Кто будет за все это платить? Ведь стоимость полета на Марс оценивается в 5 млрд долларов, а создание небольшой базы – в 30 млрд… Илон Маек уже ответил на этот вопрос и подкрепил свои слова своими деньгами. Он заявил, что
Можем ли мы обеспечить экспедиции хотя бы 95-процентную вероятность успеха? Задайте этот вопрос режиссеру и исследователю Джеймсу Кэмерону, который недавно установил в Марианской впадине мировой рекорд одиночного глубоководного погружения. Кэмерон не устает подчеркивать, что если создатели техники повышенного риска тщательно и продуманно решают все известные и очевидные проблемы, то неизбежно возникающие непредвиденные проблемы тоже, скорее всего, можно будет решить.
Не распадутся ли тела астронавтов из-за длительного нахождения в невесомости? Это по-прежнему серьезная проблема, но относительно простая идея фон Брауна – связать корабли вместе и раскрутить их, чтобы создать искусственную гравитацию, – все еще кажется подходящей для путешествия на Марс. Космический корабль можно сконструировать в форме вращающегося колеса и обеспечить гравитацию механически. Но не будем забывать, что время полета на Марс составляет всего на два месяца больше, чем средний срок пребывания астронавтов на Международной космической станции.
В марте 2015-го американский астронавт Скотт Келли и российский летчик-космонавт Михаил Корниенко отправились на МКС на целый год, и в результате этой экспедиции мы больше узнаем о долгосрочном эффекте невесомости. В общем и целом гравитация на Марсе составляет чуть более трети от земной, однако ученые предполагают, что этого может быть вполне достаточно для жизни. Кроме того, недавние исследования показали, что многие виды способны адаптироваться к переменам гораздо быстрее, чем считалось ранее. Возможно, марсианская колония сумеет полностью приспособиться к низкой гравитации уже через несколько поколений.
А что, если астронавты заболеют? Путешественники, которые покоряют высочайшие вершины и совершают кругосветные плавания, давно знают, что в составе экспедиции должен быть человек, умеющий оказывать неотложную медицинскую помощь. Однако моряки, в одиночку совершающие кругосветные плавания, показали, что в наши дни подавляющее большинство проблем можно легко решить с помощью хорошо укомплектованной аптечки и некоторых навыков. И все же космический корабль – это не яхта в океане, и кто-то из астронавтов вполне может заболеть и умереть.
А как насчет радиации? Это по-прежнему одна из главных страшилок. Самая опасная солнечная радиация – результат вспышек на Солнце и связанных с ними коронарных выбросов массы. У нас нет технологий, которые могут устранить солнечное и космическое излучение, но мы можем предусмотреть в межпланетных кораблях специальные защищенные пространства на случай солнечных вспышек и предупреждать астронавтов о том, что им следует укрыться в этих помещениях до тех пор, пока выброс не закончится. Есть и другие способы отразить или поглотить излучение. Маек предложил изолировать внутренние помещения корабля водяной оболочкой. Тем не менее в пути астронавты неизбежно будут получать такие дозы радиации, каких никогда не допускают на Земле. NASA сейчас изучает возможность увеличения допустимой дозы радиации для астронавтов, чтобы разработать соответствующие эксплуатационные нормативы для полета на Марс. А добравшись до Марса, где разреженная атмосфера очень слабо защищает от радиации и где нет ни магнитосферы, ни радиационного пояса, колонисты будут вынуждены большую часть своего времени проводить в экранированных помещениях или под землей.
По мере того как строительство корабля для полета на Марс начнется всерьез, могут возникнуть другие важные вопросы, и на них придется найти новые ответы.
5. Марсианская экономика
Если добираться до Марса окажется слишком дорого, то в результате там никто никогда не поселится. Стоит отметить, что, по мнению Маска, жизнеспособность колонии на Марсе будет в первую очередь зависеть от размера базовых расходов, а не от многочисленных сложностей окружающей среды, таких как отсутствие воздуха, опасное излучение и неясность с доступностью воды.
В конце юн года Маек прочел в Королевском обществе аэронавтики в Лондоне лекцию о ракетной технике – в частности, о том, как многоразовые ракеты, предложенные фон Брауном еще в 1952 году, кардинально изменят экономику космических путешествий и станут определяющим аргументом в дискуссии о том, смогут ли люди жить на Марсе.
Отметив, что запуск ракеты “Фэлкон-9” в наши дни стоит примерно 60 млн долларов (причем стоимость ракетного топлива составляет только 0,3 % от этой суммы), Маек сказал: “Таким образом, если мы сможем использовать одну и ту же ракету тысячу раз, то капитальные затраты снизятся с 60 миллионов до 60 тысяч за один запуск. Очевидно, что разница огромна”. Ракета “Фэлкон-9” недостаточно велика, чтобы доставить на Марс хотя бы одного космонавта, но Маек хотел подчеркнуть, какую невероятную экономию обещают ракеты многократного использования, – и этот фактор станет еще во много раз важнее, когда речь пойдет о гигантской ракете, требующейся для полета на Марс. Если же повторное использование ракет-носителей наладить не удастся, то, по словам Маска, о полетах на Марс придется забыть:
“Думаю, мы просто-напросто не сможем себе этого позволить, потому что речь идет о разнице между 0,5 % ВВП и целым ВВП. Мне кажется, большинство людей, даже если они не собираются лететь сами, согласятся, что если на создание жизнеспособной цивилизации на другой планете уйдет примерно от четверти до половины процента ВВП, то дело, пожалуй, того стоит. Это своего рода коллективное страхование всей жизни на Земле, причем сумма страхового взноса кажется разумной, и к тому же это приключение, за которым интересно будет наблюдать, даже если вы в нем не участвуете. Это в точности то же самое, что с полетом людей на Луну, – фактически летали немногие, но в определенном смысле, опосредованно мы все там побывали. Думаю, большинство из нас скажут, что это было правильно. Если попросить людей оглянуться назад и сказать, что хорошего произошло в XX веке, то высадка на Луне окажется где-то в самых верхних строчках рейтинга. Поэтому я думаю, что это [полет на Марс] станет важным и ценным событием даже для тех, кто сам никуда не полетит”.
Отвечая на вопросы после лекции, Маек время от времени вел себя так, словно он генеральный директор успешной авиакомпании, а вовсе не стартапа, занимающегося разработкой ракет-носителей. Исходя из того, что если цена полета на Марс будет приемлемой, то отправиться на Красную планету захотят очень многие, Маек предположил, что
Вот как Маек представляет себе типичного марсианского колониста: это мужчина или женщина слегка за сорок, представители среднего класса, владельцы дома стоимостью примерно 500 000 долларов. Возможно, он или она терпеть не может свою работу и решает продать все, чтобы купить у
“Безусловно, некоторое количество денег придется потратить на создание базы на Марсе. Проще говоря, заложить основы. Назовем это затратами на введение в эксплуатацию. То же самое было и с английскими колониями. Чтобы раскачаться, потребовались весьма значительные расходы. Вам бы вряд ли понравилось быть колонистом в Джеймстауне. В первое время там было совсем невесело. Потребовалось немало усилий, чтобы возвести фундамент, на котором потом уже начали строить дальнейшее хозяйство. Так что потребуются вложения, и на это нужно будет собрать средства. Но как только начнутся регулярные рейсы, тут-то и нужно будет снизить цену на переселение до полумиллиона долларов, потому что тогда, думаю, желающих найдется достаточно – они смогут продать все свое имущество на Земле и переехать на Марс – и тогда это станет приемлемым бизнесом. Покупателей для этого нужно не так уж много. На Земле живет семь миллиардов человек (вероятно, к концу нашего столетия будет около восьми), и мир в целом становится богаче, так что думаю, если всего один человек из десяти тысяч решит лететь, этого будет достаточно. Да хотя бы один из ста тысяч”.
Эта последняя цифра в подсчетах Маска (один из ста тысяч, решивший быть первопроходцем) предполагает, что население марсианской колонии составит примерно восемьдесят тысяч человек – как в небольшом городе на Земле. Такая идея может показаться неудержимо оптимистичной, но, отвечая после лекции на вопросы из зала, Маек сказал: “Прогнозы вообще штука хитрая. Если бы вы спросили кого угодно на заре авиации: “Каков ваш прогноз развития рынка аэропланов?”, то любой из этих прогнозов был бы невероятно далек от реальности. И скорее всего, все эти прогнозы были бы недостаточно оптимистичными, понимаете? Пожалуй, даже наиболее оптимистичное мнение показалось бы нам сегодня верхом пессимизма”.
На самом деле Маек рассчитывает, что в марсианской колонии будет гораздо больше жителей: ведь в каждое космическое путешествие отправится до 80 тысяч человек. “Система, которую мы строим, не нацелена на то, чтобы отправить на Марс лишь горстку людей, – объясняет он мне в интервью. – Мы разрабатываем транспортную систему, предназначенную для колонизации Марса, нечто такое, что, однажды доведенное до конца, будет способно обеспечивать существование самоподдерживающейся колонии на Марсе. Это очень большая система, и мы поставили себе цель завершить первый этап ее создания до 2030 года. Затем в 2030–2050 годах у нас состоится десять орбитальных синхронизаций… и это значит, что в течение двадцати лет на Марсе окажутся от сорока до пятидесяти тысяч человек”.
Маек рассказывает, что у ракеты “Марс Колонайзер”
У системы “Фэлкон-9” вторая ступень и космический корабль – это отдельные блоки, но у “Колонайзера” они будут интегрированы. Разгонный блок поднимет ракету до половины пути к земной орбите, затем вторая ступень проделает оставшуюся половину пути. И нам нужен будет орбитальный танкер, который пополнит запас топлива”.
Сразу множество таких ракет соберется на орбите Земли. Маек называет их “флотилией”: “Если вы хотите основать колонию, вам придется посылать на Марс много кораблей одновременно. Оптимальный график – отправлять такую флотилию каждые два года, и каждый раз все корабли флотилии должны взлететь в течение одного или двух дней”.
В самом первом путешествии примут участие только один или два корабля, уточняет Маек, “но в конце концов это будут сотни или даже тысячи кораблей. Если вы хотите основать колонию с миллионным населением, то вы просто вынуждены прийти к такому решению.
Я хочу сказать, что 80 000 человек будут одновременно прибывать на Марс каждые два года”.
Маек усматривает здесь поразительное сходство с британской колонизацией Америки. “Это совершенно то же самое, – говорит он. – На скольких кораблях прибыли в Америку самые первые колонисты? На одном. А теперь давайте перенесемся на две сотни лет вперед: сколько кораблей ежегодно отправлялись через океан? Тысячи. У них была вера в Новый Свет и надежда на него. И с Марсом будет то же самое”.
Маек убежден, что миллионы людей в конце концов захотят отправиться на Марс, и число подписчиков в таких проектах, как “Марс-Один”, показывает, что он, возможно, в самом деле прав. Но он вовсе не хочет становиться этаким гамельнским крысоловом: “Важно не то, чего хочу я, а то, чего хотят люди. И я не знаю, чего они будет хотеть, я не знаю, в каком состоянии будет наш мир и что будет к этому времени со
Но давайте вернемся немного назад. Еще до того, как на Красную планету прибудут первые колонисты, кому-то придется стать
Согласно различным проектам марсианских миссий (эти проекты разрабатывал не Маек), прежде чем кто-то высадится на Марсе с намерением остаться здесь надолго, нужно предварительно выполнить два условия: разведать подходящее место для посадки и устройства базы и доставить с Земли огромное количество ресурсов. Согласно идеальному сценарию, на грузовиках, которые прилетят заранее, до начала пилотируемых полетов, прибудут роботы, которые возведут и будут поддерживать в рабочем состоянии элементы жилой оболочки.
Проект “Марс-Один” предлагает один из таких сценариев: оболочку из привезенных модулей будут собирать роботы-марсоходы. С технической точки зрения посадка нескольких грузовых судов, настройка строительных роботов и механических инструментов, перемещение грузов и самих кораблей, соединение их посредством надувных модулей – задача чрезвычайно сложная, но, вне всякого сомнения, выполнимая. Однако проделать все это уже в 2025 году, как предлагает “Марс-Один”, кажется делом по меньшей мере маловероятным.
Проект “Марс-Один”, насколько можно понять, рассчитан на использование капсул “Крю Дрэгон” производства
План-график, опубликованный на сайте mars-one. com, предполагает, что первый грузовой корабль отправится на Марс в 2022 году, а затем, начиная с 2024-го, на Красную планету каждые два года будут прибывать по четыре человека. На главной странице сайта сейчас изображены шесть капсул, напоминающих корабли “Дрэгон”; они аккуратно выстроились на поверхности Марса и соединены одна с другой трубчатыми переходами. По сути дела, это та самая стратегия, которую уже многие годы пропагандируют такие энтузиасты, как Зубрин, основатель Марсианского общества.
Успех плана в определяющей степени зависит от того, удастся ли проекту “Марс-Один” наладить плотное сотрудничество со
Пока что создается ощущение, что проект “Марс-Один” – это всего лишь группа оптимистов, которые очень хотят колонизировать Марс, однако еще не подкрепили свои порывы финансовыми гарантиями. Предложения других участников марсианской гонки выглядят столь же расплывчато.
С другой стороны, когда Илон Маек – тоже раскрывший не слишком много конкретных деталей своего плана – рассказывает, как
Но задолго до того, как они догонят “Теслу”, компания выпустит доступный электромобиль для массового рынка. Пожалуй, не пройдет и десяти лет, как двигатель внутреннего сгорания предстанет в общественном мнении тем, чем он на самом деле и является, – агрегатом, сжигающим массу бензина, чтобы создать гораздо больше бесполезного тепла, чем мощности, диковинным антиквариатом. А сейчас Маек проделывает то же самое с помощью
Сегодня все космические державы, подстегиваемые дерзкими планами Маска и планами NASA в конце концов использовать систему “Орион” для доставки человека на Красную планету, включились в марсианскую гонку. В 2016 году Европейское космическое агентство (ЕКА) совместно с российским “Роскосмосом” собирается запустить аппарат на орбиту Марса (стоит уточнить, что это не первая космическая миссия ЕКА: агентство в 2003 году уже отправило на Марс зонд “Марс-Экспресс”). Новый аппарат будет изучать количество и состав остаточных газов (то есть таких, количество которых в атмосфере не превышает 1 %).
В 2018 году ЕКА и “Роскосмос” планируют доставить на Красную планету марсоход. Русские обсуждали также возможность постройки гигантской ракеты, которая была бы способна конкурировать с “Системой космических запусков” NASA и предположительно могла бы в районе 2030 года обеспечить пилотируемый полет на Марс. Китай тем временем также объявил о планах отправить на Марс марсоход, аналогичный по конструкции китайскому луноходу “Нефритовый заяц”, работающему на Луне с 2013 года.
6. Жизнь на Марсе
Чтобы выжить на Земле, человеку нужны четыре вещи: пища, вода, жилье и одежда. Чтобы выжить на Марсе – пять: пища, вода, жилье, одежда и кислород. Если нам удастся найти надежные источники этих пяти важнейших ресурсов, будущее человечества как межпланетного вида будет обеспечено.
Всего четыре минуты без кислорода грозят мозгу необратимыми повреждениями, а пятнадцать минут – это предположительный порог смерти от кислородного голодания. Однако никто не ожидает, что на Марсе найдется хоть сколько-нибудь существенное количество кислорода. Значит, нам придется производить его, а добыть кислород можно только из воды – если мы сумеем ее найти. В случае удачи кислород можно будет получить несколькими способами, в том числе с помощью обыкновенного электролиза, пропустив через воду электрический ток. Таким образом, вода является наиважнейшим элементом для выживания человека на Марсе, при этом она слишком тяжелая, чтобы мы могли привезти ее с Земли. Если на Марсе нет необходимого количества воды, жить там будет невозможно.
Много лет назад, когда различные спускаемые и орбитальные аппараты были всего лишь набросками на бумаге, NASA положило в основу своих исследований Марса важный принцип: “следовать за водой”. Речь тогда не шла о колонизации планеты, но это правило должно было помочь в поисках инопланетной жизни. Нет воды – нет жизни. Какая ирония: желание NASA выяснить,
Данные, полученные с различных аппаратов, в том числе с “Кьюриосити”, “Марс Реконнессанс Орбитер”
Хотя площадь поверхности Марса составляет лишь около 28 % земной, площадь суши на обеих планетах почти одинаковая, ведь 70 % поверхности Земли покрыто океанами, озерами и реками. На Марсе вода почти ничего не покрывает, за одним очень важным исключением: на сухой поверхности планеты, возможно, имеется более одного миллиона кубических миль воды, но почти вся она – в виде льда. Значит, жидкая вода может появляться на Марсе время от времени при особых атмосферных условиях, однако до тех пор, пока атмосфера не станет более плотной, а температура на поверхности не повысится, жидкая вода будет оставаться редкостью.
Большая доля замерзшей воды находится на северном и южном полюсах Марса, отчасти она похоронена под замерзшей углекислотой. Если бы вся эта вода растаяла, Марс был бы покрыт океаном глубиной в сотни метров. Это, конечно, очень много воды, однако намного меньше, чем когда-то было на поверхности планеты, если верить геологическим исследованиям.
На Марсе десятки тысяч речных долин и множество крупных высохших озер. Возможно, когда-то треть планеты покрывали океаны. Часть нагорья Элизий, обширной вулканической области вблизи экватора, может оказаться морем пакового льда размером с земное Северное море.
Похоже, что лед на Марсе имеется в изобилии, но оценки того, сколько водяного льда содержится в реголите, сильно разнятся – от i до 60 %. На Красной планете есть множество маленьких ледяных озер, и многие из них находятся в экваториальном поясе. Замерзшие водоемы были бы весьма удачной находкой для первых поселенцев.
Часть воды, которая когда-то свободно текла по планете, скорее всего, испарилась и улетучилась в космос, когда Марс потерял атмосферу. Многое об этом нам рассказал аппарат “МАВЕН” (.
Поиск воды на Марсе пока что не кажется сложной задачей, но вот превратить лед в жидкость первым поселенцам будет очень нелегко – прежде всего потому, что это потребует огромных затрат энергии и человеческого труда. Большая часть добытой воды, скорее всего, окажется льдом, смешанным с реголитом. То есть это будет вечная мерзлота, которую без отбойного молотка не победить. И даже после этого для получения жидкой воды могут потребоваться горнорудные технологии и соответствующая мощная техника, пожирающая огромное количество топлива. Так что первым колонистам очень повезет, если они найдут озерцо чистого льда.
Лучший из всех возможных сценариев – это такой, в котором переселенцы находят жидкую воду. Она вполне может скрываться в недрах планеты. Хотя по этому поводу существует множество спекуляций, реального положения дел никто не знает. Первые астронавты должны быть готовы бурить скважины (по крайней мере, на умеренную глубину) в надежде найти водоносный слой. Извлечь воду с поверхности Марса или из скважины – это, конечно, не такая хитрая штука, как ракеты, однако здесь потребуется специальное оборудование, в том числе печи и устройства для дистилляции (иначе в результате бурения вокруг скважин появятся ледяные горы из подземной воды, которая замерзнет в ту же секунду, как поднимется на поверхность).
Согласно одному из сценариев, первым колонистам придется вручную вырубать из поверхности блоки реголита, хотя впоследствии на грузовом корабле будут доставлены небольшие бульдозеры и грузовики, и это позволит увеличить объем работы, которую сможет выполнять каждый колонист. Смесь льда и реголита будут помещать в печи и нагревать, пока вода не превратится в пар, а затем дистиллировать и фильтровать ее до состояния питьевой. Придется разбираться с большим количеством отходов производства, и процесс потребует немало энергии – какой-то объем предоставят солнечные батареи, но, скорее всего, для основной части работы потребуется компактный ядерный реактор.
Готовые к использованию оборудование и материалы, доставленные с Земли, составят лишь очень малую часть того, что необходимо для жизни на Марсе в первые годы. Как и в случае с “Теслами” Илона Маска, каждый инструмент или устройство, которые будут использоваться на Красной планете, придется самым тщательным образом продумать. Нельзя, чтобы буровой мастер, занятый поиском воды под поверхностью, вдруг обнаружил, что мы не смогли предвидеть какую-то конкретную проблему – например, слой особо твердой породы, который не преодолеть без специальной буровой головки. Чтобы у выживания людей на Марсе была разумная вероятность, нужно предусмотреть все мыслимые обстоятельства.
Так что же нам делать, если все попытки первых астронавтов на Марсе добыть воду из реголита, найти скважину или вырубить блоки льда из поверхности самым жалким образом провалятся? На этот случай имеется хороший запасной план. Как показали запущенные NASA станции “Викинг” (
В реакторе
Чтобы по возможности уменьшить массу реактора и его влияние на окружающую среду, устройство необходимо доставить на Марс и начать производить воду за два года до прибытия космонавтов.
Наверное, это уже очевидно, но стоит повторить еще раз: если на Марсе действительно есть вода, как мы предполагаем, то у человечества будут все шансы основать там постоянное поселение.
Теперь займемся проблемой кислорода. Если в вашем скафандре закончится кислород, то вы (не считая азота) начнете вдыхать тот же углекислый газ, который выдыхаете, – пока не потеряете сознание. А там недалеко и до гибели. Человек не может долго дышать воздухом, в котором более 5 % двуокиси углерода, отчасти потому, что у нас есть такой защитный механизм – от избытка углекислого газа мы теряем сознание.
С этой точки зрения Марс кажется весьма негостеприимным местом – ведь в его атмосфере почти совсем нет кислорода. “Воздух” Марса, по данным марсохода “Кьюриосити”, полученным в 2012 году, содержит примерно 2 % азота, 2 % аргона, 95 % углекислого газа и ничтожные количества угарного газа (СО) и кислорода. Показатели слегка варьируются в зависимости от времени года, поскольку в зимние месяцы часть газов на полюсах замерзает, а весной снова испаряется. Однако, хотя свободного кислорода в атмосфере планеты меньше одного процента, на самом деле на Марсе полно кислорода. Дело в том, что углекислый газ (CO2) по атомной массе на 28 % состоит из углерода и на 72 % из кислорода. И если атмосфера Марса на 95 % состоит из CO2, значит, не меньше 70 % общей массы марсианского “воздуха” составляет кислород. И хотя плотность атмосферы Марса достигает лишь 1
В воде, которую первые поселенцы будут добывать на Марсе, кислорода еще больше – он составляет примерно 89 % от массы воды. А земляне уже давно научились с помощью простой технологии, которая называется электролиз, расщеплять молекулы воды и получать кислород. Для этого нужно всего лишь опустить два электрода в сосуд с водой, пропустить через воду электрический ток и… вуаля! Кислород можно собирать на одном конце резервуара, у анода, а водород – на другом, у катода. Практически каждому школьнику приходилось выполнять на лабораторной работе по химии эксперимент с электролизом.
Кстати, водород – это отличное топливо и превосходный источник энергии, поэтому у этого процесса есть и дополнительные преимущества: водород и кислород, разделенные, а затем смешанные определенным образом, превращаются в идеальное ракетное топливо. Проблема же, с которой придется столкнуться первым колонистам на Марсе при использовании электролиза, только одна, зато ее крайне сложно решить – эта технология требует огромного количества электроэнергии.
К счастью, в NASA уже предложили решение. На борту марсохода, который полетит на Марс в 2020 году (этот зонд станет преемником “Кьюриосити”), будет топливный элемент, способный разделять углекислый газ, взятый из атмосферы Марса, на кислород и угарный газ.
Эта технология называется МОКСИ (.
Модуль МОКСИ, установленный на новом марсоходе, будет производить при стандартных показателях температуры и давления всего лишь около пятнадцати литров кислорода в час. Вроде бы не слишком много, но, с другой стороны, легким человека требуется всего пять-шесть миллилитров в минуту. По словам Хекта, “в общем и целом МОКСИ способен постоянно вырабатывать достаточно кислорода для одного человека, если этот человек не занимается очень активной физической работой”.
В настоящее время МОКСИ – это всего лишь рабочая модель в масштабе 1:100, но если она будет функционировать так, как ожидается, NASA планирует построить агрегат в натуральную величину, увеличив его размер и производительность в сто раз, хотя для обеспечения такого устройства энергией потребуется ядерный реактор.
“План следующий: сначала мы построим на Марсе автоматическую станцию с ядерным реактором и установкой по производству кислорода, – объясняет Хект. – А через два года и два месяца, удостоверившись, что резервуар с кислородом полон, а реактор работает как нужно, пошлем туда людей”.
На Земле мы дышим воздухом, который состоит примерно на 78 % из азота и на 21 % из кислорода. Человек в принципе способен дышать самыми разными комбинациями газов, в том числе смесью гелия и кислорода, но не смесью 20 % кислорода и 80 % CO2. Чтобы смесь с кислородом была пригодна для дыхания, ее вторым компонентом должен быть не вступающий в реакции (инертный) газ, такой как аргон или гелий. Азот обычно к инертным газам не относят, однако связь между двумя атомами в молекуле азота так сильна, что он чаще всего не вступает в реакцию с другими веществами.
Одно из важнейших условий для выживания человека на Марсе – наличие пищи. Агрономическая наука высоко развита во многих странах, в том числе и в Соединенных Штатах, и множество ученых посвятили годы попыткам понять, как мы сможем выращивать пищу на Марсе (колонисты будут вегетарианцами, нравится им это или нет, потому что разводить животных намного менее продуктивно). Если первые поселенцы высадятся в районе экватора, днем там будет достаточно тепло для надувных теплиц. Их нужно будет хорошо изолировать и обогревать с помощью пассивного солнечного отопления, например накапливающих тепло камней, на весь день выставленных на солнце, а в ночное время придется также подключать электрическое отопление, чтобы компенсировать резкое падение температуры. Стандартные марсианские сутки вблизи экватора – это примерно двенадцать часов дневного света и двенадцать часов темноты.
Кроме того, растениям потребуется более плотная атмосфера, чем та, что в настоящее время есть на Марсе. Ботаники расходятся во мнениях по поводу точных значений давления внутри марсианских теплиц, но предполагается, что достаточно одной десятой атмосферного давления Земли. Эксперименты, проведенные на МКС, показали, что растения могут расти в невесомости, но никто не знает наверняка, как повлияет на них гравитация Марса, составляющая примерно 38 % земной.
Мы достаточно знаем о марсианском реголите, чтобы уверенно предполагать, что по большей части из него получится хорошая почва, хотя это будет в некоторой степени зависеть от конкретного местоположения реголита. Образцы, изученные марсоходами, и анализ астероидов, которые прилетели на Землю с Марса, указывают, что на поверхности Красной планеты есть минерал смектит, который часто встречается на Земле и используется, например, в составе наполнителей для кошачьих туалетов. Этот минерал легко поглощает воду и может быть полезным для выращивания растений. Однако марсианская почва, возможно, окажется слишком кислой или слишком щелочной и потребует реабилитации, а также насыщения питательными веществами вроде азота. Гидропоника (выращивание растений без почвы, в воде с питательными веществами) будет самым надежным способом успешно получить урожай сельскохозяйственных культур – при условии, что воду легко будет добывать и держать в жидком состоянии.
Вот что говорит Анжело Вермюлен, биолог, художник и капитан команды, которая несколько месяцев провела в симуляторе марсианской среды на Гавайских островах: “Лично я не уверен, что теплицы – удачное решение. На Марсе слишком мало солнечного света и слишком много радиации. Они будут симпатично смотреться на открытке с Марса, но практической пользы не принесут”. По его представлениям, функцию теплиц должны выполнять гидропонные, укрытые от солнечной радиации под толстым слоем почвы или вовсе под землей, в природных лавовых каналах. “Выращивание еды на Марсе – это вопрос контроля, – говорит Вермюлен. – Нужно будет очень пристально контролировать окружающую среду. Светодиодная подсветка позволит менять частоту, спектр и продолжительность воздействия света. В гидропонике вода тоже находится под жестким контролем, что дает большую уверенность в хорошем урожае”.
Хотя первым поселенцам придется регулировать высокое содержание углекислоты в марсианской атмосфере в вегетационных климатических камерах и теплицах, большие дозы газа, возможно, помогут растениям развиваться быстрее и эффективнее. “Можно поиграть с уровнем CO2 и посмотреть, какой подходит лучше всего”, – считает Вермюлен. Общий объем солнечного света на Марсе составляет около шестидесяти процентов от того, что мы получаем на Земле.
В полдень на Марсе поток световой энергии от солнца, которую можно использовать для выращивания растений, – около 600 Вт на квадратный метр. На Земле эта цифра составляет около 1000 Вт на квадратный метр. Таким образом, полдень на Марсе по освещенности приблизительно похож на начало вечера на Земле, когда солнце начинает клониться к закату и находится на небе примерно в тридцати пяти градусах над горизонтом. Иными словами, на Марсе солнечного света вблизи экватора примерно столько же, сколько у нас зимой в таких городах, как Милан, Чикаго, Пекин или Саппоро.
Марсианские посевы должны быть максимально питательными и занимать очень мало места. Например, фасоль содержит очень много белка и клетчатки; она может стать частью марсианского рациона, но работы по выявлению культур, которые обязательно должны войти в этот набор, еще не завершены. Грибы можно довольно успешно выращивать на компосте, остающемся от тех частей растений, которые люди не едят. Если бы меню составлял Вермюлен, там обязательно были бы и насекомые: “Насекомые должны быть частью рациона космонавтов. Кузнечики и сверчки хрустящие, и в них полно белка. Еще мне понравились сушеные мучные черви. В одном из моих проектов мы их жарили и добавляли в салаты”.
Зеленый салат и другие листовые растения будут роскошью, но необходимой. “Салат не слишком удобен. Энергетическая ценность у него маленькая, а объем – большой. Но он оказывает положительный психологический эффект, потому что выглядит свежим и сочным”, – объясняет Вермюлен.
Биолог удивляется тому, что люди до сих пор думают, будто космонавты питаются едой из тюбиков: “Астронавтам нужна от еды и эмоциональная подпитка. Им хочется обедать в компании. Они попросили поставить на Международной космической станции стол, чтобы можно было поесть вместе. Они хотят, чтобы еда напоминала им об их корнях, о происхождении и родной культуре. Китайским и российским космонавтам нравятся некоторые продукты, которые непривычны американцу”.
Недавний пятидесятидневный эксперимент в теплице в Нидерландах, проведенный под эгидой нидерландского министерства экономики, позволил с оптимизмом взглянуть на возможность выращивания сельскохозяйственных культур на Марсе, хотя в нем не учитывались пониженная гравитация и разница в количестве солнечного света. NASA предоставило голландцам почву с Гавайских островов и из Аризоны, которая, по мнению агентства, схожа с марсианским реголитом. Из семян было выращено около четырех тысяч двухсот растений, и каждое семя, посаженное в смоделированную марсианскую почву, дало всходы. Кресс-салат, помидоры, рожь и морковь оказались в числе видов, лучше всего принявшихся в “марсианской” почве, которая, как и ожидалось, отлично удерживает воду. Ведутся и другие испытания, в том числе эксперименты канадских ученых на острове Девон и в теплицах Марсианского общества в штате Юта.
Независимо от того, насколько мы преуспеем в выращивании пищи на Марсе, в первые дни она будет составлять лишь малую часть рациона. Большинство продуктов питания колонисты привезут с Земли. “Думаю, мы никогда не достигнем того, чтобы на Марсе выращивалось сто процентов необходимой пищи, – признает Вермюлен. – Честно говоря, будет хорошо, если нам удастся выращивать пять-десять процентов еды. Это отличное начало”. Отчасти причина в том, что теплицы и агротехника – вещи очень громоздкие и требующие слишком много энергии. А когда речь идет о космических путешествиях и жизни на другой планете, масса и энергия решают все.
Точно так же, как растениям первое время после переселения потребуются защищенные помещения, людям для выживания в недружественной среде Марса нужно будет уладить два оставшихся вопроса: где жить и что надеть?
Металлические корабли и надувные здания – это лишь временное укрытие от суровых условий планеты. Нужно будет защищаться от двух видов излучения – солнечного ветра и космических лучей. Солнечная радиация нам хорошо знакома: мы обгораем из-за нее на пляже; но кроме того, даже сквозь атмосферу Земли до нас долетают от Солнца заряженные частицы – солнечный ветер. Космические лучи доходят до нас из неведомых пока таинственных источников за пределами нашей Солнечной системы. Это также поток заряженных частиц, но обладающих значительно большей энергией и оттого гораздо более опасных.
На Земле нас защищает плотная атмосфера, а наша кожа – не помеха для космических лучей: они легко проникают даже сквозь толстый слой металла и могут вызывать сбои в работе электроники. Космические лучи изливаются на нас постоянным потоком, и люди, живущие на большой высоте в Скалистых горах, или пилоты дальних трансокеанских рейсов довольно сильно подвержены их воздействию. Мы точно знаем, что чем больше это воздействие, тем выше вероятность смерти от рака, пусть и на небольшой процент. В долговременной перспективе почти любое облучение вредно для здоровья человека.
Сейчас NASA пересматривает предельно допустимые дозы радиации для астронавтов, совершающих длительные перелеты, такие как экспедиция на Марс. Разреженная атмосфера Марса должна в некоторой степени защищать от солнечной радиации, однако выброс солнечного вещества прямо в сторону Марса (это случается редко, но всегда возможно) был бы, конечно, губителен для колонистов. Поэтому им придется оборудовать специальное укрытие, закрыв его сверху как можно большим количеством реголита или камня. Если в сторону Красной планеты будет направлен корональный выброс массы Солнца, то потребуется еще более надежное убежище, например глубокая пещера.
В проекте Роберта Зубрина “Марс-Директ”, над которым он работает вот уже несколько десятилетий, упоминаются помещения с кирпичными сводами, в возведении которых были так искусны еще древние римляне. Кирпич можно делать на Марсе из реголита. Несколько сводчатых строений, расположенных бок о бок, стали бы отличным укрытием и от марсианского холода, и от радиации, особенно если дополнительно покрыть их сверху слоем реголита футов в десять толщиной.
Сторонники колонизации Марса также заявляют, что колонисты смогли бы приспособить распространенные на Красной планете минералы для производства пластмасс, используемых в строительстве, а также добывать железо, медь и, возможно, даже производить сталь. Теоретически эти планы довольно хорошо продуманы, но они требуют невероятного количества энергии и специализированного оборудования. Зубрин предлагает использовать для перемещения огромного количества чрезвычайно твердого мерзлого реголита небольшие грузовики с бульдозерными отвалами.
Стратегии создания укрытий будут развиваться и совершенствоваться по мере накопления опыта. На протяжении всей человеческой истории люди блестяще приспосабливались к окружающей среде и использовали природные материалы для построения подходящего жилья для конкретных условий. Так будет и на Марсе, но первым поселенцам, возможно, придется поначалу довольствоваться пещерами, естественными разломами или лавовыми трубками, которые обеспечат надежную защиту от радиации. В конце концов, когда Марс пройдет процесс терраформирования и станет больше похож на Землю, угроза радиации уменьшится по мере увеличения плотности атмосферы.
Одежда также должна сыграть определенную роль в защите колонистов от радиации и холода. Кроме того, существует специфическая для Марса проблема, которую можно решить только с помощью одежды: недостаток атмосферного давления. На Земле мы живем под толстым слоем атмосферы. Вытяните руку и представьте, что на каждый квадратный дюйм вашей кожи сейчас давит воздушный столб, уходящий на много миль вверх. На уровне моря давление воздуха равно 14,7 фунта на квадратный дюйм. Наши тела адаптированы к постоянному давлению и противодействуют ему. На Марсе, где атмосферное давление составляет менее одной сотой от земного, человеку не протянуть долго без скафандра, который будет уравновешивать внутреннее давление тела. В отличие от воды, кислорода, пищи и даже жилья, единственным решением проблемы давления является постоянное ношение скафандра – если только мы не предпочтем жить в камере с искусственно поддерживаемым давлением.
Профессор астронавтики Массачусетского технологического института Дава Ньюман сейчас разрабатывает концепцию гибкого, легкого негерметизированного скафандра, предназначенного для передвижений по планете. Профессор Ньюман утверждает, что “с точки зрения физиологии необходимо обеспечить телу всего лишь около трети атмосферного давления Земли”, что составляет меньше пяти фунтов на квадратный дюйм.
Ее скафандры больше похожи на повседневную одежду, чем на громоздкую защитную капсулу. При изготовлении этой “второй кожи” – скафандра “Биосьют” – она использует полимеры и сплавы с эффектом запоминания формы, позволяющие создать защитный костюм, который будет более гибким и менее громоздким, чем современные скафандры, представляющие из себя просто капсулы с искусственно поддерживаемым внутри атмосферным давлением.
Для увеличения мобильности Ньюман предлагает не снабжать костюм излишней радиационной защитой.
“Я не хочу добавлять в скафандр слишком много слоев, потому что по-настоящему надежный щит будет чересчур массивным и тяжелым. Нужна ли нам защита от радиации? Несомненно. Но в самом костюме ее, возможно, почти не потребуется”, поскольку астронавты будут проводить большую часть времени в защищенных марсоходах или в экранированных помещениях.
“К тому времени, как мы отправим людей на Марс, – говорит Ньюман, – мы уже будем знакомы с тамошней радиационной обстановкой благодаря множеству марсоходов и орбитальных станций, которые летали туда на протяжении последних десятилетий”.
Все эти сложности можно свести к одному главному вопросу, который встанет перед человеком на Марсе: как же все-таки выжить в столь враждебной среде? Ответ заключается в стратегиях повышения температуры на планете, а это позволит увеличить плотность атмосферы. Коротко говоря, нам придется переделать всю планету, чтобы она стала более похожей на Землю. Этот процесс называется терраформированием, и для его завершения, вероятно, потребуются столетия.
Но это возможно, и мы это сделаем.
7. Как сделать Марс похожим на Землю