Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей - Рэй Джаявардхана на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:


Внутри нейтринного детектора Kamiokande

(Institute for Cosmic Ray Research, University of Tokyo)

Пришли результаты. К огромному облегчению ученых во всем мире, в данных четко прослеживались нейтринные сигналы, в происхождении которых не приходилось сомневаться. Таким образом, Джон Бакал и его коллеги-астрофизики совершенно верно описывали, какие именно процессы протекают при взрыве сверхновой. ФЭУ в детекторе Kamiokande зафиксировали 11 вспышек за время всплеска, продолжавшегося несколько секунд. Это произошло примерно на три часа раньше, чем сверхновую наблюдали в оптические телескопы астрономы в Чили и Новой Зеландии. На другом краю света, близ Кливленда, аналогичный детектор нейтрино, расположенный в неглубоком соляном руднике под озером Эри, зафиксировал восемь вспышек – одновременно с Kamiokande. Позже стало известно, что еще один детектор (с керосином в качестве сцинтиллятора), расположенный в Баксанской нейтринной обсерватории на Кавказе, в России, зарегистрировал пять вспышек. Две дюжины вспышек, зафиксированных в ходе этих трех экспериментов, – следы лишь некоторых нейтрино, миллиарды и миллиарды которых пронеслись через недра нашей планеты, а возникли в самом сердце звездного взрыва, произошедшего в Большом Магеллановом Облаке. Все три упомянутые обсерватории расположены в Северном полушарии, а Магеллановы облака видны в Южном. Это означает, что нейтрино прошли нашу планету насквозь, прежде чем попали в детекторы. Бакал, воодушевленный экспериментальным подтверждением своих теоретических прогнозов, признался журналу Time, что участие в бурных научных событиях, связанных со сверхновой 1987А, казалось ему сказкой.

Может показаться, что общий улов в 24 частицы – не повод для гордости. Но важность этих нейтринных событий подчеркивается хотя бы тем, что впоследствии о них были написаны сотни научных статей. При взрыве сверхновой 1987А мы впервые наблюдали нейтрино, пришедшие к нам не с Солнца, а из другого звездного источника. Поэтому стоит ли удивляться, что японский физик Масатоси Косиба, лидер коллаборации Kamiokande, в 2002 г. получил четверть Нобелевской премии по физике – во многом за измерения этих нейтрино. Призрачные частицы, которые несколькими десятилетиями ранее на кончике пера открыл Вольфганг Паули, пытавшийся объяснить бета-распад, к концу XX в. стали для астрономов важными космическими посланцами, которые помогли понять жизненный цикл Солнца и других, более массивных звезд.

Адам Барроуз, физик из Принстонского университета, писал, что после обнаружения этих нейтрино «мы впервые смогли осознать, какие дикие спазмы сопровождают гибель звезды, тогда как ранее это было просто невозможно». Полученные результаты подтвердили общую картину гибели массивной звезды, израсходовавшей запасы ядерного топлива; физики-теоретики обрисовали этот процесс за десятилетия работы. Вот что сказал об этом Джон Биком, физик-теоретик из государственного Университета Огайо, изучающий связи между физикой частиц, астрофизикой и космологией: «Нейтрино позволяют нам заглянуть в недра огромных звезд, находящихся на пороге гибели. В подобных ситуациях астрофизики могут наблюдать явления, принципиально недоступные для обычной астрономии».

Алекс Фридленд из Национальной лаборатории Лос-Аламоса объясняет, что сверхновая – это, в сущности, «нейтринная бомба». Ведь при ее взрыве выделяется умопомрачительное количество этих частиц – 1058, то есть десять миллиардов триллионов триллионов триллионов триллионов нейтрино. Даже по астрономическим меркам это невероятно много. Фактически энергия, излучаемая несколько секунд в виде нейтрино, в несколько сотен раз превышает суммарную энергию Солнца, которую наша звезда успеет испустить в виде фотонов за всю свою жизнь (около 10 млрд лет). Более того, при взрыве сверхновой 99 % ее гравитационной энергии уходит на образование нейтрино разных ароматов, и лишь 0,5 % излучается в качестве видимого света.

Галактика Большое Магелланово Облако находится на расстоянии около 160 000 световых лет от нас. Это означает, что нейтрино, родившиеся при взрыве сверхновой и достигшие Земли в 1987 г., начали свой путь 160 000 лет назад. В те времена древние люди еще кочевали по Восточной Африке, а мохнатые мамонты топтали сибирскую тундру. Сама звезда Sanduleak –69° 202 запылала примерно на 11 млн лет ранее, примерно в те времена, когда по Земле начали расселяться стада степных млекопитающих, но еще до того, как поднялись Гималаи. В течение первых 10 млн лет своей жизни эта звезда подпитывалась энергией ядерных реакций, в ходе которых водород превращается в гелий – точно как на нашем Солнце. Эта энергия не позволяла звезде схлопнуться под действием собственного веса. Когда ядро звезды практически полностью состояло из гелия, выделение энергии приостановилось. Ядро больше не могло выдерживать гравитационное давление, поэтому сжалось и разогрелось. При этом внешние области звезды расширились, так как водород продолжал гореть в этих слоях, окружавших ядро, словно оболочка. Когда давление и температура в ядре звезды выросли еще сильнее, реакции ядерного синтеза начались в гелии – он стал превращаться в углерод и кислород. К тому времени звезда Sanduleak –69° 202, которая изначально была примерно в 20 раз массивнее Солнца, превратилась в красный сверхгигант – теперь она была примерно в 500 раз объемнее нашей звезды.

Выгорание гелия в ядре звезды продолжалось еще около миллиона лет, пока и это топливо не закончилось – гравитация вновь начала брать верх. Далее, насколько мы представляем себе звездную эволюцию, произошло следующее: ядро продолжало сжиматься до тех пор, пока не стало достаточно плотным и горячим для превращения углерода в неон, натрий и магний. К этому времени звезда, вероятно, уже потеряла часть своих раздутых внешних оболочек, а оставшееся небесное тело еще немного сжалось, и цвет его изменился с красного на голубой. Ход дальнейшей эволюции еще более ускорился. Углеродный синтез протекал около 12 000 лет. Затем звезда сожгла весь свой неон и кислород, оба этих этапа длились по несколько лет. Наконец в ядре остались в основном сера и кремний, примерно за неделю они превратились в железо. Предполагается, что на данном этапе звезда напоминает гигантскую луковицу – различные элементы послойно расположены вокруг ее железного ядра. Вот и все – дело в том, что железо не может превращаться в более тяжелые элементы, не потребляя энергию извне. Звезда более не могла сопротивляться гравитации. Конец был быстрым и ярким – в небе запылал факел, который удалось увидеть невооруженным глазом даже из соседней галактики – нашего Млечного Пути, правда, через 160 000 лет после описанных событий.

Ученые полагают, что нейтрино значительно приблизили гибель Sanduleak –69° 202. На углеродном этапе звездной эволюции, когда температура в ядре достигла 500 млн градусов, звезда испускала настолько высокоэнергетическое излучение, что оно привело к образованию электронно-позитронных пар (ведь, согласно эйнштейновскому уравнению E = mc2, энергия может превращаться в материю, и наоборот). Как правило, такие пары частица – античастица при столкновении аннигилируют, испуская гамма-лучи, но иногда в результате такого взаимодействия могут возникать пары нейтрино и антинейтрино. Поскольку нейтрино и антинейтрино редко взаимодействуют с окружающей материей, они должны ускользать из звезды, унося с собой часть энергии, которую звезда могла бы бросить на борьбу с гравитацией.

Более того, нейтрино могут играть важнейшую роль и при самом взрыве сверхновой. Когда железное ядро выгоревшей звезды достигает критической массы, примерно в 1,4 раза превышающей массу Солнца (это пороговое значение известно под названием «предел Чандрасекара», в честь индийского астрофизика, описавшего данный феномен), оно за доли секунды сжимается в миниатюрный шарик, имеющий всего лишь около 50 км в поперечнике. Экстремальные температуры способствуют обильному выделению энергии, в результате возникает еще больше пар нейтрино-антинейтрино. Эти частицы ускользают из ядра (на что у них уходит несколько долгих секунд, ведь плотность окружающего их вещества невероятно высока), унося с собой довольно много энергии. Тем временем свободные нейтроны, изобилующие в этой высокоэнергетической среде, сливаются с железными ядрами, в результате чего образуются еще более тяжелые элементы. Схлопывание прекращается, когда такой шар сравнивается по плотности с атомным ядром. В таком случае ядерные силы не позволяют протонам и нейтронам сколь-нибудь еще уплотниться. Фактически сжимающееся звездное ядро немного разбухает, сталкиваясь с устремляющимися к нему внешними оболочками и порождая мощную ударную волну. Но, согласно самым современным компьютерным моделям, эта взрывная волна быстро ослабевает.

Именно на этом этапе в игру вновь могут вступить нейтрино, которые словно приходят звезде на помощь. «Если даже ничтожная доля нейтрино, струящихся из звездного ядра, будет попадать в вещество непосредственно за гребнем останавливающейся ударной волной, подпитывая этот гребень своей энергией, то этого может быть достаточно, чтобы ударная волна снова пришла в движение», – объясняет Георг Раффельт, ученый из Института физики им. Макса Планка в Мюнхене. «Если бы не нейтрино, – подчеркивает он, – то вся звезда превратилась бы в черную дыру без каких-либо видимых фейерверков». Ожившая взрывная волна разносит во все стороны оставшиеся оболочки звезды. В результате тяжелые элементы до железа включительно и еще более тяжелые элементы, образующиеся при взрыве сверхновой, выбрасываются в космическое пространство. Часть такого обогащенного звездного вещества позже оказывается в составе звезд нового поколения и планет, которые их окружают. Эти атомы есть и в нашем теле. Кальций в наших костях, железо в нашей крови и кислород, которым мы дышим, – все это образовалось когда-то давно при взрывах сверхновых. Это же касается меди, из которой изготавливают проволоку, серебра, золота и платины, идущих на ювелирные украшения, галлия, используемого в электронике. Раффельт указывает: «Поскольку нейтрино играют важнейшую роль при звездных взрывах, мы обязаны этим частицам самим нашим существованием». Если бы не нейтрино, то Вселенная, возможно, была бы абсолютно пустой, неприглядной и совершенно непригодной для развития жизни.

Горстка нейтрино от взрыва сверхновой 1987А, которые нам удалось зафиксировать, вкупе с астрономическими наблюдениями послужила физикам-теоретикам отличным материалом для проведения масштабных и сложных моделирований на суперкомпьютерах. Задача этих моделей – продемонстрировать, как разрушается гигантская стареющая звезда, а ее ядро превращается в сверхплотный шарик из нейтронов (нейтронную звезду) или черную дыру. При этом внешние оболочки отслаиваются, образуя сияющее газопылевое облако. Сегодня, рассматривая один из снимков, полученных космическим телескопом «Хаббл», мы видим яркое кольцо и две словно переплетенные петли. Вероятно, это вещество, выброшенное звездой-прародительницей, а впоследствии подсвеченное ультрафиолетовым сиянием от взрыва сверхновой. Но в этой картинке недостает одной важнейшей детали. Учитывая примерную массу звезды-прародительницы, астрономы полагают, что ее ядро должно было превратиться в нейтронную звезду, но обнаружить эту звезду пока не удается. Возможно, эти звездные останки скрыты в облаке космической пыли.

Конечно, нам удалось зарегистрировать буквально считаные нейтрино, образовавшиеся при взрывах сверхновых. Тем не менее такие нейтрино позволили выяснить некоторые важные аспекты того, как именно взрывается массивная звезда на закате своего существования. Астрофизики, участвовавшие в этих исследованиях, с удовлетворением обнаружили, что количество зарегистрированных ими нейтрино и энергии этих частиц согласуются с прогнозируемыми характеристиками взрыва, полученными в результате теоретических расчетов. Поскольку теория и наблюдения в данном случае превосходно соответствовали друг другу, исследователи заключили, что сверхновая отнюдь не теряет энергию в ходе какого-то таинственного процесса. В частности, удалось исключить спекуляции о том, что нейтрино сами испускают гипотетические экзотические частицы, так называемые «аксионы», либо просачиваются в загадочные иные измерения. Прибытие некоторых нейтрино с запаздыванием в несколько секунд относительно основной массы подтвердило, что им требуется некоторое время, чтобы вырваться из исключительно плотного сжатого ядра – как и предполагалось.

Эти измерения не только поведали ценную информацию, касающуюся динамики сверхновых звезд, но и помогли ученым лучше понять природу самих нейтрино. Поскольку нейтрино попали на Землю более чем за три часа до того, как взрыв сверхновой удалось сфотографировать и наблюдать в оптические телескопы, можно было сделать вывод, что скорость нейтрино очень близка к скорости света. Чем легче частица, тем быстрее она перемещается, поэтому ученые предположили, что масса нейтрино очень мала. Исходя из того, сколько времени нейтрино затратили на путь от сверхновой 1987А до Земли, ученые пришли к выводу, что, несмотря на подлинное изобилие нейтрино, вряд ли именно из них состоит таинственная темная материя, наполняющая всю Вселенную. Более того (как вы уже знаете из главы 1), когда в 2011 г. в СМИ развернулась шумиха о том, что нейтрино якобы летят быстрее скорости света, один из наиболее серьезных контраргументов был связан именно с наблюдениями этой сверхновой. Если бы скорость нейтрино действительно превышала скорость света (о чем изначально сообщили ученые из коллаборации OPERA), то нейтрино со сверхновой 1987А должны были опередить видимый свет на целые годы, а не на три часа.

Сверхновая 1987А подогрела интерес астрофизиков к тому, какие именно процессы протекают в недрах умирающих звезд. «Вообразите, как много нового мы бы узнали, если бы смогли отловить тысячи нейтрино от какой-нибудь сверхновой, которая взорвалась бы поблизости от Земли», – размышляет Алекс Фридленд. Такое экстраординарное явление позволило бы нам не только проследить всю череду событий, разворачивающихся при таком взрыве, но и точно узнать, что же останется после взрыва: черная дыра или нейтронная звезда. Специалисты по физике частиц также интересуются нейтрино, приходящими от сверхновых, поскольку возникает редчайшая возможность наблюдать, как ведут себя эти частицы в экстремальных условиях, которые невозможно смоделировать в лаборатории.

Как астрофизики, так и специалисты по физике частиц смогут достичь многих упомянутых целей, если коллапс звездного ядра, сопровождаемый взрывом сверхновой, произойдет в нашей Галактике. Однако в Млечном Пути таких взрывов не наблюдалось с 1604 г., когда звездочеты (а также немецкий математик Иоганн Кеплер) заметили «новую звезду» в созвездии Змееносец. В апогее взрыва сверхновая сияла настолько ярко, что была видна даже днем. Современные телескопы – оптические, рентгеновские и радиотелескопы – позволяют наблюдать остатки этой сверхновой, которые представляют собой оболочку из раскаленного газа. Всего за три десятилетия до того, как в 1604 г. Кеплер наблюдал сверхновую, европейцы видели еще один такой взрыв. Легендарный датский астроном Тихо Браге наблюдал другую сверхновую в 1572 г. в созвездии Кассиопеи, о чем писал так: «Я заметил, что новая и необычная звезда, превосходящая все остальные звезды по блеску, сияет почти прямо над моей головой. Я был настолько изумлен этим зрелищем, что мне даже не было стыдно усомниться в достоверности моих собственных глаз. Но когда я увидел, что другие, когда им указывалось на место, могли видеть, что там действительно есть звезда, у меня не было больше сомнений». На самом деле наблюдения сверхновой, тщательно выполненные Тихо в 1572 г., впервые позволили понять, что небеса не неизменны – несмотря на то, что Аристотель утверждал обратное, а в XVI в. аристотелевскую точку зрения еще разделяли многие европейские философы.

Исторические документы и петроглифы позволяют заключить, что за последние несколько тысячелетий можно было наблюдать невооруженным глазом еще несколько сверхновых. Пожалуй, древнейшее такое свидетельство найдено в Китае: это запись, вытравленная на кости около 1300 г. до н. э. В ней упоминается «Великая новая звезда», которая была видна в небе рядом с другой яркой звездой – Антаресом. В китайской хронике «История династии Поздняя Хань» говорится о «звезде-гостье», которая появилась в 185 г., а затем медленно угасала в течение нескольких месяцев. В 1006 г. о сияющей сверхновой сообщают европейские монахи и египетский астролог; вероятно, это было самое зрелищное из когда-либо зафиксированных астрономических явлений. Хронист из бенедиктинского монастыря в швейцарском кантоне Санкт-Галлен так описывал это событие: «Явилась новая звезда невиданного размера, которая все время мерцала и слепила глаза, вызывая панику… она была видна около трех месяцев у южного края неба, за пределами всех созвездий, какие есть в небесах». Ученый Али ибн-Ридван, находившийся в Каире, писал: «Это чудо явилось в зодиакальном созвездии Скорпиона, в противостоянии Солнцу… Небо заметно посветлело из-за света звезды. Сила ее света немного превосходила четверть силы лунного». Сверхновая 1054 г., из расплывшихся остатков которой образовалась знаменитая Крабовидная туманность в созвездии Тельца, упоминается в китайских, японских и арабских хрониках. Некоторые ученые полагают, что и индейцы анасази, жившие на юго-западе североамериканского континента также запечатлели ее на своих наскальных рисунках.

В 1930-е гг. астрономы Вальтер Бааде и Фриц Цвикки из Калифорнийского технологического института пришли к выводу, что, поскольку сверхновые отлично видны на межгалактических расстояниях, они должны быть невероятно яркими. Бааде, родившийся в Германии, был щепетильным наблюдателем и вежливым любезным человеком. В Гамбурге он познакомился с Вольфгангом Паули, и они навсегда стали друзьями[31]. Паули и Бааде даже написали в соавторстве научную статью об изогнутых формах хвостов комет. Бааде перебрался в Калифорнию в 1931 г. и стал работать в обсерватории Маунт-Вилсон. В годы Второй мировой войны Бааде сохранил немецкое гражданство, поэтому находился под наблюдением спецслужб как потенциальный лазутчик. Он провел множество ночей за окуляром 2,5-метрового телескопа Хукер (на тот момент – крупнейшего в мире), делая снимки тусклых далеких галактик. Шла война, поэтому в расположенном неподалеку Лос-Анджелесе действовала светомаскировка, и заниматься астрономией было особенно удобно. Опираясь на работы Эдвина Хаббла, Бааде установил, что Вселенная гораздо обширнее, чем предполагалось ранее.

Цвикки, в отличие от своего коллеги, был человеком склочным и самоуверенным, любил называть своих врагов «сферическими ублюдками» («сферическими», объяснял он, так как они кажутся ублюдками, с какой стороны на них ни взгляни). Цвикки родился в Болгарии, но родители его были швейцарцами. Цвикки провел детство в Швейцарии у бабушки и дедушки, в Швейцарии же впоследствии познакомился с Вольфгангом Паули и Альбертом Эйнштейном. Защитив докторскую диссертацию в Цюрихе, он отправился в Калифорнийский технологический институт для повышения квалификации и остался в Калифорнии на должности профессора. Цвикки увлекался горнолыжным спортом и альпинизмом, ценил соревновательный дух как в спорте, так и в науке. Среди многообразных открытий Цвикки следует отметить такое: он установил, что бо́льшая часть массы в скоплениях галактик приходится на так называемую «темную материю». Он также предположил, что галактики, расположенные поблизости от нас, могут действовать как «гравитационные линзы», искривляя и усиливая свет других галактик, расположенных дальше, но находящихся на той же оптической оси. Несмотря на столь разные характеры, Бааде и Цвикки как-то смогли сработаться (хотя позже Бааде опасался, что Цвикки может учинить над ним физическую расправу).

В провидческой статье, опубликованной в 1934 г., Бааде и Цвикки писали: «Со всеми подобающими оговорками мы выдвигаем гипотезу, что сверхновая представляет собой переходную стадию от обычной звезды к нейтронной, состоящей главным образом из нейтронов. Такая звезда может обладать очень малым радиусом и чрезвычайно высокой плотностью». Их озарение кажется тем более примечательным, учитывая, что нейтрон был открыт всего двумя годами ранее. Затем Цвикки решил найти как можно больше сверхновых, вооружившись для этого телескопом с широким полем обзора. За всю жизнь Цвикки открыл более 120 сверхновых.

Современные астрономы, занимающиеся наблюдением других галактик, полагают, что в Млечном Пути каждые 100 лет должны взрываться хотя бы несколько массивных звезд. Но мы вполне можем пропустить сверхновую, если взрыв произойдет слишком далеко от нас, так как межзвездная пыль не позволяет заглянуть в дальние пределы нашей галактики. Действительно, недавние наблюдения, выполненные в рентгеновском и радиодиапазоне, показали, что около 150 лет назад вблизи от центра Галактики произошел сверхновый взрыв, который, однако, на Земле остался незамеченным. Но если межзвездное вещество и заслоняет от нас видимый свет сверхновой, оно не в силах остановить поток нейтрино. Поэтому сильный всплеск нейтрино должен означать, что где-то в Млечном Пути погибла массивная звезда. Мы располагаем высокочувствительными детекторами нейтрино, которые работают уже около четверти века, но пока не зарегистрировали взрыва сверхновой в нашей Галактике. Раффельт отмечает: «Такой шанс бывает раз в жизни, поэтому мы должны быть начеку».

Кейт Скулберг из Университета Дюка придерживается такого же мнения. Она вместе с коллегами участвовала в создании Системы раннего оповещения о взрывах сверхновых (сокращенно SNEWS). Это централизованная сеть, призванная максимально оперативно зарегистрировать коллапс звездного ядра, если такое явление произойдет в Галактике. По всему миру установлены детекторы, которые могут зафиксировать потоки нейтрино от сверхновой; планируется, что такие детекторы (например, «Ледяной куб» в Антарктиде, Large Volume Detector и Борексино в Италии, Super-K в Японии)[32] позволят выделить «потенциальные» сверхновые взрывы и отправят всю эту информацию в Брукхейвенскую национальную лабораторию на острове Лонг-Айленд, штат Нью-Йорк. «Если сразу несколько детекторов нейтрино сработают одновременно, вполне вероятно, что где-то неподалеку произошел взрыв сверхновой», – объясняет Скулберг.

Если компьютер SNEWS обнаружит, что сигналы от двух детекторов поступят с небольшой разбежкой (порядка 10 с), то он разошлет оповещение об этом по всем обсерваториям в мире. Чтобы сигнал распространялся с максимальной скоростью, система должна работать без участия человека. Скулберг и ее коллеги надеются, что наземные и орбитальные телескопы рано или поздно зафиксируют электромагнитное излучение от взрыва сверхновой – в частности, оптическое, рентгеновское или радиоизлучение, – что позволит наблюдать развитие сверхнового взрыва, начиная с самых ранних этапов. Есть только одна загвоздка: большинство детекторов нейтрино не позволяют с уверенностью определить, откуда именно пришли эти частицы, поэтому астрономам будет не так просто найти сверхновую. «Тем не менее оповещение позволит немедленно подключить к поискам телескопы с широким полем обзора. Плюс у нас есть множество астрономов-любителей; многие из них превосходно умеют искать новые объекты в небе, – считает Скулберг, – идея заключается в том, чтобы после сигнала как можно больше людей начали искать эту звезду по всему небу и у нас был шанс заметить вспышку пораньше».

Скулберг подчеркивает, что «изучив нейтрино, возникшие при сверхновом взрыве в Галактике, мы узнаем ответы на множество вопросов. Такое событие можно сравнить с информационным рогом изобилия». Детекторы зафиксируют, как со временем изменяются количество и энергия поступающих нейтрино; эти данные помогут понять, как разворачивается взрыв. В частности, ученые смогут определить, сжимается ли звездное ядро до предела, превращаясь в черную дыру, откуда ничто не может ускользнуть – даже нейтрино, – либо вскоре коллапс приостанавливается, и на месте сверхновой остается нейтронная звезда. Если в итоге образуется черная дыра, то поток нейтрино внезапно прекратится. Если же в итоге мы получим нейтронную звезду, то этот звездный огарок будет продолжать испускать нейтрино еще примерно на протяжении 10 с после того, как полностью остынет, он не сразу иссякнет. Скулберг поясняет, что во втором случае «мы сможем наблюдать изначальное охлаждение нейтронной звезды и исследовать свойства сверхплотной материи».

Кроме того сверхновая должна пролить свет на природу самих нейтрино и подсказать ответы на некоторые нерешенные вопросы, которые мы обсуждали в последней главе. Например, физикам никак не удается определить так называемую «иерархию масс» нейтрино. Фактически известно, что должно существовать два тяжелых сорта нейтрино плюс один легкий либо два легких плюс один тяжелый. Возможно, ответ на этот вопрос будет получен только после изучения нейтрино от взрыва сверхновой в Галактике. Более того, в ядре сверхновой концентрация нейтрино так велика, что нейтрино могут взаимодействовать друг с другом, тогда как в иных условиях просто «не замечают» существования других нейтрино. В ходе таких взаимодействий свойства нейтрино могут изменяться. «Мы можем уловить аномалии в их свойствах, что поможет нам увидеть новую физику, не ограниченную Стандартной моделью». Джон Биком соглашается со Скулберг: «Мы можем узнать о нейтрино такую информацию, которую невозможно выяснить в лаборатории».

К счастью, некоторые из существующих детекторов нейтрино – в том числе Super-K, Борексино и «Ледяной куб» – могут зарегистрировать нейтрино от взрыва сверхновой, в какой бы части Млечного Пути он ни произошел. Например, Super-K поймает несколько тысяч таких нейтрино, если взрыв произойдет около центра Галактики, то есть на расстоянии порядка 25 000 световых лет от нас. Он даже позволяет определить, откуда пришли нейтрино (с точностью до нескольких градусов), что соответствует области неба, в несколько раз шире диска полной Луны. Обсерватория «Ледяной куб» в подобном случае зарегистрирует около миллиона нейтринных событий, и именно она лучше всего позволила бы отслеживать изменения потока нейтрино с течением времени. Дело в том, что «Ледяной куб» может разбивать такой поток событий на кратчайшие временные интервалы, каждый из которых не превышает нескольких тысячных долей секунды. «Мы сможем наблюдать всю десятисекундную историю взрыва сверхновой, разделенную на эпизоды длительностью по несколько миллисекунд, – говорит ведущий исследователь лаборатории «Ледяной куб» Френсис Хальцен из Висконсинского университета в Мэдисоне, – и уловить тот самый момент, в который образуется нейтронная звезда».

При взрыве сверхновой образуются нейтрино всех трех ароматов – электронные, мюонные и тау-нейтрино, а также соответствующие им античастицы, но наши детекторы пока не могут зарегистрировать все разнообразие частиц. Разумеется, ученые хотели бы исследовать все три аромата, а также соответствующие сорта античастиц. «Изучать всего один аромат нейтрино – все равно что фотографировать через монохромный светофильтр», – говорит Скулберг. Она же хотела бы увидеть «всю гамму». Чтобы получить такую «цветную картинку», Скулберг вместе с канадскими коллегами первым делом собирается сконструировать специальный аппарат, который будет называться «Гелиево-свинцовая обсерватория» (HALO). Аппарат HALO будет располагаться в лаборатории SNOLAB на севере канадской провинции Онтарио. В качестве детекторного материала в HALO будут применяться 80 т свинца. В таком случае HALO будет обладать уникальной чувствительностью к электронным нейтрино, поэтому дополнит работу иных имеющихся детекторов, которые регистрируют соответствующие античастицы. По сравнению с остальными детекторами нейтрино аппарат HALO совсем маленький, поэтому он сможет обнаружить лишь такую сверхновую, которая взорвется не слишком далеко от нас в пределах Млечного Пути. Поскольку мы практически не представляем, в какой точке Галактики может произойти следующий взрыв сверхновой, сложно обосновать необходимость постройки крупной нейтринной обсерватории именно для таких исследований. «Пока ваш детектор дожидается взрыва сверхновой, он должен выполнять и какую-либо повседневную работу», – объясняет Скулберг.

Именно с таким расчетом разрабатывается новый проект, называемый LBNE (Нейтринный эксперимент с длинной базой)[33]. Предполагается, что этот аппарат будет построен в уже упоминавшемся золотом руднике Хоумстейк на территории штата Южная Дакота. В LBNE будет использоваться гигантский резервуар, заполненный 30 000 т охлажденного жидкого аргона. Он будет принимать поток нейтрино или антинейтрино, идущий сквозь толщу пород из лаборатории Фермилаб, расположенной в 1300 км от Южной Дакоты, и фиксировать, как эти частицы меняют аромат. Но при этом LBNE также сможет улавливать различные типы нейтрино, которые могут прилететь к Земле при взрыве сверхновой в нашей Галактике. «Измеряя ароматы нейтрино и их изменение с течением времени, мы получим массу информации о самых разнообразных феноменах, – считает Скулберг, – мы узнаем не только о том, каковы условия в ядре сверхновой, но и подробнее исследуем природу осцилляций нейтрино».

Например, когда в ядре сверхновой протоны сливаются с электронами и образуют нейтроны, возникает выброс частиц, практически на 100 % состоящий из электронных нейтрино. Но на пути из ядра эти нейтрино могут осциллировать (менять аромат), превращаясь в нейтрино других сортов. «Поэтому если выяснится, что этот первичный всплеск состоит из нейтрино разных сортов, а не только электронных нейтрино, то узнаем об осцилляциях много нового», – полагает Скулберг. К сожалению (об этом пойдет речь в главе 8), Министерство энергетики США одобрило постройку лишь базовой модели LBNE, возможности которой будут серьезно ограничены. Тем временем европейские и японские физики предлагают собственные проекты нейтринных обсерваторий, которые будут улавливать нейтрино всех трех ароматов и будут весьма кстати, если где-то в нашей Галактике произойдет взрыв сверхновой.

Физики-теоретики, в свою очередь, при помощи компьютерных симуляций уточняют все более тонкие детали моделей сверхновых. «Возможно, описание процессов, происходящих в первую секунду после взрыва сверхновой, – это задача для суперкомпьютеров уже следующего поколения», – считает Алекс Фридленд. Но при этом он уточняет: «Думаю, что имеющиеся расчеты довольно точно описывают явления, происходящие в течение первых нескольких секунд». Особенно сложно спрогнозировать, как нейтрино будут взаимодействовать друг с другом в сверхплотном ядре сверхновой и менять при этом ароматы. «Необходимо просчитать квантовую механику для целого ансамбля частиц», – отмечает Фридленд.

Следует рассказать и еще об одной «обсерватории» принципиально иной конструкции, которая потенциально может дать совершенно уникальные сведения, особенно если при этом она также поможет обнаруживать нейтрино; эта обсерватория вскоре будет готова к изучению взрыва сверхновой, если он произойдет. Речь идет об обсерватории LIGO (Лазерно-интерферометрическая гравитационно-волновая обсерватория), два корпуса которой расположены на расстоянии около 3000 км друг от друга – в Хэнфорде, штат Вашингтон, и Ливингстоне, штат Луизиана. В обоих комплексах имеется L-образная система туннелей. Туннели в каждой паре расположены перпендикулярно друг к другу, длина каждого из них составляет 4 км. Каждый из туннелей насквозь просвечивается лазерным лучом, пропущенным через длинную вакуумную трубку. На пункте управления установлена точнейшая аппаратура, позволяющая уловить малейшие изменения в расстоянии, преодолеваемом лучом лазера. Если LIGO зарегистрирует подобное изменение пути между двумя туннелями хотя бы в одну тысячную ширины протона, это будет означать, что на пути лазера оказались гравитационные волны. Гравитационные волны – это легкая рябь, разбегающаяся по ткани пространства под действием далекого катаклизма. Эти тончайшие «космические складки» были предсказаны еще в рамках гравитационной теории Альберта Эйнштейна, но до сих пор их не удавалось наблюдать непосредственно. Гравитационные волны настолько незаметны, что даже от проезжающего мимо вас грузовика возникает более сильная вибрация, чем от столкновения двух нейтронных звезд в космосе. Именно поэтому в эксперименте LIGO два комплекта идентичного оборудования установлены в двух удаленных друг от друга лабораториях: необходимо отличать подлинный космический сигнал от многочисленных «локальных» помех.

В 2011 г. мне довелось побывать в комплексе Хэнфорд. Я добирался туда на машине из Сиэтла, перевалив в снежный день через Каскадные горы. Обсерватория как раз была в процессе масштабного усовершенствования. Когда эти работы будут завершены, новая лаборатория под названием «Advanced LIGO» должна обладать достаточной чувствительностью, чтобы уловить гравитационное возмущение от столкновения двух нейтронных звезд, произошедшего даже в миллиарде световых лет от нас. Кроме того, эта обсерватория должна «услышать» последний вздох массивной звезды, если она погибнет где-нибудь поблизости от нас (по космическим меркам) и если взрыв окажется достаточно несбалансированным. Если коллапс звезды будет протекать плавно и симметрично, то мы не услышим практически ничего, так как симметричные гравитационные волны гасят друг друга. Однако при хаотическом коллапсе, который распространяется неравномерно, возникнет отчетливый гравитационный волновой сигнал. Это вполне может произойти в том случае, когда сжимающееся ядро звезды бешено вращается, приобретая форму футбольного мяча.

Действительно, существуют доказательства в пользу того, что взрывы сверхновых бывают асимметричными. Астрономы уже наблюдали ряд нейтронных звезд, предположительно образовавшихся при взрывах сверхновых. Эти нейтронные звезды мчатся по космосу со скоростью несколько сотен километров в секунду. Кроме того, вскоре после рождения нейтронной звезды сверхплотная материя ее ядра начинает плескаться, как будто неистовое вращение взбалтывает это вещество. В результате образуются гравитационные волны. «Было бы особенно интересно зарегистрировать и гравитационные волны, и нейтрино от одной и той же сверхновой», – отмечает Кейт Скулберг. Компьютерные модели позволяют предположить, что если эти данные будут получены вместе, то ученые смогут измерить скорость вращения коллапсирующего ядра, выяснив при этом детали физики взрыва. Результаты наблюдения ознаменуют начало подлинной «всесигнальной» астрономии, которая позволит ученым получать взаимодополняющую информацию одновременно и от электромагнитного излучения, и от нейтрино, и от гравитационных волн.

Как ни головокружительны все эти перспективы, они могут стать реальностью не раньше, чем где-нибудь в ближней части Галактики произойдет взрыв сверхновой. Скулберг и Биком в один голос признаются, что такое долгое ожидание очень томительно. Биком описывает свои ощущения так: «Ты как будто надолго задерживаешь дыхание». Проблема заключается в том, что современные обсерватории недостаточно чувствительны, чтобы зафиксировать большое количество нейтрино от сверхновых, взрывающихся в других галактиках. Например, Super-K сможет зафиксировать в лучшем случае один нейтрино, образовавшийся при взрыве сверхновой в Туманности Андромеды – это ближайшая к Млечному Пути соседняя галактика, расположенная примерно в полумиллионе световых лет от нас. Гораздо более крупные, еще не построенные детекторы, например, вышеупомянутая установка LBNE, позволили бы в таком случае зарегистрировать несколько десятков попаданий нейтрино – но этого также совершенно недостаточно, чтобы удовлетворить аппетиты охотников за нейтрино.

Биком и его коллеги решили пойти другим путем: они надеются взглянуть на море астрофизических нейтрино, накопившихся в космосе после многочисленных взрывов сверхновых с коллапсом ядра, которые произошли с начала времен. В среднем каждую секунду во Вселенной взрывается хотя бы одна звезда, поэтому в пространстве должны постоянно существовать бесчисленные нейтрино, образовавшиеся при взрывах сверхновых. Биком стремится разглядеть все это множество нейтрино, так называемый «диффузный фон астрофизических нейтрино», образовавшихся после взрывов сверхновых. По оценке Бикома, на каждый квадратный сантиметр поверхности Земли ежесекундно выпадает несколько сотен астрофизических нейтрино – подлинное изобилие по сравнению с солнечными нейтрино и теми, которые образуются в земной атмосфере под действием космических лучей. Биком считает, что «это очень слабый сигнал, но у нас есть все основания надеяться, что вскоре мы его зафиксируем». Самое сложное в данном случае – отличить астрофизические нейтрино, образовавшиеся при взрывах сверхновых, от гораздо более многочисленных «местных» частиц. Биком с коллегами предположили, что для решения этой задачи можно было бы растворить в гигантском водном резервуаре Super-K немного серебристо-белого металла гадолиния (такая уловка позволила бы повысить чувствительность этого детектора к астрофизическим нейтрино). Цель исследователей – понять, как выглядит выброс нейтрино от типичного взрыва сверхновой, но при этом не дожидаться, пока произойдут «свежие» взрывы такого рода.

Разумеется, обнаружение едва уловимого смешанного нейтринного сигнала от множества сверхновых не отменяет необходимости изучения всех тонкостей взрыва какой-нибудь ближней сверхновой, если он произойдет. Если внимательно рассмотреть окрестности Солнца, то вероятным кандидатом на скорое превращение в сверхновую представляется Бетельгейзе. Это красный сверхгигант в созвездии Ориона, звезда, расположенная прямо на правом плече охотника[34]. Бетельгейзе расположена всего в 640 световых годах от Земли. Эта звезда настолько раздута, что если бы Бетельгейзе оказалась на месте Солнца, то полностью поглотил бы орбиту Земли, а самые внешние слои этой звезды распространились бы даже дальше орбиты Марса. Если бы Бетельгейзе взорвалась, то возникшая на ее месте сверхновая могла бы на протяжении многих дней и даже недель сиять в нашем небе не менее ярко, чем полная луна. Более того, детектор Kamiokande всего за несколько секунд зарегистрировал бы около 60 млн нейтрино, не на шутку озадачив ученых. Раффельт объясняет: «Как правило, нейтринные детекторы рассчитаны на регистрацию очень редких событий, поэтому при таком количестве попаданий они попросту ослепнут – электроника откажет».

Эта Киля – настоящая звезда-колосс, даже по звездным меркам достигающая невероятных размеров. Она как минимум в 100 раз массивнее нашего Солнца и является еще одним вероятным кандидатом на превращение в сверхновую. Звезда, расположенная примерно в 7000 световых лет от нас, – причудливый и переменчивый объект. За последние несколько веков яркость этой звезды неоднократно и очень резко изменялась. В 1843 г. Эта Киля стала одной из ярчайших звезд ночного неба – ее даже ошибочно приняли за сверхновую – и пылала так на протяжении 20 лет. Этот эпизод сопровождался мощным взрывом, при котором звезда потеряла обширные внешние слои, а вместе с ними – десятую часть своей массы. В настоящее время из извергнутого ею вещества образовались две гигантские газовые туманности, немного напоминающие два воздушных шара, между которыми сияет звезда. Несомненно, Эта Киля стремительно приближается к славной гибели. Вполне вероятно, что следующий взрыв станет последним в ее истории. Учитывая, как тяжела эта звезда, на месте ее останков должна образоваться черная дыра. Если в обозримом будущем Эта Киля взорвется и станет сверхновой, то детекторы на Земле зафиксируют около полумиллиона нейтрино.

Итак, по всей видимости, в ближайшем будущем Бетельгейзе или Эту Киля настигнет феерический конец, но мы не можем рассчитать, когда именно произойдет такое событие. По астрономическим меркам этот момент вполне может наступить и через несколько сотен тысяч лет. При этом довольно велика вероятность, что в ближайшие несколько десятилетий где-то в нашей Галактике взорвется какая-нибудь массивная звезда. Алекс Фридленд признался: «Если бы мне предложили поставить деньги на то, что произойдет раньше – взорвется следующая сверхновая или в США построят новый крупный ускоритель частиц, – то я, пожалуй, выбрал бы сверхновую». Даже если сверхновая окажется настолько далеко от Земли, что мы не сможем разглядеть ее сквозь пыльный шлейф Млечного Пути, этот взрыв оставит ярчайший след в нейтринных детекторах по всему миру. Это будет сенсационное, эпохальное событие в истории охоты на нейтрино – физиков ждет просто невиданный праздник.

Глава 7

Акты исчезновения

Всем нам доводилось смотреть по телевидению научно-популярные передачи, в которых выступают астрономы и красноречиво рассуждают о почти полной пустоте космоса. Да, конечно, в этом неизмеримо огромном пространстве существуют галактики, звезды, планеты и люди, поэтому совершенно пустым местом космос не назовешь. По иронии судьбы физикам этот очевидный факт кажется настоящим чудом – ведь Вселенная действительно могла образоваться без единой крупицы материи. В настоящее время ученые пристально изучают нейтрино, чтобы понять, каким образом Вселенной удалось избежать столь неприглядной участи.

В момент, когда космос образовался в результате Большого взрыва, высвободилось колоссальное количество энергии. Новорожденная Вселенная была компактной, густой и жаркой. Она просто изобиловала энергией, которая пошла на спонтанное образование пар частица – античастица. В тот период плотность космоса была столь высока, что эти парные частицы должны были постоянно сталкиваться и самоуничтожаться, оставляя после себя лишь море излучения. Поскольку материя во Вселенной все-таки сохранилась, ученые полагают, что изначально существовал небольшой избыток вещества по сравнению с антивеществом. Удалось примерно высчитать величину этого избытка: на каждый миллиард античастиц должно было приходиться по миллиарду и одной соответствующей частице. Все тела в современной Вселенной – в том числе и мы с вами – существуют исключительно благодаря этому крошечному перевесу материи, сложившемуся в начале времен.

Итак, как же возник небольшой перевес вещества над антивеществом? Этот вопрос является одной из наиболее фундаментальных и в то же время самых трудноразрешимых проблем физики частиц. Для его решения за последние несколько десятилетий была проделана огромная теоретическая работа, а также поставлено изрядное количество экспериментов. Физики размышляют, удастся ли разгадать эту глубокую тайну в рамках Стандартной модели или же придется формулировать совершенно новую теорию о природе материи. До сих пор Стандартная модель с завидным успехом позволяла объяснять окружающий мир во всем его разнообразии всего лишь как систему взаимодействий немногочисленных разновидностей элементарных частиц и соответствующих им античастиц. Стандартная модель описывает различные взаимодействия между этими частицами как обмен «переносчиками взаимодействий» – например, фотонами. Бесчисленные эксперименты с невероятной точностью подтверждают все постулаты Стандартной модели. Но причина, по которой в космосе сложилась такая диспропорция между веществом и антивеществом, остается камнем преткновения этой модели. Эдвард «Рокки» Колб, ученый из Чикагского университета, полагает, что «такая асимметрия действительно может означать, что законы природы не ограничиваются Стандартной моделью». Колб считает, что именно поэтому специалисты по физике частиц так отчаянно стремятся разрешить парадокс, связанный с практически полным отсутствием антивещества. Все новые факты указывают, что секрет этой космической интриги каким-то образом связан с нейтрино или как минимум с их более массивными аналогами, существовавшими в первозданной Вселенной.

Попробуем разобраться в природе этого парадокса. Для начала вспомним, что в атомах содержатся элементарные частицы, относящиеся к двум большим семействам: барионам и лептонам. Барионы – в частности, протоны и нейтроны – состоят из еще более мелких частиц, называемых кварками. Кварки делятся на шесть типов, также именуемых ароматами. Кварки удерживаются вместе благодаря сильному ядерному взаимодействию. Кроме того, каждый кварк обладает барионным числом, зарядом и «цветом». Лептоны же сами по себе являются фундаментальными частицами: они неразложимы на более мелкие составляющие. Электроны и нейтрино относятся к семейству лептонов. Каждый лептон обладает лептонным числом и зарядом.

Согласно Стандартной модели, каждая фундаментальная частица имеет соответствующую античастицу, обладающую такой же массой, как эта частица, но противоположным зарядом и спином. Например, электрон и позитрон имеют одинаковую массу, но заряд электрона равен –1, а заряд позитрона +1. Кварки, объединяясь, образуют барионы; точно так же антикварки могут объединяться и образовывать антибарионы. Когда вещество вступает в контакт с антивеществом, происходит их аннигиляция, которая сопровождается выделением фотонов. Согласно законам Стандартной модели, при взаимодействиях частиц сохраняется барионное число и лептонное число; иными словами, «на входе» и «на выходе» общее количество барионов и лептонов не должно изменяться. Но если бы эти правила полностью соблюдались, то нас бы просто не существовало! В определенный период на самых ранних этапах развития Вселенной происходили какие-то реакции, которые не полностью подчинялись описанным правилам. Именно поэтому возник такой переизбыток антивещества над веществом, который мы наблюдаем в настоящий момент.

Начало истории об антивеществе положил Поль Дирак, которого Стивен Хокинг в свое время назвал «пожалуй, самым великим британским физиком со времен Ньютона». Дирак родился в 1902 г. в городе Бристоле на юго-западе Англии в семье эмигрантов из Швейцарии. Отец Дирака работал учителем французского языка, а мать была библиотекарем. Молодой Дирак не ладил с отцом, поскольку тот был довольно суров и требовал от детей, чтобы те разговаривали с ним только по-французски. Из-за таких авторитарных манер отца детство Дирака было не радужным. Как он впоследствии признавался, «ребенком мне так и не довелось узнать, что такое любовь и сочувствие». Окончив курсы по электротехнике и математике в Бристольском университете, Дирак взялся за докторскую диссертацию в Кембридже, где впоследствии занял пост профессора. Странные привычки Дирака стали притчей во языцех. Субраманьян Чандрасекар, физик индийского происхождения, учившийся у Дирака, рассказывал, что профессор мог «крадучись пробираться по улицам, держась поближе к стенам домов, словно вор». Дирак увлекался альпинизмом, и знакомые иногда замечали, как он карабкается по дереву в окрестностях Кембриджа – причем в том самом черном костюме, в котором читал студентам лекции, словно сразу после занятий собирался на очередное восхождение. Несмотря на такую эксцентричность, он оставался примерным семьянином, любил кататься на велосипеде, плавать и сплавляться на каноэ вместе с детьми.

Дирак был настолько немногословен, что коллеги даже в шутку выдумали единицу «дирак», соответствующую минимальному количеству слов в час, которое может процедить человек, не выпадая при этом из разговора. Нильс Бор, один из пионеров квантовой физики, в сердцах отзывался об этой невероятной молчаливости коллеги: «Ох уж этот Дирак, он так много знает о физике, только вот ни слова не говорит». Существует множество исторических анекдотов о причудливых нравах Дирака, особенно о его предельно рассудочных и буквалистских реакциях – некоторые исследователи даже полагают, что причиной такого поведения мог быть аутизм. Однажды на научной конференции, проходившей в замке, кто-то из участников сострил, что в одном из покоев этого замка в полночь, кажется, шастало привидение. Дирак в ответ со всей серьезностью осведомился: «Это было в полночь по Гринвичу или по летнему времени?» Другой анекдот рассказывает о Дираке и Вернере Гейзенберге – одном из основателей квантовой физики, который наиболее известен тем, что сформулировал принцип неопределенности. Однажды Гейзенберг и Дирак вместе отправились на конференцию в Японию на круизном корабле. Между ними произошел случай, отлично характеризующий занудство Дирака. На борту устраивали танцы, и импозантный Гейзенберг с удовольствием в них участвовал. Как-то раз Дирак спросил Гейзенберга: «Почему вы танцуете?» Гейзенберг ответил: «Ну, там же милые девушки, просто приятно». Дирак призадумался и, помолчав, поинтересовался: «А откуда вы заранее знаете, что они милые?» Кроме того, Дирак был известен своим критическим отношением к религии, в особенности – сомнениями в ее истинной цели. Однажды, когда Дирак выступил с резкой критикой религиозности, присущей некоторым физикам, присутствовавший при этом Вольфганг Паули отметил: «Нет, у нашего друга Дирака есть религия, и главный догмат этой религии гласит: “Нет никакого Бога, и Дирак – пророк Его”». Все присутствовавшие рассмеялись – даже сам Дирак.

В 1928 г., работая в Кембридже, Дирак вывел математическое уравнение, которое описывало поведение электрона, опираясь на две молодые физические теории – Специальную теорию относительности и квантовую механику. Однако, к немалому удивлению, а поначалу и к досаде самого Дирака, это уравнение свидетельствовало, что в природе должен существовать положительно заряженный аналог электрона. Сначала Дирак решил, что на эту роль вполне подходит протон. В конце концов, в те годы наука еще не знала других элементарных частиц. Однако казалось, что такое уравнение предполагает точную симметрию между двумя частицами: гипотетическая положительная частица должна была иметь такую же массу, как и электрон. Поскольку протон примерно в 2000 раз тяжелее электрона, эти частицы едва ли можно было считать парными.

К 1930 г. другие ученые также стали сомневаться в исходной гипотезе Дирака о том, что протон является положительным аналогом электрона. Так, Дж. Роберт Оппенгеймер, который в годы войны возглавил Манхэттенский проект, созданный для разработки ядерного оружия, и советский физик Игорь Тамм обнаружили еще более серьезную проблему, связанную с интерпретацией Дирака. Работая независимо друг от друга, Тамм и Оппенгеймер пришли к выводу, что если бы описываемые уравнением Дирака частицы-антиподы столкнулись, то выделилась бы масса энергии и произошло явление, которое физики именуют аннигиляцией. Если бы протон действительно был положительным аналогом электрона, то стабильных атомов бы попросту не существовало, так как две эти частицы не могли бы существовать бок о бок. Годом позже сам Дирак предположил, что единственное логичное объяснение его уравнения требует признать существование иной частицы, которую сам Дирак назвал «антиэлектрон».

Действительно, Дирак осознал, что его уравнение проливает свет на существование «совершенно новой разновидности вещества». У каждой частицы должна быть ровно одна античастица, своеобразное «зеркальное отражение». Античастице необходимо обладать такой же массой, как и частице, но остальные свойства этих частиц (например, электрический заряд) должны быть противоположными. Более того, уравнение Дирака предполагало, что при наличии достаточного количества энергии пары частиц и античастиц могут возникать спонтанно, что поначалу казалось физикам невероятным.

Спустя всего несколько месяцев Карл Андерсон из Калифорнийского технологического института, занимаясь изучением космических лучей (высокоэнергетических частиц, прилетающих на Землю из глубокого космоса), заметил в пузырьковой камере след, оставленный «какой-то положительно заряженной частицей с точно такой массой, как у электрона». Андерсон потратил около года на исследование этой проблемы и пришел к выводу, что эти новые частицы действительно являются антиэлектронами. Он назвал их позитроны. Андерсон зафиксировал и такие случаи, в которых электронно-позитронные пары возникали словно из ниоткуда, подтвердив, что парное образование частиц – это реальное физическое явление, в полном соответствии с уравнением Дирака. Таким образом, нечто действительно может возникнуть из ничего – по крайней мере на тот краткий миг, пока парные частицы не аннигилируют. Сегодня в ходе экспериментов, которые проводятся на ускорителях частиц, ученые с легкостью синтезируют миллионы электронно-позитронных пар. Однако в таких опытах частицы и античастицы разделяются при помощи магнитных полей и лишь через какое-то время вступают в контакт и аннигилируют.

В 1933 г. Дирак в возрасте 31 года был удостоен Нобелевской премии за свое открытие на кончике пера, поскольку его гипотеза подтвердилась, когда Андерсону удалось обнаружить позитрон. Дирак был чрезвычайно стеснительным и даже подумывал отказаться от премии, чтобы в случае ее присуждения не стать публичной персоной. «Робкий, как газель, скромный, как викторианская девица» – так охарактеризовали Дирака в одном из номеров газеты Sunday Dispatch, вышедших в то время. Но друзья убедили Дирака, что отказ от премии привлечет к нему еще больше внимания, поэтому он явился на церемонию.

Хотя Андерсону и удалось обнаружить позитрон вскоре после теоретического прогноза Дирака, поиски антипротона и антинейтрона продолжались значительно дольше. Эмилио Сегре и Оуэн Чемберлен зафиксировали антипротон в ускорителе частиц под названием Bevatron, расположенном в калифорнийском городе Беркли, – это произошло в 1955 г. Годом позже Брюс Корк вместе с коллегами на том же ускорителе открыл антинейтрон. Первое ядро антивещества, состоявшее из антипротона и антинейтрона, впервые удалось наблюдать двум независимым группам исследователей в 1965 г., но лишь спустя 30 лет ученые смогли синтезировать первые антиатомы, в которых позитрон вращается вокруг антиядра. В 1995 г. группа физиков в институте CERN получила девять атомов «антиводорода». До сих пор сотрудники CERN продолжают упорно работать над тем, чтобы добыть существенное количество атомов антиводорода и сохранить их достаточно долго, чтобы можно было изучить свойства этого вещества. В 2011 г. в Брукхейвенской национальной лаборатории удалось получить ядра антигелия, состоящие из двух антипротонов и двух антинейтронов. Для этого в ускорителе разгоняли и сталкивали ядра золота, достигая невероятной плотности вещества – примерно такую плотность имела Вселенная спустя считаные микросекунды после Большого взрыва. До сих пор это самые тяжелые антиядра, известные науке.

Мало того, что антивещество очень сложно получить в лабораторных условиях; оно еще и почти не встречается в природе. По-видимому, современная Вселенная практически полностью состоит из вещества. Откуда нам известно, что антивещества во Вселенной совсем мало? Во-первых, мы можем быть практически уверены, что антивещество отсутствует в Солнечной системе. Ведь астронавты, высаживавшиеся на Луне, а также автоматические зонды, которые мы уже запускали к различным планетам, астероидам и кометам, не аннигилировали при посадке. Частицы солнечного ветра не аннигилируют при попадании в земную атмосферу; соответственно, Солнце состоит из вещества, точно как и Земля. В высокоэнергетических космических лучах, прилетающих из отдаленных районов Млечного Пути и ежедневно бомбардирующих Землю, на каждые 10 000 протонов приходится примерно 1 антипротон: значит, во всей нашей Галактике нет сколько-нибудь существенных объемов антивещества. Также крайне маловероятно, что из антивещества могут состоять другие галактики, поскольку если бы подобные антигалактики действительно существовали, то мы должны были бы наблюдать сильные всплески гамма-излучения всякий раз, когда такая антигалактика взаимодействует с обычной, состоящей из вещества.

Некоторые ученые пытались непосредственно определить, насколько редко антивещество встречается во Вселенной. Сэмюэл Тинг, специалист по физике частиц из Массачусетского технологического института (а также его коллеги), сконструировал прибор, который назвал «альфа-магнитный спектрометр» (AMS). В этом устройстве применяется огромный сверхпроводящий магнит и шесть сверхчувствительных детекторов, выискивающие ядра антигелия в космических лучах. Прототип спектрометра Тинга в 1998 г. был выведен на орбиту на борту шаттла Discovery под эгидой NASA. Прибор обнаружил миллионы ядер гелия, но ни одного ядра антигелия. Позже астронавты поставили полномасштабный эксперимент на оборудовании, которое в тысячу раз превосходило по чувствительности этот прототип. Работа была выполнена на международной космической станции в 2011 г. в ходе последнего полета шаттла Endeavor[35].

Ученые не одно десятилетие размышляли о том, почему же в природе присутствует столь мизерное количество антивещества – почему симметрия нарушается на таком базовом уровне. Концепция симметрии играет в науке важнейшую роль, и не менее принципиальное значение имеют законы сохранения. Еще в 1915 г. выдающаяся немецкая исследовательница математик Эмми Нётер первой осознала, что между феноменами симметрии и сохранения существует тесная связь. Несмотря на то что Нётер происходила из семьи математиков, в те годы женщине было нелегко заниматься наукой, приходилось бороться за это право. Девушка не имела возможность официально поступить в Университет Эрлангена (в этом городе родилась Эмми), поэтому она ходила на лекции вольнослушательницей, что не помешало ей блестяще сдать экзамены. Позже университет отменил подобные ограничения для студенток, но Нётер, хотя и получила докторскую степень с высшим баллом, все равно долго не могла устроиться на преподавательскую работу.


Эмми Нётер

(Science Photo Library)

Когда Нётер смогла выдвинуть свою кандидатуру на пост приват-доцента в Гёттингенском университете, один из сотрудников факультета протестующе заявил: «Что только подумают наши солдаты, когда вернутся с фронта в университет и будут вынуждены заниматься у ног женщины?!» Знаменитый математик Дэвид Гильберт – один из сторонников избрания Нётер – пришел в ярость от такой дискриминации и парировал: «Не понимаю, почему пол кандидата служит доводом против нее… ведь здесь университет, а не баня!» Но ему не удалось переубедить коллег, и Нётер была вынуждена довольствоваться должностью приглашенного преподавателя. После того как к власти пришел Гитлер, Нётер оказалась в числе первых преподавателей еврейского происхождения, потерявших работу и вынужденных бежать из страны. Она переехала в США в 1933 г. и получила профессорский пост в колледже Брин-Мор, штат Пенсильвания. Сегодня существует престижная студенческая стипендия для молодых исследователей, присуждаемая Немецким научно-исследовательским обществом, которая названа в честь Нётер.

Вскоре после прибытия в Гёттинген Нётер занялась изучением некоторых аспектов эйнштейновской общей теории относительности, опубликованной незадолго до этого. Нётер поняла, что симметрия подразумевает закон сохранения, и наоборот. Она предположила, что если в природе наблюдается та или иная симметрия или регулярность, то существует и закон, отвечающий за ее сохранение. Например, тот факт, что законы физики не изменяются с течением времени (в научной терминологии это явление называется «инвариантность»), подразумевает существование закона сохранения энергии. Действительно, когда бы вы ни бросили монетку с балкона – завтра или три недели назад, она упадет на землю с одним и тем же ускорением. Верно и обратное: поскольку в природе действует закон сохранения энергии, законы физики симметричны относительно времени. Открытие Нётер было настолько фундаментальным, что сегодня описанная ею закономерность называется «теорема Нётер». Лауреат Нобелевской премии по физике Леон Ледерман и Кристофер Хилл, его коллега по лаборатории Fermilab, писали в книге «Симметрия и прекрасная Вселенная» (Symmetry and the Beautiful Universe), что это «одна из важнейших когда-либо доказанных математических теорем, определивших развитие современной физики, сопоставимая, пожалуй, только с теоремой Пифагора».

Причина, по которой Ледерман и Хилл поверили в такую важность теоремы Нётер, во многом связана с нашими фундаментальными понятиями о природе, в частности, о субатомном мире. Возьмем, к примеру, мюон – распадаясь, эта частица испускает электрон вправо. По закону симметрии распадающийся антимюон должен испускать позитрон влево. Физики именуют этот феномен пространственной четностью, или P-симметрией. Теорема Нётер предполагает, что при взаимодействиях элементарных частиц должна сохраняться четность, а также другие их свойства – в частности, заряд (физики говорят «C-симметрия») и энергия. Однако стандартная модель допускает, что такие правила симметрии могут время от времени нарушаться; это явление называется «нарушение соответствующей симметрии». Так, иногда антимюон при распаде может испускать частицу вправо, то есть «действовать не по правилам»

Физики Джеймс Кронин и Вал Фитч, оба работавшие в Принстонском университете, а также их коллеги впервые наблюдали нарушение CP-симметрии[36] в 1964 г. на синхротроне в Брукхейвенской национальной лаборатории, расположенной на острове Лонг-Айленд в штате Нью-Йорк. Они обнаружили, что электрически нейтральные частицы, именуемые каонами или К-мезонами, могут превращаться в парные им античастицы и наоборот, однако вероятность перехода в первом и втором направлении отличается. В сущности, они открыли, что в природе действительно отсутствует равновесие между веществом и антивеществом. Правда, этот эффект был едва заметен и совершенно не мог объяснить наблюдаемого преобладания вещества над антивеществом. С тех пор физики занимаются поиском других примеров нарушения зарядовой четности, которые проявлялись бы в более серьезных масштабах. Два наиболее точных эксперимента были запущены в 1999 г. Один из них называется «BaBar» и проводится на Стэнфордском линейном ускорителе (SLAC) в Калифорнии. Второй именуется «Belle», он осуществляется в японской лаборатории KEK. На этих «B-фабриках» физики сталкивают электроны и позитроны на субсветовых скоростях. В результате образуются целые ливни нейтральных элементарных частиц, B-мезонов, которые за считаные триллионные доли секунды распадаются на множество еще более экзотических частиц. За более чем десятилетний срок этих экспериментов ученым удалось зафиксировать миллиарды подобных актов распада и значительную асимметрию в частоте распада B-мезонов и анти-B-мезонов – асимметрия оказалась даже более выраженной, чем предполагалось. Это наиболее серьезный случай нарушения CP-симметрии, известный в настоящее время, но и он далеко не объясняет, почему во Вселенной наблюдается значительная асимметрия между веществом и антивеществом. Поэтому поиск более мощных источников асимметрии продолжается. В 2011 г. был запущен новый эксперимент, направленный на поиск иных случаев нарушения CP-симметрии; он проводится на Большом адронном коллайдере института CERN. Большой адронный коллайдер – крупнейший в мире ускоритель частиц, установленный в кольцевидном туннеле длиной около 27 км, находится близ французско-швейцарской границы.

Тем временем физики успели описать еще несколько гипотетических механизмов, которые, возможно, могли вызвать более значительную асимметрию. Некоторые из них довольно сложны, если не сказать надуманны. Рокки Колб описывает самые экзотические из подобных гипотез как «гигантские построения, призванные объяснить одно-единственное число». В частности, по одной из версий, симметрия между веществом и антивеществом оказалась нарушена из-за испарения первозданных черных дыр, образовавшихся на заре существования Вселенной. Другая версия, которая представляется более убедительной, такова: возможно, причины асимметрии связаны с лептонами – семейством элементарных частиц, к которым относится и нейтрино. Чтобы можно было взять на вооружение эту версию, физикам приходится предположить, что первозданная Вселенная была наполнена тяжелыми «парами» почти невесомых нейтрино, которые мы наблюдаем сегодня. Когда эти сверхтяжелые нейтрино распадались, они превращались в вещество с большей вероятностью, чем в антивещество. Поскольку мы пока не располагаем достаточно мощными ускорителями, которые позволили бы синтезировать такие массивные частицы, ученым остается лишь изучать свойства их более легких аналогов (нейтрино) и теоретизировать, мог ли такой сценарий действительно разворачиваться в реальности.

Причина, почему нейтрино отводится главная роль в разгадке этой космической тайны, связана со странным свойством, которым могут обладать эти частицы: возможно, нейтрино окажутся идентичны антинейтрино. Большинство частиц имеют античастицы, обладающие противоположным спином и зарядом. Поскольку нейтрино и антинейтрино лишены заряда, различить их можно только по спину: у нейтрино он левый, а у антинейтрино – правый. Несмотря на разницу в спине, обе эти частицы могут взаимодействовать с материей совершенно одинаково. Если бы все действительно было так и нейтрино с антинейтрино были полностью взаимозаменяемы, то именно этот феномен мог бы объяснить переизбыток вещества над антивеществом в ранней Вселенной.

Итальянский физик Этторе Майорана – замкнутый гений, пропавший без вести в возрасте 32 лет, первым предположил, что нейтрино могут обладать такой двойственной природой. Майорана родился в 1906 г. в знатной сицилийской семье и уже ребенком проявлял талант к математике и шахматам. Последовав примеру отца, он пошел учиться на инженера в Риме. Там Майорана познакомился с Эмилио Сегре, который убедил его заняться физикой, а не техникой. В компании с Сегре Майорана присоединился к исследовательской группе Энрико Ферми, незадолго до того получившего пост профессора в Римском университете. Тогда Майорану еще можно было назвать юношей – ему лишь недавно исполнилось двадцать шесть. Амбициозная команда молодых физиков под началом Ферми получила прозвище «Ребята с улицы Панисперна» – на этой улице располагался институт физики.


Этторе Майорана

(E. Recami and F. Majorana)

Теоретические работы Майораны были связаны с исследованием структуры и свойств атомов и их составляющих. Получив грант от Итальянского научно-исследовательского совета, Майорана смог отправиться в Лейпциг, где сотрудничал с Гейзенбергом, а также в Копенгаген, чтобы работать с Нильсом Бором.

Работая в Германии, Майорана серьезно заболел гастритом, этот недуг донимал его еще долгие годы, даже после возвращения в Рим. Возможно, именно из-за болезни Этторе почти не публиковал научных статей, зачастую бракуя собственную работу как мутные исследования, недостойные печати. Несмотря на уговоры Ферми, Майорана даже не удосужился опубликовать собственную гипотезу о существовании нейтрона, поэтому, когда эту частицу независимо от Майораны открыли другие ученые, его вклад в исследование этой проблемы остался совершенно неоцененным.

Заручившись поддержкой Ферми, которая в те годы значила в Италии очень много, Майорана получил в конце 1937 г. должность профессора на кафедре физики в университете Неаполя. Первые пару месяцев работа у него, казалось, шла хорошо. Однако вечером 23 марта он сел на корабль, отходивший из Неаполя в сицилийский город Палермо, предварительно сняв со счета все сбережения. Через два дня Майорана написал шокирующее письмо директору неапольского института физики: «Я принял решение, которое стало для меня неизбежным. В нем нет ни капли эгоизма, но я сознаю, какие неудобства доставит Вам и студентам мое внезапное исчезновение. Я прошу у Вас прощения, в том числе и за это, но в особенности за то, что обманул Ваше доверие, искреннюю дружбу и сочувствие, которым Вы успели меня одарить за последние несколько месяцев…»

Однако вскоре после отправки этого письма Майорана, по-видимому, решил все переиграть, так как отправил коллеге телеграмму с просьбой опровергнуть предыдущее письмо. Во второй записке, датированной 26 марта, он писал: «Море не приняло меня, и завтра я вернусь. Остановлюсь в гостинице Bologna, возможно, при мне будет это письмо. Тем не менее я решил прекратить преподавательскую работу». Обеспокоенный коллега рассказал о письме родственникам Майораны. Вечером 25 марта, будучи в Палермо, Майорана купил билет на корабль, уходивший обратно в Неаполь, но на полуострове так и не появился. Несмотря на то, что семья предлагала вознаграждение тому, кто найдет Этторе, более ничего о нем узнать не удалось. Ферми даже обращался к премьер-министру Италии Бенито Муссолини с просьбой посодействовать в поисках: «Без малейших колебаний заверяю Вас и подчеркиваю, что в моих словах нет ни малейшего преувеличения: из всех итальянских и иностранных ученых, с которыми мне доводилось встречаться, мало кто настолько поразил меня своими незаурядными качествами, как Майорана».

Мнения о судьбе Майораны варьируются от очевидных до абсолютно загадочных. Проще всего предположить, что он покончил с собой, спрыгнув с корабля в Тирренское море. Но если он планировал свести счеты с жизнью, то зачем забирал деньги из банка? Кроме того, члены семьи настаивали, что Этторе был убежденным католиком, поэтому не мог пойти на самоубийство. Некоторые полагали, что Майорана переживал духовный кризис, поэтому ушел в монастырь. Один иезуитский священник рассказывал, что к нему обратился какой-то смятенный молодой человек, по описанию похожий на Майорану, и попросил принять его в орден. Монахи из обители, расположенной южнее Неаполя, также сообщали, что видели такого человека. Еще одна версия уводит поиски в Аргентину. На протяжении нескольких десятилетий после исчезновения физика появлялись сообщения о том, что Майорану видели в Южной Америке. Один сицилийский писатель предполагал, что Майорана пустился в бега, так как предвидел скорое изобретение ядерного оружия и не хотел иметь ничего общего с этими чудовищными разработками. Другие думали, что Майорану могли убить нацистские агенты или сицилийская мафия.

Возможно, при всем своем незаурядном интеллекте Майорана просто не мог справиться с жизненными неурядицами. Как отмечал Ферми, «Майорана был более талантлив, чем кто-либо в мире. К сожалению, ему недоставало всего одного качества, которым обычно обладают другие мужчины: здравого смысла». Легенда о Майоране живет на родине этого человека, причем подпитывается не только конспирологическими версиями и историями о том, что «кто-то видел Майорану» (на самом деле в какой-то период в Италии его «замечали» не реже, чем в США – Элвиса Пресли). Более того, Майорана уже стал героем комиксов и настоящим символом Сицилии.

При этом важность того вклада, который Майорана успел внести в науку, в последние годы резко повысилась. Все дело в растущем интересе к его соображениям о природе нейтрино, которые Майорана успел изложить в своей статье всего за год до исчезновения. Выше в этой главе я уже описывал сущность уравнения Дирака: оно указывает, что у электрона, имеющего отрицательный заряд, должна существовать положительно заряженная античастица. Майорана, в свою очередь, осознал, что не имеющие заряда нейтрино могут быть античастицами сами себе. То есть в природе может и не существовать «близнеца-антипода» нейтрино. Майоране удалось вывести более простое уравнение для нейтрино, чем Дираку – для электрона. Считается, что Этторе просто не решался опубликовать результаты своих исследований, хотя Ферми, как обычно, убеждал его не стесняться. Другие полагают, что Ферми сам написал статью, основываясь на заметках Этторе, и отдал ее в публикацию, подписавшись именем Майорана. Если бы не этот благородный поступок Ферми, то мы, возможно, никогда не узнали бы об эпохальном озарении Майораны.

Если предположение Майораны подтвердится и нейтрино действительно окажется античастицей «самой себе», то этот факт может перевернуть всю физику. Во-первых, придется пересмотреть Стандартную модель, которая сегодня считается настоящим каноном субатомного мира. Во-вторых, именно двойственная природа нейтрино могла бы объяснить ту асимметрию, в результате которой вещество подавляюще преобладает над антивеществом и которой мы обязаны своим существованием. Несмотря на явную простоту гипотезы Майораны, проверить ее экспериментально довольно сложно. Только сейчас ученые вплотную подходят к возможности осуществления строгих экспериментов такого рода, о чем мы подробнее поговорим ниже в этой главе.

Как вы, вероятно, помните из главы 2, Вольфганг Паули первым предположил, что именно нейтрино могут вызывать тот недостаток энергии, которая, казалось бы, бесследно исчезает при бета-распаде радиоактивного ядра. В частности, когда нейтрон распадается на протон и электрон, также образуется антинейтрино. При таком распаде сохраняется электрический заряд: реакция начинается с нейтрона, не имеющего заряда, а в результате ее образуются протон и электрон, чьи заряды равны, соответственно, +1 и –1, а также не имеющий заряда антинейтрино. Таким образом, суммарный заряд этих частиц также равен нулю. Сохраняется и лептонное число: как в начале, так и в конце реакции оно равно нулю, поскольку лептонное число электрона равно +1, а антинейтрино присваивается лептонное число –1. До сих пор все нормально: мы играем по правилам Стандартной модели.

Оказывается, ключевую роль для проверки гипотезы Майораны может сыграть редкая разновидность бета-распада. Еще в 1935 г. германо-американский физик Мария Гёпперт-Майер описала необычный вариант «двойного бета-распада»: два нейтрона в одном и том же ядре могут одновременно превратиться в два протона, испустив два электрона и два антинейтрино. В таком случае сохранились бы и электрический заряд, и лептонное число. По расчетам Гёпперт-Майер, случаи такого двойного распада должны быть достаточно редкими. Кроме того, наблюдать их очень непросто, так как они потеряются на фоне обычного «одинарного» бета-распада. После многих десятилетий работы, которой занимались многие физики, Майкл Мо из Калифорнийского университета в городе Ирвин и его коллеги наконец-то смогли наблюдать двойной бета-распад в лабораторных условиях. Это произошло в 1987 г.

Задолго до того, как группе Мо удалось экспериментально зафиксировать двойной бета-распад, ученые пришли к выводу, что если Майорана был прав и нейтрино являются античастицами сами себе, то возможен и третий, еще более редкий вариант бета-распада. Итак, если догадка Майораны была верна, то два нейтрона могут претерпевать бета-распад вместе, так, что антинейтрино, испускаемый одним нейтроном, сразу же поглощается другим нейтроном. В итоге два нейтрона распадаются, не оставляя после себя ни нейтрино, ни антинейтрино. Физики подобрали для этого феномена громоздкое название «безнейтринный двойной бета-распад». В процессе такого распада электрический заряд сохраняется, а лептонное число – нет: на выходе имеем +2, так как есть два электрона и никаких антинейтрино. Таким образом, при безнейтринном двойном бета-распаде нарушается важное правило сохранения, основополагающий закон Стандартной модели. Именно такое нарушение может объяснять асимметрию в количестве вещества и антивещества.

Если ученым доведется наблюдать этот исключительно редкий процесс в природе, то догадка Майораны подтвердится: окажется, что нейтрино действительно является античастицей самому себе. Это будет беспрецедентный прорыв в науке и первый доказанный случай несохранения лептонного числа. В таком случае нам откроется путь к пониманию того, как вещество распространилось во Вселенной настолько шире антивещества. Более того, вероятность безнейтринного двойного бета-распада тесно связана с массой нейтрино: чем больше эта масса, тем чаще происходят распады. Поэтому, измерив частоту распада нейтрино, ученые смогут достаточно уверенно определить массу этой частицы. До сих пор физикам удавалось измерить лишь разницы масс нейтрино разных типов (об этом мы говорили в главе 5), но не их абсолютную массу. Иными словами, изучив свойства этого редкого явления, мы решим сразу две задачи: найдем массу нейтрино и узнаем, является ли нейтрино собственной античастицей.

Обнаружить безнейтринный двойной бета-распад не легче, чем иголку в стоге сена, но в настоящее время этот поиск набирает обороты. Физики готовят сложнейшие эксперименты, которые позволили бы проверить гипотезу Майораны – более чем через 75 лет после того, как эта гипотеза была сформулирована. По мнению Джорджо Гратты из Стэнфордского университета, тот факт, что для постановки достаточно точных экспериментов такого рода понадобилось так много времени, свидетельствует «не только о крайней сложности измерения этого свойства, но и о том, насколько гениален был Майорана».

Ожидается, что в ближайшие пять лет будет запущено несколько таких точных экспериментов. Один из них называется «Подземная криогенная обсерватория редких событий» (CUORE), он будет проводиться в итальянской лаборатории Гран-Сассо. В эксперименте используется около 200 кг теллура; примерно треть этой массы приходится на радиоактивный теллур, который подвергается двойному бета-распаду. Детекторы CUORE охлаждены до температуры, всего на доли градуса превышающей абсолютный нуль (поэтому они очень легко регистрируют малейшие повышения температуры, происходящие в результате поглощения частицы или гамма-луча). Поскольку безнейтринный двойной бета-распад будет происходить крайне редко (если вообще будет), ученым потребуется подавить все прочие источники помех, которые в противном случае просто перекроют этот слабый сигнал. Во-первых, именно поэтому экспериментальная установка возводится под горой Гран-Сассо в Апеннинах, под сотнями метров скальных пород, блокирующих большую часть космических лучей. Во-вторых, сборка детекторов выполняется в стерильных цехах, чтобы предотвратить загрязнение атомами других радиоактивных элементов, встречающихся в природе. В-третьих, детекторы заключаются в свинцовые кожухи, каждый толщиной по 3 см, чтобы защитить оборудование от радиоактивного излучения самих скальных пород.

Однако свинец, только что добытый из руды, сам немного радиоактивен; соответственно, его собственное излучение станет помехой для измерения бета-распада. Поэтому ученым, готовившим проект CUORE, потребовалось найти очень старый свинец, который уже успел утратить почти всю свою естественную радиоактивность. Ученые превзошли сами себя в стремлении найти идеальный экранирующий материал: металл, который пошел на изготовление кожухов, взят с грузового судна, затонувшего у берегов Сардинии около 2000 лет назад. В 1988 г. остатки этого корабля обнаружил аквалангист. На судне находилось более тысячи свинцовых слитков, из которых, вероятно, предполагалось выковать снаряды для пращей – боеприпас для римских легионеров. Археологи хотели изучить клейма на слитках, чтобы больше узнать об античной морской торговле, но не смогли найти достаточно средств, чтобы поднять весь этот груз. Тогда на помощь пришли физики: Итальянский национальный институт ядерной физики выделил на подъем слитков сумму, эквивалентную $200 000. В качестве вознаграждения физики попросили себе часть добытого груза – те слитки, которые сохранились хуже всего. Они будут переплавлены и пойдут на изготовление свинцовых экранов для эксперимента CUORE.

Кроме группы CUORE в мире есть и другие проекты, участники которых в духе дружеского соперничества стремятся обнаружить безнейтринный двойной бета-распад. Еще одна группа в Европе уже эксплуатирует аппарат, который должен зафиксировать это экзотическое явление в блоке германия[37]. Эта работа также ведется в лаборатории Гран-Сассо. Американские ученые запустили собственный эксперимент под названием EXO-200 (Обсерватория с обогащенным ксеноном). Обсерватория расположена под соляным пластом неподалеку от города Карлсбад в штате Нью-Мексико, неподалеку отсюда находится могильник ядерных отходов. Тот самый соляной пласт, который накрывает этот могильник, также защищает детектор EXO-200 от космических лучей и естественной радиоактивности скальных пород. Ксенон содержится в медном криостате, который находится в растворителе; растворитель играет роль антифриза и позволяет поддерживать нужную температуру. Исследователи сделали все возможное, чтобы защитить свой аппарат от радиационного фона, который мог бы стать источником помех. Сборка установки EXO-200 выполнялась в большом стерильном цеху в специальном комплексе с толстой бетонной крышей на территории Стэнфордского университета. При работе использовались материалы, не дающие ни малейшего радиоактивного излучения, все инструменты тщательно промывались в ацетоне и спирте. Поскольку при транспортировке оборудования по воздуху установка подвергалась бы сильному воздействию космических лучей, было решено доставить аппаратуру грузовиком из Калифорнии в Нью-Мексико в герметичных контейнерах – путь к месту назначения составил больше 2000 км. Чтобы дополнительно снизить воздействие космических лучей, было решено максимально сократить время в пути – для этого к транспортировке привлекли двоих водителей, которые вели машину по очереди, и в дороге удалось обойтись без остановок. Более того, исследователи покрыли контейнеры специальной отражающей краской, чтобы в дороге они не нагревались. Сам грузовик, который использовался при перевозке, был оснащен пневматической подвеской, чтобы исключить даже малейшие вибрации, способные повредить тонкое оборудование. Тем временем японские исследователи также приступили к поиску безнейтринного двойного бета-распада в шахте Камиока; в японской установке используется 400 кг ксенона, заключенного в огромный нейлоновый баллон.

Следует отметить, что еще около 10 лет назад поступило сообщение о том, что безнейтринный двойной бета-распад удалось обнаружить. С таким заявлением выступила небольшая группа физиков под руководством Ханса Клапдор-Кляйнгротхауса из Гейдельбергского института ядерной физики им. Макса Планка в Германии. Ученые проанализировали массив данных, собранных в течение многолетнего совместного эксперимента «Гейдельберг – Москва» (в эксперименте использовались пять крупных сверхчистых кристаллов обогащенного германия, расположенных в подземной лаборатории Гран-Сассо), и сообщили, что у них действительно есть доказательства таких редких превращений. Однако другие исследователи, в том числе московские участники этой коллаборации, указали на недоработки в их анализе и усомнились, не является ли полученный результат обычной статистической флуктуацией. Хитоши Мураяма отметил, что «согласно большинству теорий, этот процесс не может идти так активно, как следует из этих результатов». С ним соглашается Гратта из Стэнфордского университета, один из ключевых представителей коллаборации EXO-200: «Большинство коллег сходятся во мнении, что безнейтринный двойной бета-распад пока наблюдать не удалось». Если каким-то чудом Клапдор-Кляйнгротхаус и его коллеги действительно не ошиблись с выводами, то их находка должна подтвердиться в других экспериментах в ближайшие несколько лет.

«Поскольку значение этих измерений сложно переоценить, представители научного сообщества считают, что для полной уверенности нам нужно несколько подтверждений, полученных на разных экспериментах», – считает Карстен Хеегер из Висконсинского университета в Мэдисоне, один из участников коллаборации CUORE. «Если действительно удастся обнаружить нечто подобное, то это будет великое событие», – добавляет он. Действительно, существует несколько причин, по которым открытие безнейтринного двойного бета-распада потрясет основы физики, астрономии и космологии. Во-первых, это открытие будет означать, что Майорана был прав и нейтрино действительно являются античастицами сами себе. Во-вторых, физики смогут непосредственно измерить абсолютную массу нейтрино, которую не удается определить на протяжении многих десятилетий. Астрономы узнают, обладают ли эти частицы достаточной массой, чтобы из них могли сформироваться первые сгустки материи в ранней Вселенной. В-третьих, такой распад будет свидетельствовать о несохранении лептонного числа, что, как подчеркивает Хеегер, «нарушает фундаментальную физическую симметрию и, следовательно, потребует в корне пересмотреть Стандартную модель». В-четвертых, космологи смогут понять, как в течение первых секунд после Большого взрыва сложилось подавляющее преобладание вещества над антивеществом. Учитывая все эти революционные перспективы, неудивительно, что охотники за нейтрино связывают большие надежды со вторым десятилетием XXI в.

Глава 8

Семена революции

Лето 2012 г. ознаменовалось одним из самых триумфальных открытий в истории физики. Два независимых эксперимента, проводившихся на Большом адронном коллайдере (БАК) в лаборатории CERN, убедительно доказали существование бозона Хиггса – одной из самых неуловимых субатомных частиц, когда-либо предсказанных физиками-теоретиками. Это открытие поставило точку в создании грандиозного свода правил – Стандартной модели физики частиц.

Но причудливые свойства нейтрино вполне могут обрушить это филигранное творение ученых – как минимум доказать его неполноту. Физики признают, что обнаружение массы у нейтрино, сколь бы малой она ни оказалась, требует уточнить Стандартную модель. Охотники за нейтрино уже ищут следы тех феноменов, которые могли бы привести к такому коренному пересмотру. Открывая все новые особенности природы нейтрино в процессе новейших тонких экспериментов, ученые не только расширяют наши представления о фундаментальных свойствах материи, но и все подробнее узнают, что же происходило в первые, важнейшие секунды после Большого взрыва и какие события разворачиваются во время прощального фейерверка, сопровождающего гибель звезды. В ходе этих опытов физики надеются использовать нейтрино, чтобы зондировать источники тепла, подогревающие Землю изнутри, искать залежи полезных ископаемых и даже препятствовать распространению ядерного оружия. Более того, предполагается, что все эти исследования не станут тяжким бременем для налогоплательщиков, которые в наше время являются основными спонсорами фундаментальной науки.

Поиски бозона Хиггса растянулись на несколько десятилетий и обошлись в несколько миллиардов долларов. Охота за этой частицей началась как довольно невинная затея: в начале 1960-х о ее существовании предположили шестеро физиков, работавших в трех независимых научных группах. По высказанной ими гипотезе, пространство пронизано невидимым силовым полем, благодаря которому некоторые элементарные частицы приобретают массу. Как это часто бывает в фундаментальной физике, данная версия сложилась на основе математических соображений о симметрии в природе. Гипотетическое силовое поле было названо «полем Хиггса» – в честь Питера Хиггса из Эдинбургского университета, одного из шести теоретиков, сформулировавших эту идею. Поле Хиггса является одной из основных составляющих Стандартной модели.

Чтобы непосредственно проверить существование поля Хиггса и определить его свойства, требовалось найти частицу, которая была бы связана с этим полем. В контексте квантовой механики бозон Хиггса можно понимать как вибрацию поля Хиггса. Если этого поля не существует, значит, нет и вибраций; соответственно, обнаружив частицу, можно было бы убедиться и в существовании самого этого поля. Чтобы создать в поле вибрацию, нужно добиться возмущения этого поля – подобно тому, как мы бросаем камень в воду и от него во все стороны расходятся круги. Ученые надеялись, что если сталкивать в ускорителе частицы очень высоких энергий, то в поле Хиггса возникнут достаточно сильные волны и удастся наблюдать бозон Хиггса. К сожалению, теория поля Хиггса не давала экспериментаторам почти никаких зацепок: она не указывала массу бозона Хиггса, поэтому физики и не могли предположить, какова должна быть энергия столкновений, чтобы эту частицу можно было зафиксировать. Некоторые ученые скептически полагали, что бозон Хиггса вряд ли вообще будет когда-нибудь обнаружен. Так, Стивен Хокинг поспорил на $100 с Гордоном Кейном из Мичиганского университета, что найти эту частицу не удастся (Кейн считал, что бозон Хиггса существует).

Обнаружение бозона Хиггса либо опровержение его существования было самой приоритетной задачей БАК – ускорителя частиц, на строительство которого ушло более десяти лет и почти $9 млрд. Над созданием ускорителя работали тысячи ученых и инженеров. Неудивительно, что, когда CERN объявил о конференции, запланированной на 4 июля 2012 г., многие предвкушали, что на этом мероприятии наконец-то будет объявлено об обнаружении неуловимой частицы. Сотни людей еще ночью начали выстраиваться в очередь, чтобы успеть занять место в аудитории. Журналисты писали, что атмосфера в лаборатории была как на рок-концерте. На конференции были представлены результаты двух экспериментов, поставленных на БАК, причем в обоих множествах данных просматривались хорошо заметные всплески над общим фоном. Эти всплески возникали, когда энергия столкновений достигала около 125 ГэВ (гигаэлектронвольт); то есть наблюдаемая частица была примерно в 130 раз массивнее протона. Исследователи практически не сомневались, что такие толчки свидетельствуют об открытии бозона Хиггса.

Питер Хиггс, которому на тот момент было уже за восемьдесят, был приглашен на конференцию в качестве почетного гостя; другими почетными гостями были еще два физика-теоретика, предсказавшие существование этой частицы. Присутствующие заметили, что Хиггс даже украдкой смахивал слезы радости. «Ждать пришлось действительно долго, – признавался он спустя пару дней на пресс-конференции в Эдинбурге, – сначала я и помыслить не мог, что доживу до этого открытия, ведь мы почти не представляли, какую массу может иметь эта частица и, соответственно, насколько мощные машины понадобятся, чтобы ее открыть». Стивен Хокинг расплатился с Гордоном Кейном. Как и многие другие физики, Хокинг согласился, что обнаружение бозона Хиггса стало важнейшей вехой в истории физики. Однако в интервью каналу Би-би-си он оговорился и об обратной стороне этого открытия: «Жаль, поскольку крупные прорывы в физике достигаются в экспериментах, дающих неожиданные результаты».



Поделиться книгой:

На главную
Назад