, продуцирующие нектар цветы — это послушные, продуктивные дойные коровы. С точки зрения цветка, бражники — это доступный и надежный транспорт, перевозящий пыльцу не хуже почтовых голубей или курьеров из «Федэкса». Про каждую из сторон сделки можно сказать, что одна одомашнила другую, отбирая особи так, чтобы они лучше своих предшественников выполняли свою работу. По большому счету, селекционеры-люди оказали на цветы такое же влияние, как и селекционеры-насекомые — только слегка более наглядное. Насекомые «разводили» растения так, чтобы они были яркими и красивыми. Садовники сделали их еще ярче и красивее. Насекомые придали розам легкий, приятный запах. Мы присоединились позднее и еще усилили его. Кстати, то, что бабочкам и людям нравятся одни и те же запахи — счастливое совпадение. Цветы, использующие в качестве опылителей мясных мух или жуков-могильщиков (например «вонючий Бен» Trillium erectus или аморфофаллус Amorphophallus titanum), часто имеют запах, кажущийся нам отвратительным, поскольку подражают запаху разлагающегося мяса. Полагаю, что наши селекционеры не работали над усилением запаха этих цветов.

Естественно, взаимоотношения между насекомыми и цветами — это улица с двусторонним движением. Насекомые «выводят» все более красивые цветы, но отнюдь не потому, что способны получить эстетическое наслаждение[30]. С другой стороны, цветы получают существенные преимущества, если насекомые считают их привлекательными. Насекомые, посещая наиболее привлекательные цветы, неосознанно выводят еще более красивые растения. В то же время цветы отбирают наиболее успешно опыляющих насекомых. Как уже говорилось, насекомые «выводят» растения, дающие много нектара, как фермеры разводят коров фризской породы с массивным выменем. Но в интересах растений тщательно дозировать нектар. Если насекомое насытится в ходе одной посадки на цветок, у него не будет стимула двигаться дальше и искать второй цветок. Это было бы дурной новостью для первого цветка, поскольку именно ради второго — опыляющего — визита и строится план. Цветку необходимо соблюдать баланс между выдачей слишком большого количества нектара (тогда насекомое не посетит второй цветок) и слишком малого его количества (тогда у насекомого нет стимула посещать первый цветок).

Насекомые научились «доить» цветы и отбирать их так, чтобы увеличить «надои» (вероятно, встречая при этом сопротивление со стороны растений). Разводили ли когда-нибудь пчеловоды или симпатизирующие им садоводы цветы на повышение количества нектара так же, как фермеры разводят фризских и джерсейских коров? Было бы интересно узнать. Тем не менее нет сомнений в сходстве селекционеров, отбирающих красивые цветы с приятным запахом, с пчелами, бабочками, колибри и нектарницами, делающими то же самое.

Ты — мой естественный выбор!

Есть ли другие примеры селекции и разведения, осуществляемого не человеком? О да. Вспомните скучный камуфляжный окрас перьев самки фазана и сравните его с роскошной раскраской самцов того же вида. Очевидно, что если бы на кону было только индивидуальное выживание самца золотого фазана, он «предпочел» бы выглядеть как самка или как укрупненная версия цыпленка, поскольку они гораздо лучше замаскированы. Это справедливо и для других видов (алмазный фазан, обыкновенный фазан). Петухи заметны для хищников, они выглядят броско, но каждый вид по-своему. А самки всех видов хорошо камуфлированы и выглядят почти одинаково. Почему?

С точки зрения Дарвина, все дело в половом отборе. Другой способ выразить то же самое, лучше подходящий к моей концепции пути, усыпанного розами, — «селективное разведение самцов самками». Да, яркие цвета привлекают хищников. Однако они привлекают и самок. Многие поколения самок выбирали ярко окрашенных самцов, а не скучных коричневых особей, которыми самцы, несомненно, остались бы, не займись самки селекцией. То же самое произошло с павлинами и райскими птицами, а также с множеством других млекопитающих, рыб, амфибий, рептилий и насекомых. Все эти виды объединяет одна черта: у них при размножении самка выбирает из нескольких соревнующихся самцов. Как правило, выбирают именно самки, а не самцы, но в причины этого мы сейчас вдаваться не будем.




Вариации домашней курицы: три иллюстрации из книги Ч. Дарвина «Изменение животных и растений в домашнем состоянии»

С фазанами произошло то же, что с садовыми цветами: пришли люди и продолжили работу самок, выведя новые, еще более цветистые формы оперения самца. Основной эффект, правда, был достигнут не при помощи постепенного отбора в течение многих поколений, а за счет закрепления единичных крупных мутаций. Людям также удалось вывести удивительные породы голубей (о чем Дарвину было прекрасно известно) и кур, ведущих свой род от дальневосточной красной джунглевой, или банкивской, курицы (Gallus gallus).

Основная часть этой главы посвящена селекции, предназначенной для глаз, но другие органы чувств могут оказывать не меньшее влияние. Ценители канареек разводят их не только из-за внешности, но главным образом из-за пения. Дикая канарейка — желто-коричневый воробышек, на которого и смотреть-то нечего. Селекционеры взяли палитру цветов, создаваемую случайной генетической изменчивостью, и добились настолько оригинальной окраски, что получившийся цвет был назван канареечным. Сама птица, кстати, названа в честь островов[31], а не наоборот, как было с Галапагосскими, названными по испанскому слову «черепаха». Но больше всего канарейки известны своим пением, которое также было усовершенствовано заводчиками. Было выведено несколько типов певцов: роллеры, поющие с закрытым клювом, ватершлагеры, песня которых звучит как текущая вода, и тимбрадо, издающие металлические звуки наподобие звона колокольчиков и сухой треск, похожий на звук кастаньет, с родины которых эти канарейки и происходят. Выведенные в неволе птицы поют дольше, громче и чаще дикого типа. Но важно отметить, что все элементы, из которых состоят песни домашних канареек, встречаются в дикой природе так же, как привычки и уловки современных пород собак происходят от элементов, обнаруживаемых в поведенческом репертуаре волков[32].

Как и в рассмотренных нами прежде случаях, селекционеры работали с материалом, обеспеченным предшествующим отбором со стороны самок вида. На протяжении многих поколений самки «выводили» все более музыкально одаренных самцов. В случае канареек у нас есть некоторые дополнительные данные. Канарейки, как и смеющиеся горлицы, активно использовались в исследованиях гормонов и репродуктивного поведения. Известно, что у самок обоих видов звук песни самца, даже записанный на пленку, вызывает увеличение яичников и выработку ими гормонов. Это «переключает» самку в репродуктивное состояние и делает ее готовой к спариванию. Можно сказать, что самцы манипулируют самками, распевая перед ними песни. Почти что гормональная инъекция! Но можно сказать, что и самки постепенно отбирают самцов, заставляя их петь все лучше. Эти две точки зрения — две стороны одной медали. Как и у многих других видов птиц, песня не только привлекает самок, но и предупреждает самцов-конкурентов (вдаваться в это мы сейчас не будем).

Теперь посмотрим на картинки ниже: на первой — деревянная маска театра Кабуки, изображающая воина-самурая, на второй — краб Heikea japonica, обитающий в водах Японии. Родовое имя Heikea происходит от имени клана Хэйкэ (Тайра), потерпевшего поражение в морской битве при Данноуря (1185 год) от клана Гэндзи (Минамото). По легенде, духи воинов Хэйкэ теперь населяют дно моря, обитая в телах крабов H. japonica. Панцирь этого краба, напоминающий рисунком лицо воина, искаженное яростной гримасой, подкрепляет эту легенду. Известный зоолог сэр Джулиан Хаксли был настолько впечатлен этим сходством, что писал: «сходство H. japonica с лицом воина-самурая слишком сильно для того, чтобы быть случайным… Оно появилось именно потому, что крабов с панцирем, больше напоминающим лицо самурая, реже съедали»[33]. (В 1952 году, когда Хаксли написал эти строки, краб назывался Dorippe. Его переименовали обратно в Heikea в 1990-м, когда кто-то установил, что это имя краб получил еще в 1824 году: таковы строгие правила приоритета в зоологической номенклатуре.)


Маска театра Кабуки, изображающая самурая

Теория, что поколения отягощенных предрассудками рыбаков выбрасывали в море крабов, рисунок на панцире которых напоминал человеческое лицо, получила новый импульс в 1980 году. Тогда в прекрасной книге «Космос» о ней упомянул Карл Саган:

Предположим, что по чистой случайности среди далеких предков краба был один, на чьем панцире проступали, пусть и смутно, очертания человеческого лица. Даже до сражения у Данноуры рыбаки не слишком охотно употребляли в пищу таких крабов. Выбрасывая их в море, они запустили эволюционный процесс.

<…> По мере того как сменялись поколения крабов и рыбаков, выживало все больше ракообразных, чей панцирный узор походил на лицо самурая, и постепенно рисунок стал напоминать не просто человеческое лицо, и даже не просто лицо японца, но именно лицо жестокого и разгневанного воина[34].


Краб Heikea japonica

Отличная теория. Нет, правда: она была слишком хороша для того, чтобы кануть в Лету, и порожденный ею мем изрядно расплодился. Однажды я даже нашел веб-сайт[35], на котором можно было отдать свой голос за один из вариантов: вы согласны с этой теорией (31 % из 1331 опрошенного); фотографии подделаны (15 %); японские умельцы вырезают панцири так, чтобы они выглядели похожими на человеческое лицо (6 %); это только совпадение (38 %); в крабов переродились утонувшие самураи (10 %!). Научная истина, конечно, не может быть установлена путем плебисцита, и я проголосовал только потому, что не мог иначе увидеть, как голосовали другие. Но, должен сказать, что я присоединился к занудам. Мне кажется, что сходство все-таки случайное. И не потому, что, как заметил один из авторитетных скептиков[36], выступы и впадины на панцире краба соответствуют местам прикрепления мышц. Это не противоречит теории Хаксли-Сагана: суеверные рыбаки должны были заметить изначальное сходство узора с лицом человека, и эта схожесть легко могла быть обеспечена именно симметричным узором прикрепления мышц.

Меня больше впечатляет наблюдение того же скептика, что эти крабы слишком малы для употребления в пищу. По его словам, рыбаки должны были выбрасывать в море всех крабов такого размера, а не только тех, рисунок на панцире которых напоминал человеческое лицо. Впрочем, это возражение стало казаться мне менее убедительным после посещения одного из токийских ресторанов. Пригласивший нас человек заказал на всех большое блюдо крабов. Они были гораздо крупнее Heikea, и, несмотря на то, что они были одеты в крепкие, твердые панцири, этот Гаргантюа стал брать их одного за другим и вгрызаться как в яблоки с таким хрустом, что, казалось, он должен был в кровь разодрать себе десны. Для такого гастрономического богатыря краб размера Heikea — пылинка. Он проглотит его целиком, не моргнув глазом.

Основным источником моего скепсиса по отношению к теории Хаксли-Сагана служит известный факт, что человеческий мозг в любом случайном узоре готов увидеть человеческое лицо. Помимо многочисленных легенд о ликах Иисуса, Девы Марии или матери Терезы, увиденных на кусках тостов, пиццах и пятнах на стене, этому имеются экспериментальные научные подтверждения. Эта готовность получает дополнительный стимул, если узор оказывается симметричным. Все крабы, кроме отшельников, симметричны. Как бы мне ни хотелось считать, что это сходство усилено естественным отбором, я все же предполагаю, что оно случайно.

Но не в крабах счастье. В мире животных есть масса рыбаков-любителей, которые отказывались от потенциальной добычи, если она напоминала нечто страшное, и во всех этих случаях сходство точно не является случайным. Если бы вы были птицей, охотящейся в лесу на гусениц, что бы вы сделали, столкнувшись со змеей? Думаю, отскочили бы и улетели подальше. Так вот, существует гусеница, чья «корма» удивительно похожа на голову змеи. Если вы боитесь змей (как, признаюсь, и я), то гусеница действительно могла бы вас испугать. Мне было бы неприятно брать это животное в руки, несмотря на то, что я прекрасно осведомлен о его безвредности (это удивительное животное изображено на цветной вклейке 7). Те же проблемы у меня с журчалками, маскирующимися под пчел и ос, несмотря на то, что я прекрасно вижу по их единственной паре крыльев, что они мухи и, значит, жал у них нет. Эти животные принадлежат к огромной группе, ищущей защиты при помощи маскировки и подражающей чему-нибудь несъедобному (вроде гальки, веточки или кусочка водоросли) или чему-то действительно зловредному (вроде змеи, осы или глаз хищника).

Но тогда выходит, что глаза насекомоядных птиц «выводят» насекомых, все более и более напоминающих несъедобные вещи или опасных животных? В некотором смысле нам придется ответить утвердительно. В конце концов, в чем разница между этим случаем и самками фазанов, отбирающими партнеров за их красоту, или людьми, выводящими собак и розы? Основное отличие состоит в том, что самки фазана проводят позитивный отбор, отдавая предпочтение самым привлекательным самцам, а питающиеся гусеницами птицы проводят негативный отбор, избегая животных с отталкивающим признаком.

Вот вам еще один пример, в котором отбор позитивен, хотя отбирающий агент не получает от этого никаких преимуществ. Рыба-удильщик неподвижно сидит на морском дне, терпеливо поджидая добычу[37]. Как и многие другие глубоководные рыбы, удильщик по нашим стандартам чудовищно безобразен. Весьма возможно, что по рыбьим тоже, однако никому нет до этого дела — на глубине, на которой живут удильщики, почти ничего не видно. Подобно другим глубоководным жителям, самки удильщика создают свой источник света, вернее — имеют специальные органы, в которых обитают светящиеся бактерии. Такая «биолюминесценция» недостаточно ярка для того, чтобы разглядеть что-либо, но вполне достаточна для привлечения других рыб. Один из шипов плавника у удильщиков удлиняется и затвердевает, превращаясь в подобие удочки. У некоторых видов эта «удочка» достигает такой длины и гибкости, что ее впору назвать «леской». На конце лески, естественно, находится приманка, наживка. Форма наживки меняется от вида к виду, но всегда напоминает что-нибудь небольшое и съедобное — червяка, рыбку или что-нибудь непонятное, но аппетитно подрагивающее. Часто наживка светится: еще одна природная неоновая вывеска, на сей раз гласящая: «Съешь меня». Небольшие рыбы находят этот призыв убедительным. Они приближаются к ней, и это последнее, что они делают в жизни: в этот момент удильщик открывает свою огромную пасть и засасывает жертву вместе с входящим потоком воды.

Можем ли мы теперь сказать, что мелкие рыбы «выводят» все более привлекательную наживку так же, как самки фазана выводят фазанов, а садовники — розы? Почему бы и нет! В случае с розами наиболее привлекательные цветы отбираются для дальнейшего размножения садовником. С фазанами все почти так же, несмотря на то, что самки могут не отдавать себе отчет в том, что делают, в отличие от садовников. Но эта разница представляется не очень существенной. Не намного заметнее различие между этими двумя случаями и случаем удильщика. Рыбы-жертвы, безусловно, участвуют в отборе наиболее удачливого удильщика, способствуя его выживанию и размножению, но делают это косвенно, служа ему пищей. Удильщик с менее привлекательной наживкой имеет больше шансов умереть от голода и, соответственно, не оставить потомства. И рыбы-жертвы действительно совершают выбор, но «голосуют» они своими жизнями! На этом-то месте мы и подходим к подлинному естественному отбору. Вспомним пройденное:

1. Человек сознательно отбирает для размножения привлекательные розы, подсолнухи и тому подобное, сохраняя ответственные за привлекательные признаки гены. Это искусственный отбор, о котором человечество знало задолго до Дарвина, и любому понятно, что искусственный отбор достаточно могуществен для того, чтобы превратить волка в чихуахуа и «вытянуть» початки маиса, увеличив их длину с дюймов до футов.

2. Самки фазана выбирают для размножения привлекательных самцов (неизвестно, насколько осмысленно, но предположим, что ненамеренно), опять-таки сохраняя гены, ответственные за привлекательные признаки. Это — половой отбор, открытый Дарвином, или, по крайней мере, полностью им осмысленный и названный.

3. Мелкая рыба (безусловно ненамеренно) отбирает наиболее «привлекательных» удильщиков, служа им пищей, и сохраняет ответственные за «привлекательность» гены. Это — естественный отбор, величайшее из открытий Дарвина.

Гениальный Дарвин первым понял, что сама природа может играть роль отбирающего агента. Кто угодно (или, по крайней мере, кто угодно с опытом в области фермерства, разведения садов, собачьих выставок или голубятен) знал об искусственном отборе и его мощи[38]. Но именно Дарвин первым заметил, что присутствие отбирающего агента не является обязательным. Выбор может происходить автоматически за счет выживания животного или его неспособности выжить. Дарвин понял: выживание является актом отбора потому, что только выжившие размножаются и передают последующим поколениям гены (Дарвин не знал этого слова и не пользовался им), которые помогли им выжить. В качестве примера естественного отбора я выбрал рыб-удильщиков именно потому, что здесь все еще можно увидеть работу отбирающего агента, использующего свои глаза для того, чтобы выбрать, какая особь выживет. Но мы достигли определенного пункта на нашем пути, после которого в отбирающем агенте вообще нет нужды. Перейдем от удильщика к тунцам или тарпонам — рыбам, активно преследующим добычу. При всем желании мы не можем сказать, будто жертва «выбирает», какому тарпону выжить, позволяя ему себя съесть. С другой стороны, мы можем совершенно резонно заметить, что наилучшим образом приспособленный для ловли добычи тарпон (быстрые плавательные мышцы, острое зрение и так далее) выживет, размножится и передаст следующим поколениям гены, позволившие ему достичь успеха. Отбор осуществляется самим фактом выживания. Другие тарпоны, по каким бы то ни было причинам не преуспевшие в ловле рыбы, не выживают. Мы можем добавить к нашему списку еще один пункт:

4. Без какого бы то ни было агента возможен отбор особей, обладающих лучшим оснащением для выживания, чем их сородичи, и, таким образом, имеющих лучшие шансы размножиться и передать последующим поколениям гены, ответственные за наличие этого оснащения. Генофонд любого вида должен постепенно наполняться генами, отвечающими за лучшее оснащение для выживания и размножения.

Обратите внимание, как всеобъемлющ естественный отбор! Примеры, которые я приводил выше, шаги 1, 2 и 3, да и многие другие, могут быть включены в естественный отбор как его частные случаи. Дарвин разработал наиболее широкую форму рассмотрения феномена. Прежде было известно только об искусственном отборе — частном случае этого всеобщего явления. Общий случай — неслучайное сохранение случайно изменяющегося наследуемого оснащения. Неважно, чем порождается неслучайный характер выживания. Это может быть: осознанный выбор агента (человек, отбирающий породистых гончих для вязки); неосознанный выбор агента без четких намерений (самки фазана, выбирающие партнеров); неосознанный выбор, который отбирающий агент предпочел бы не делать (рыба, решающая, плыть или не плыть к наживке рыбы-удильщика); нечто, в чем сложно усмотреть чей-либо выбор (случай тарпона, выживающего благодаря некоему биохимическому преимуществу, скрывающемуся в мышцах и дающему небольшую прибавку в скорости). В моем любимом абзаце из «Происхождения видов» Дарвин прекрасно высказал эту мысль:

Можно сказать, что естественный отбор ежедневно и ежечасно расследует по всему свету мельчайшие вариации, отбрасывая дурные, сохраняя и слагая хорошие, работая неслышно и незаметно, где бы и когда бы ни представился к тому случай, над усовершенствованием каждого органического существа по отношению к условиям его жизни, органическим и неорганическим. Мы ничего не замечаем в этих медленных переменах в развитии, пока рука времени не отметит истекших веков, да и тогда наше понимание геологического прошлого несовершенно: мы замечаем только, что современные формы жизни отличаются от когда-то существовавших[39].

Как и в других местах, я цитирую первое издание шедевра. В дальнейшие внесена интересная поправка: «Выражаясь метафорически, можно сказать, что естественный отбор ежедневно и ежечасно…». Казалось бы, «можно сказать» — и без того достаточно осторожная фраза. Однако в 1866 году Дарвин получил письмо от Уоллеса, указавшего на то, что, к сожалению, необходима еще большая бдительность, чтобы избежать непонимания:

Мой дорогой Дарвин![40] Мне так часто приходится сталкиваться с поразительной неспособностью широкой массы интеллектуальных людей ясно или в принципе осознавать самостоятельные и неизбежные эффекты естественного отбора, что я пришел к заключению, что сам термин и ваш способ его иллюстрировать, какими бы ясными и красивыми они ни представлялись многим из нас, все же не лучшим образом приспособлены для того, чтобы донести идею до сообщества натуралистов.

Далее Уоллес цитирует французского автора Жанэ, в голове у которого, в отличие от Уоллеса и Дарвина, очевидно, была полная путаница:

Видно, что он считает слабым местом вашей теории непонимание вами «необходимости мысли и направленности для действия естественного отбора». Это же возражение повторяют ваши основные оппоненты, и я часто слышал его в дискуссии. Мне кажется, основной его причиной является выбор вами термина «естественный отбор» и его сравнение с результатами отбора, производимого человеком, а также персонификация природы как «отбирающей», «предпочитающей» и так далее. Для некоторых это ясно как день и восхитительно в своей объясняющей силе, но для многих это очевидный камень преткновения. Я беру на себя смелость предложить вам полностью отказаться от этого источника недопонимания в вашей великолепной работе и будущих изданиях «Происхождения», что, как мне кажется, может быть без всяких трудностей сделано путем использования введенного Спенсером термина «выживание наиболее приспособленных». Этот термин является чистой констатацией факта, в то время как «естественный отбор» является его метафорическим описанием.

Уоллес был прав. К сожалению, использование спенсеровского термина «выживание наиболее приспособленных» вызывает другие проблемы, чего Уоллес предвидеть не мог (в подробности я сейчас вдаваться не буду). Несмотря на предупреждение Уоллеса, я предпочитаю следовать дарвиновской стратегии и вводить естественный отбор через одомашнивание и отбор искусственный. Мне хочется верить, что на этот раз месье Жанэ понял бы, о чем речь. У меня была еще одна важная причина следовать пути, проторенному Дарвином. Проверкой любой теории является эксперимент. Научный эксперимент — это когда вы не ждете, пока природа сама совершит какое-то действие, и не наблюдаете пассивно, пытаясь понять, чем это действие может быть вызвано. Вы вмешиваетесь и делаете что-нибудь сами. Манипулируете обстоятельствами. Что-нибудь целенаправленно изменяете и сравниваете с контрольными условиями, в которых изменение отсутствует, или с другим изменением.

Экспериментальное вмешательство чрезвычайно важно, поскольку без него вы не можете быть уверены в том, что подмеченная вами корреляция отражает причинно-следственную связь. Эту мысль хорошо иллюстрирует так называемая ошибка церковных часов. Пусть часы на колокольнях двух соседних церквей отбивают время почти одновременно, но на колокольне А чуть раньше, чем на колокольне Б. Замечающий это визитермарсианин может предположить, что бой часов А вызвал бой часов Б. Мы, конечно, знаем ответ, но единственным способом узнать истину будет эксперимент: начать звонить в колокол А в случайные моменты времени, а не раз в час. Предположение марсианина о том, что и в этом случае часы Б прозвонят сразу после А, будет, естественно, опровергнуто. Только эксперимент может определить, действительно ли наблюдаемая корреляция отражает причинно-следственную связь.


Две искусственно выведенные линии кукурузы, отбираемой по признакам высокого и низкого содержания масла содержания масла

Если ваша гипотеза заключается в том, что неслучайное сохранение случайных генетических изменений имеет важные эволюционные последствия, вам придется вмешаться в ход событий, чтобы проверить гипотезу экспериментально. Вмешаться и манипулировать вариативными изменениями. Выбирать, как селекционер, какие особи будут размножаться. Это, разумеется, и будет искусственный отбор. Так что искусственный отбор — это не просто аналог естественного отбора. Искусственный отбор представляет собой настоящую экспериментальную проверку гипотезы о том, что отбор ведет к эволюционным изменениям.


Две линии крыс, отбираемых по признаку сопротивляемости зубному кариесу

Большинство известных нам примеров искусственного отбора (например, выведение современных пород собак) является скорее взглядом в прошлое, чем проверкой теоретических положений в контролируемых условиях эксперимента. Но проводились и настоящие эксперименты, и результаты их всегда были такими, как и ожидалось на основе менее строго документированных данных о собаках, капусте и подсолнечнике. Я приведу вполне типичный пример эксперимента, замечательный тем, что он начался достаточно давно — в 1896 году (поколение 1 на иллюстрации). Проводился эксперимент на Опытной станции Иллинойса[41].

Диаграмма слева отражает содержание масла в початках кукурузы двух искусственно выведенных линий, одна из которых отбиралась на высокое содержание масла, а вторая — на низкое. Это, безусловно, чистый научный эксперимент, поскольку мы сравниваем результат двух манипуляций. Очевидно, что разница огромна, и она все увеличивается. Похоже, что и восходящая, и нисходящая тенденции выйдут на плато: нисходящая потому, что содержание масла невозможно понизить ниже нуля, восходящая по почти таким же ясным причинам.

Выше — еще одна лабораторная демонстрация могущества искусственного отбора, показательная в другом отношении. На иллюстрации — семнадцать поколений крыс, отбиравшихся на сопротивляемость кариесу[42]. Отмечаемая на графике величина — время от рождения (в днях), в течение которого у крысы не было кариеса. В начале эксперимента характерный период, свободный от разрушения зубов, длился около ста дней. Спустя дюжину поколений постоянного отбора против кариеса этот период вырос в четыре раза или более. Вторая линия крыс, напротив, отбиралась на подверженность кариесу.

Этот пример позволяет нам «попробовать на зуб» естественный отбор как способ мышления. Обсуждение крысиных зубов будет первой из трех экскурсий в мир подлинного естественного отбора, к которым мы теперь готовы. В ходе двух других мы обратимся к существам, повстречавшимся нам на пути от искусственного отбора к естественному: к собакам и цветам.

Крысиные зубы

Почему же, раз улучшить состояние крысиных зубов при помощи искусственного отбора так просто, природа плохо справилась с этой задачей? Ведь ясно, что быстрая деградация зубов не несет эволюционных преимуществ. Так почему, если искусственный отбор способен снизить ее темп, отбор естественный давным-давно не справился с этой задачей? Мне приходят в голову два ответа, и оба весьма содержательны.

Первый ответ: популяция, которую взяли для своих экспериментов генетики, не была естественной. Она состояла из одомашненных, рожденных в лаборатории белых крыс.

В каком-то смысле лабораторные крысы, как и современный человек, изнежены, избавлены от безжалостного естественного отбора. Генетически обусловленная тенденция к быстрой деградации зубов может принести огромные проблемы и сильно снизить вероятность размножения в дикой природе, однако не имеет значения в условиях лабораторной колонии, где жизнь легка, а спариванием руководит не половой отбор, а экспериментатор.

Но это только один из ответов. Второй куда интереснее, поскольку ведет к важному выводу о сути естественного и искусственного отбора: за все нужно платить — и мы уже приходили к нему в разговоре о различных стратегиях опыления, выбираемых растениями. На каждом эволюционном действии висит «ценник». На первый взгляд необходимость любой ценой избегать кариеса кажется очевидной, как очевидно и то, что кариес существенно снижает срок жизни крыс. Однако задумаемся, что должно произойти, чтобы сопротивляемость кариесу выросла. Можно сказать, что за это придется так или иначе платить, и этого, по сути, достаточно для дальнейших рассуждений. Предположим, что повышение сопротивляемости кариесу происходит благодаря утолщению зубной эмали, а это требует дополнительного кальция. Естественно, можно получить этот кальций из окружающей среды, однако его придется добывать. В организм он попадает с пищей, а съеденный кальций может быть полезен и для других нужд. У организма есть кальциевая «экономика». Кальций необходим в костях, в молоке. (Мы говорим о кальции, однако можно заменить его на любой другой дорогостоящий ограниченный ресурс, и рассуждение останется справедливым. Важно только, чтобы ресурс не был избыточным.) Крыса, зубы которой крепче, чем у остальных, будет, при прочих равных условиях, жить дольше. Но пресловутых равных условий не бывает, поскольку на построение более мощных зубов кальций нужно где-то брать, например из костей. Соответственно, другая особь, генетически не предрасположенная к трате большего количества кальция на зубы и меньшего — на кости, может прожить дольше благодаря прочным костям, несмотря на гнилые зубы. Или же другая особь может лучше выхаживать потомство, поскольку в ее молоко попадает больше кальция. Экономисты обожают цитировать Роберта Хайнлайна: бесплатных завтраков не бывает. Пусть мой пример с крысиными костями гипотетический, но можно смело говорить, что с точки зрения телесной «экономики» должна существовать крыса со слишком хорошими зубами. Совершенство одного признака должно покупаться жертвами в другом.

Это касается всех живых существ. Можно ожидать, что хорошо приспособленные организмы будут выживать с большей вероятностью, однако это не означает совершенства в чем-то одном. Будь у антилопы ноги чуть длиннее, она бегала бы быстрее, и, следовательно, ее шанс избежать смерти в пасти леопарда был бы выше. Однако длинноногая особь, пусть и оснащенная лучше других для бега, должна «оплачивать» удлинение конечностей отставанием в какой-либо другой отрасли «экономики» своего тела. Материалы, необходимые для «постройки» дополнительных костей, связок и мышц, должны быть взяты из других мест, следовательно, шанс такой особи погибнуть от причин, не связанных с атакой хищника, выше. К тому же ноги позволяют быстрее бегать, пока они целы, а чем они длиннее, тем они легче ломаются, и животное не сможет бегать вовсе. Тело любого живого существа — переплетение компромиссов. Мы рассмотрим эту тему подробнее в главе 12, посвященной эволюционной «гонке вооружений».

Одомашненные животные защищены от многих опасностей, сокращающих жизнь их собратьев в дикой природе. Породистая молочная корова дает огромное количество молока, но огромное вымя помешало бы ей убежать ото льва. Породистые лошади — великолепные бегуны и прыгуны, но их ноги уязвимы, особенно во время прыжков, что указывает на выход за пределы, указанные естественным отбором. Более того, скакуны выживают только благодаря обильной пище, предоставляемой людьми. В отличие от родных для Британии пони, которые с удовольствием пасутся на лугах, скаковые лошади болеют и хиреют, если их не кормить смесью злаков, трав и добавок, которые они не получили бы в дикой природе.



Поделиться книгой:

На главную
Назад