ДНК особенно близко связана с весьма оригинальным разделом математики под названием «закон Ципфа», феноменом, который впервые описал не математик, а лингвист. Джордж Кингсли Ципф происходил из солидного немецкого рода (его семья управляла пивоварнями в Германии) и в конце концов добился должности профессора немецкого языка в Гарвардском университете. Несмотря на свою любовь к языку, Ципф не был библиофилом и, в отличие от своих коллег, проживал за Бостоном на семиакровой ферме с виноградником, свинарником и курятником, хотя особо хозяйством и не занимался. В дневное время он в основном отсыпался, так как большинство ночей проводил, штудируя библиотечные книги и изучая статистические закономерности языков.
Один из коллег как-то сказал про Ципфа, что тот «может ощипать прекрасную розу, чтобы сосчитать ее лепестки». С литературой Ципф обходился столь же бесцеремонно. Будучи студентом, он взялся за «Улисса» Джойса, и главное, что он вынес оттуда, – роман состоит из 260 430 слов, 29 899 из которых различны. Так же Ципф препарировал «Беовульфа», Гомера, тексты китайской литературы и творчество римского драматурга Плавта. Подсчитывая слова в каждом из произведений, он открыл закон Ципфа. Он гласит, что наиболее распространенное слово в языке встречается примерно вдвое чаще, чем второе по распространенности, примерно втрое чаще, чем третье, в сто раз чаще, чем сотое по распространенности, и т. д. В английском языке слово «the» составляет примерно 7 % от всех слов, «of» – примерно половину от этого, «a» – треть от этого и т. д., вплоть до экзотических слов типа «бустрофедон». Такое распределение соблюдается во всех языках – от санскрита и этрусского до современных хинди, испанского или русского (эти языки Ципф анализировал по прейскурантам каталогов от компании «Сирс»). Закон Ципфа действует даже по отношению к искусственным языкам.
Уже после смерти Ципфа в 1950 году ученые обнаружили свидетельства того, что его закон соблюдается отнюдь не только в языке. Его также можно проследить: в музыке (подробнее об этом расскажем чуть позже), списках городов по численности населения, распределении доходов, массовом вымирании живых существ, магнитудах землетрясений, соотношении различных цветов в картинах или мультфильмах и т. д. В каждом случае самый большой или самый распространенный из элементов был вдвое больше/распространеннее второго в списке, втрое – третьего и т. п. Внезапная популярность этой теории ожидаемо привела и к обратной реакции, особенно среди лингвистов, которые часто ставят под сомнение само существование этого закона[18]. В то же время многие другие специалисты защищают этот закон, так как он видится корректным – частота слов не кажется случайной – и, опытным путем, описывает языки со сверхъестественной точностью. Даже «язык» ДНК.
Конечно, соблюдение закона Ципфа в случае с ДНК на первый взгляд не кажется очевидным, особенно для носителей западноевропейских языков. В отличие от большинства языков ДНК не имеет очевидных пробелов, помогающих отличать каждое слово. Это скорее напоминает тексты древних рукописей, без каких-либо пробелов, пауз и без единого знака препинания, бесконечные строки букв. Можно предположить, что триплеты, состоящие из А, Ц, Г и Т, которые кодируют аминокислоты, могут выступать в качестве «слов», но их соотношение совсем не похоже на ципфианское. Чтобы найти действие закона Ципфа, ученым пришлось обратить внимание на группы триплетов, и в этих поисках некоторые специалисты обратились к необычным помощникам: китайским поисковым системам. Китайский язык создает сложные слова путем связи соседних символов. Так, если в китайском тексте написано АБВГ, поисковые системы могут выступать своеобразным раздвижным окном, в котором помещаются найденные значимые отрывки: сначала АБ, БВ и ВГ, затем АБВ и БВГ. Использование принципа «раздвижного окна» оказалось неплохой стратегией для поиска значимых отрывков ДНК. Оказалось, что, в каком-то смысле, ДНК выглядит даже более ципфианской, чем язык, в группах, каждая из которых насчитывает до двадцати оснований. В общем, возможно, что наиболее значимой единицей для ДНК может быть не триплет, а четыре триплета, работающих сообща, – додекаэдрный мотив.
Выражение ДНК и ее трансляция в белки также подчиняются закону Ципфа. Как и распространенные слова, некоторые гены в каждой клетке появляются снова и снова, в то время как большинство генов вряд ли примут участие в конверсии. На протяжении веков клетки учились полагаться на эти общие белки все в большей и большей степени, и наиболее распространенные из них появлялись вдвое, втрое, вчетверо раз чаще, чем белки, следующие по популярности. Честно говоря, многие ученые хмыкают, что эти ципфианские фигуры вовсе ничего не значат; но другие специалисты говорят, что уже самое время признать: ДНК не только аналогична языку, но и реально функционирует, как язык.
И не только язык: ДНК обладает теми же ципфианскими свойствами, что и музыка. Возьмем тональность какого-нибудь музыкального отрывка, например до мажор, и убедимся, что определенные ноты там встречаются чаще остальных. Ципф действительно как-то исследовал преобладание тех или иных нот у Моцарта, Шопена, Ирвинга Берлина и Джерома Керна – и (внимание!) нашел ципфианское распределение! Позже исследователи подтвердили справедливость этих выводов и в других музыкальных жанрах, от Россини до Ramones, и обнаружили подобные пропорции не только во встречаемости нот, но и в тембре, и в громкости звука.
Однако если ДНК демонстрирует ципфианские тенденции, можно ли сказать, что цепочки организованы в своего рода партитуру? Музыкантам на практике удалось перевести А-Ц-Г-Т последовательность серотонина – химической составляющей мозга – в небольшие песенки, заменяя четыре символа ДНК нотами: ля (А), до (С), соль (G) и, поскольку буква T никакой ноте не соответствует, ми (Е). Другие музыканты составляли ДНК-мелодии, присваивая ноты звукоряда определенным аминокислотам, которые встречаются чаще остальных: это привело к появлению более сложных и приятных звуков. Второй метод укрепил идею, что ДНК, как во многом и музыка, лишь частично представляет собой строгую последовательность «нот». Она также определяется мотивами и темами, показывает, как часто появляются определенные последовательности и хорошо ли они взаимодействуют. Один биолог даже доказывал, что музыка – это природный посредник в изучении того, как комбинируются частицы генома, с тех пор как люди обзавелись четким слухом, чтобы улавливать, как фразы сообща действуют в музыке.
Нечто еще более интересное произошло, когда двое ученых, вместо того чтобы превращать последовательность ДНК в музыку, решили осуществить обратный процесс и перевели ноты ноктюрна Шопена в ДНК. Итогом опыта стала последовательность, «поразительно похожая» на часть гена РНК-полимеразы. Эта полимераза, белок, не меняющийся на протяжении всей жизни организма, и есть то, с помощью чего из ДНК строится РНК. А это, если посмотреть внимательнее, обозначает, что ноктюрн копирует весь жизненный цикл. Смотрите сами: полимераза использует ДНК для построения РНК. РНК, в свою очередь, строит сложные белки. Эти белки образовывают клетки, а из клеток происходят люди – такие, как Шопен. Композитор выполняет свою работу – создает гармоничную музыку, которая завершает цикл, кодируя ДНК на постройку полимеразы. Так музыковедение обобщает всю онтологию.
Является ли это открытие случайностью? Не совсем. Ученые утверждают, что впервые гены появились в ДНК не случайным образом, по какому-нибудь старому участку хромосомы. Вместо этого они начали дублироваться сразу в виде повторяющихся фраз, десятка-другого оснований ДНК, дублированных снова и снова. Эти участки функционируют как основная музыкальная тема, куда композитор добавляет всякие приятные излишества, побочные мелодии, с помощью которых создает приятно звучащие вариации на основе оригинала. Продолжая оперировать этими понятиями, заметим, что гены с самого начала имеют определенную «мелодию», на основе которой они и построены.
Люди давно хотели связать музыку с какими-то более глубокими, более грандиозными природными процессами. В частности, астрономы – начиная от древнегреческих и заканчивая Кеплером – верили, что небесный путь планет проходит через рай земной и что планеты создали безумно красивую музыку небесных сфер – гимн во славу творения. И оказалось, что универсальная музыка существует на самом деле, только гораздо ближе, чем мы себе представляли, – в нашей ДНК.
Генетика и лингвистика связаны не только законом Ципфа, но еще глубже. Мендель, до того как стать монахом, пробовал себя в лингвистике, в том числе пытался вывести точный математический закон по поводу того, как немецкие фамильные суффиксы (такие, как «-манн» или «-бауэр») скрещиваются с другими именами и воспроизводят себя в каждом поколении (звучит знакомо, не правда ли?) И, черт возьми, сейчас генетики не могут даже говорить о своей работе безо всех этих терминов, позаимствованных из изучения языков. У ДНК есть синонимы, переводы, пунктуация, префиксы и суффиксы. Мутации с изменением смысла (с заменой аминокислот) и с утратой смысла (с вмешательством стоп-кодонов) – это, как правило, «опечатки», а мутации, связанные со сдвигом рамки считывания (искажающие смысл триплетов) – это старомодные ошибки, связанные с нарушением работы типографии. В генетике даже есть свои грамматика и синтаксис: правила для комбинирования «слов» из аминокислот и сложения белковых «предложений», которые может прочитать клетка.
Более конкретно говоря, генетические грамматика и синтаксис задают правила того, как клетка должна образовывать рабочий белок из цепочки аминокислот. Белки должны быть организованы в компактные формы, перед тем как они начнут работать, и если форма будет неправильной, то к работе они тоже не приступят. Правильная синтаксическая и грамматическая «укладка» – важная часть общения на языке ДНК. Тем не менее общение требует большего, чем правильная грамматика и синтаксис; белковая фраза должна что-то значить для клетки. Как ни странно, такие фразы могут быть синтаксически и грамматически безупречными, но не иметь никакого биологического смысла. Понять, что это значит, поможет обращение к словам лингвиста Ноама Хомского. Он пытался доказать независимость синтаксиса от смысла высказывания в человеческой речи. Его пример звучал как «бесцветные зеленые идеи разъяренно спят». О Хомском можно думать всякое, но это предложение – одна из самых замечательных фраз, когда-либо произнесенных. В нем нет никакого буквального смысла. Однако поскольку оно содержит реальные слова, и его синтаксис с грамматикой также корректны, мы можем проследить его смысл. Это совсем не бессмыслица.
Таким же образом мутации ДНК могут привести к появлению случайных аминокислотных «слов» или «фраз», и клетки автоматически соберутся в новую цепь, совершенно синтаксическим способом, основанным на физике и химии. Однако любые изменения слов могут привести к изменению как формы, так и содержания всего предложения, и от этого результата зависит весь смысл. Иногда новая белковая фраза содержит лишь небольшую помарку, маленькую поэтическую вольность, которую клетка, поработав, может исправить. Иногда же изменения (такие, как фреймшифт-мутации[19]) так искажает предложение, что оно начинает выглядеть как случайный набор символов (например, #$%^&@!), которыми обозначаются бранные слова героев комиксов. Клетка от этого заболевает и умирает. Но нередко случается и так, что клетка читает белковое предложение, захламленное всякой бессмыслицей… однако, как следует вникнув в такую неразбериху, все-таки находит в ней рациональное зерно! Совершенно неожиданно возникает нечто чудесное, вроде кэрролловских «хливких шорьков» или загадочного столового прибора[20] Эдварда Лира. Это одна из редких полезных мутаций, и благодаря таким удачным моментам эволюция и продвигается вперед[21].
Благодаря четким параллелям между строением ДНК и языка ученые могут анализировать литературные произведения и геномные «тексты», используя одни и те же инструменты. Эти инструменты кажутся особенно перспективными для изучения спорных текстов, чье авторство или биологическое происхождение точно не определено. Литературоведы, как правило, сравнивают текст с отрывком из другого произведения, чье авторство известно, и делают выводы, одинаковы ли их стиль и тон. Иногда применяется другой метод: систематизация и подсчет слов, которые используются в тексте. Оба подхода нельзя назвать совершенными: первый слишком субъективен, а второй – слишком безлик. В случае с ДНК сравнение спорных геномов часто включает соотнесение с несколькими десятками ключевых генов и поиски малейших различий. Но эта технология потерпела неудачу, причем в случаях с самыми разными биологическими видами. Причина провала в том, что различий можно найти чрезвычайно много, и непонятно, какие из них по-настоящему важны. Будучи сосредоточенной исключительно на генах, эта техника игнорирует полосы регуляторной ДНК, из которой гены выпадают.
Чтобы избежать этих проблем, ученые из Калифорнийского университета в Беркли в 2009 году разработали программное обеспечение, с помощью которого «окна» скользят вдоль цепочки символов в поисках сходств и образцов. В качестве эксперимента ученые таким образом проанализировали геномы млекопитающих и тексты нескольких десятков книг, таких как «Питер Пэн», «Книга Мормона» и «Государство» Платона. Было обнаружено, что одно и то же программное обеспечение способно, с одной стороны, классифицировать ДНК различных видов млекопитающих, а с другой – классифицировать книги по жанрам с идеальной точностью. Обратившись к спорным текстам, ученые погрузились в изучение постоянно вызывающего споры вопроса о том, получил ли Шекспир достаточно хорошее образование для того, чтобы написать свои пьесы. И программа показала, что классик действительно написал драму «Два знатных родича» – пьесу, авторство которой постоянно подвергалось сомнению, – но не написал «Перикла», другую пьесу спорного авторства. Затем команда из Беркли изучила геномы вирусов и архебактерий, самых старых и в массе своей чужеродных для нас форм жизни. Этот анализ выявил новые связи между этими организмами и другими микробами, в результате были выдвинуты новые предложения по их классификации. Из-за огромного объема данных анализ геномов мог получиться весьма глубоким: в течение года 320 компьютеров занимались только тем, что сканировали микробы и архебактерии. Однако анализ этих геномов позволил ученым выйти за рамки обычного пошагового сравнения генов и понять полную естественную историю этих биологических видов.
Расшифровка полной геномной истории, однако, требует более сложных навыков, чем работа с другими текстами. Расшифровка ДНК требует чтения и слева направо, и справа налево – так называемый бустрофедон. В противном случае можно пропустить важные палиндромы и морднилапы: соответственно слова, которые одинаково читаются с обеих сторон или же приобретают другой смысл при прочтении с конца.
Один из самых древних известных палиндромов – высеченный на стене в Помпеях (и других городах) магический квадрат, слова в котором читаются сверху вниз, снизу вверх, справа налево и слева направо:
S-A-T-O-R
A-R-E-P-O
T-E-N-E-T
O-P-E-R-A
R-O-T-A-S[22]
Насчитывая примерно две тысячи лет от роду, данная надпись на порядок младше, чем по-настоящему древние палиндромы в ДНК, которая создала целых два вида палиндромов. Во-первых, это фразы традиционного («А роза упала на лапу Азора») типа: например, Г-А-Т-Т-А-Ц-А-Т-Т-А-Г. Однако поскольку АТ и ЦГ – это парные основания, ДНК образовывает и другие, менее явные палиндромы, которые спереди читаются по одной нити, а сзади – по другой. Сравните нить Ц-Т-А-Г-Ц-Т-А-Г, затем представьте основания, которые должны появиться на другой нити: Ц-А-Т-Ц-Г-А-Т-Ц. Это совершенные палиндромы.
Безобидный на вид, этот второй тип палиндрома может нагнать страху на любого микроба. Давным-давно многие микробы выделяли специальные белки (под названием «ферменты рестрикции»), которые могли резать ДНК подобно кусачкам. И по какой-то причине эти ферменты могут разрезать ДНК только в ее симметричных, палиндромных участках. Подобные надрезы служат и полезным целям: к примеру, выбрасывают из спирали основания, пораженные радиацией, или снимают напряжение в сильно запутанной ДНК. Однако непослушные микробы в основном использовали эти белки, чтобы воевать друг с другом и перерабатывать чужой генетический материал. В результате микробы методом проб и ошибок научились избегать даже неочевидных палиндромов.
Впрочем, высшие существа, к которым относимся мы сами, тоже не то чтобы толерантны к палиндромам. Снова рассмотрим Ц-Т-А-Г-Ц-Т-А-Г и Г-А-Т-Ц-Г-А-Т-Ц. Отметим, что начало каждого из палиндромных сегментов может образовывать пары оснований со своей второй половиной: первая буква с последней (Ц…Г), вторая с предпоследней (А…Т) и т. д. Но для того, чтобы сформировать эти внутренние связи, одна сторона нити ДНК должна абстрагироваться от другой и выгнуться вверх, образовав выступ. Такая структура (так называемая шпилька) благодаря симметричному строению может образовывать ДНК-палиндром любой длины. Как и следовало ожидать, «шпильки» могут разрушать ДНК так же, как и узлы: разрушая клеточные механизмы.
Палиндромы могут возникнуть в ДНК двумя способами. Самые короткие ДНК-палиндромы, которые становятся причиной появления «шпилек», возникают случайно, когда А, Ц, Г и Т организуются симметрично. Более длинные палиндромы также перетряхивают наши хромосомы, и многие из них – особенно те, которые наносят серьезный ущерб маленькой Y-хромосоме – возможно, возникают в результате специфического двухступенчатого процесса. По различным причинам хромосомы иногда случайным образом дублируют отрезки ДНК, а потом вставляют вторую копию куда-нибудь вниз по линии. Также хромосомы могут (иногда после разрыва сразу двух нитей) разворачивать отрезок ДНК на 180 градусов и прикреплять их задом наперед. Действуя в тандеме, дупликация и инверсия создают палиндром.
Большинство хромосом, однако, препятствуют появлению длинных палиндромов или по крайней мере стараются не допускать инверсий, которые они создают. Инверсия может разрушить или «отключить» гены, оставив хромосому неэффективной. Также инверсии могут резко уменьшить шансы хромосомы на кроссинговер – а это огромная потеря. Кроссинговер (когда одинаковые хромосомы пересекаются и обмениваются сегментами) позволяет хромосоме поменять свой генетический материал, приобрести лучшие версии, или версии, которые лучше работают вместе и делают хромосому более жизнеспособной. Не менее важно то, что хромосомы пользуются преимуществами кроссинговера, чтобы выполнить проверку контроля качества: они могут выстроиться в две шеренги, «глаза в глаза» и заменить мутировавшие гены немутировавшими. Однако хромосома может пересекаться только с хромосомой, которая выглядит точно так же. Если же партнер выглядит подозрительно не похоже, хромосома опасается получить болезнетворную ДНК и отказывается от обмена. Инверсии на этом фоне выглядят чертовски подозрительно, поэтому в подобных обстоятельствах хромосомы с палиндромами просто игнорируются.
У Y-хромосомы нетерпимость к палиндромам проявилась с самого начала. Давным-давно, еще до того, как млекопитающие отделились от рептилий, Х и Y были парными хромосомами и пересекались часто. Затем, 300 миллионов лет назад, один из генов хромосомы Y мутировал и превратился в «главный выключатель», заставляющий яички развиваться. До этого, вероятно, пол животного зависел от температуры, при которой самка высиживает яйца – схожая не имеющая отношения к генетике система определяет пол черепах и крокодилов. Благодаря этому изменению Y стала «мужской» хромосомой и, пройдя через разнообразные процессы, сконцентрировала другие мужские гены, преимущественно связанные с производством сперматозоидов. Как следствие, Х и Y стали выглядеть по-разному и, соответственно, уклоняться от кроссинговера. Хромосома Y не захотела рисковать своими генами, которые могла переписать злобная Х-хромосома, в то время как Х не хочет приобретать грубые гены хромосомы-мужлана, которые могут повредить женским ХХ-организмам.
После того как кроссинговер замедлился, Y-хромосома стала более терпимой к инверсиям, как коротким, так и длинным. Фактически она в своей истории претерпела четыре крупные инверсии, реально глобальные перестройки ДНК. Каждая из них создала много замечательных палиндромов – один из них сразу на три миллиона символов, но каждая вместе с тем приводила к тому, что кроссинговер с Х-хромосомой становился все тяжелее. В этом бы не было особого значения, если не учитывать, что кроссинговер позволяет хромосомам заменять злокачественные мутации. Х-хромосомы могут делать это в женских организмах с парой ХХ, но когда Y-хромосома потеряла своего партнера, злокачественные мутации начали накапливаться. И с появлением каждой новой мутации у клеток не было иного выбора, кроме как избавляться от Y-хромосомы и удалять мутировавшую ДНК. Результаты оказались неутешительны. Y-хромосома, когда-то имевшая внушительные размеры, потеряла почти все свои гены: из 1400 осталось чуть больше 20. При таком раскладе биологи поспешили записать «игреков» в доходяги. Похоже, что этим хромосомам суждено продолжать накапливать неблагополучные мутации и становиться короче и короче, пока эволюция не покончит с Y-хромосомами – и, возможно, в придачу и с мужчинами – совсем.
Палиндромы, однако, могут помиловать Y-хромосому. Шпильки в цепи ДНК – это плохо, но если Y-хромосома загнется в гигантскую шпильку, это может привести к тому, что два ее палиндрома – с тем же набором генов, но идущим в противоположном порядке – вступят в контакт. Это позволит Y-хромосоме проверяться на наличие мутаций и заменять проблемные участки. Это все равно что написать: «А роза упала на лапу Азора» на листе бумаги, сложить бумагу чтобы буквы двух половин совпали, а потом буква за буквой исправлять все расхождения. Нечто подобное около 600 раз повторяется при рождении каждого мальчика. «Складывание» также позволяет «игрекам» компенсировать недостаток половой хромосомы-партнера и «рекомбинировать» с самими собой, заменяя гены на протяженности одного участка генами из другой точки.
Это палиндромное исправление совершенно гениально. Даже можно сказать, слишком гениально. Система, которую Y-хромосома использует для того, чтобы сравнивать палиндромы, к сожалению, не «знает», какой из палиндромов мутировал, а какой – нет; она только может определить, что они не совпадают. Поэтому нередко Y-хромосома заменяет хороший ген плохим. Авторекомбинация также (внимание!) приводит к тому, что ДНК между палиндромами случайным образом удаляется. Такие ошибки редко приводят к смерти человека, но могут сделать его семя бесплодным. В общем, Y-хромосома может исчезнуть, если не сможет корректировать мутации наподобие этой; но то, что нужно для такой корректировки – палиндромы, может, так сказать, кастрировать хромосому.
И лингвистические, и математические свойства ДНК способствуют ее конечной цели: управлению данными. Клетки накапливают информацию и обмениваются ею друг с другом с помощью ДНК и РНК, и ученые уже привыкли говорить о программировании и обработке информации нуклеиновыми кислотами, будто бы генетика является отраслью криптографии или информатики.
И действительно, современная криптография в какой-то мере происходит из генетики. В 1915 году молодой генетик по имени Уильям Фридман окончил Корнелльский университет и присоединился к эксцентричному научному обществу, базировавшемуся в одной из деревень Иллинойса. Это общество могло похвастаться голландской ветряной мельницей, ручным медведем по имени Гамлет и маяком – последнее особенно забавно ввиду того, что дело происходило в доброй тысяче километров от побережья. Первым делом босс Фридмана поручил ему исследовать, как лунный свет влияет на гены пшеницы. Но благодаря полученным в университете знаниям по статистике молодой ученый вскоре оказался вовлечен в другой сумасбродный проект своего начальства[23]. Целью проекта было доказать то, что Фрэнсис Бэкон не только написал пьесы Шекспира, но и оставил на страницах Первого фолио[24] подсказки, свидетельствующие о своем авторстве. Подсказки включали в себя изменение формы отдельных букв.
Фридман воодушевился этим заданием – он полюбил работать с шифрами с тех самых пор, как в детве прочел «Золотого жука» Эдгара По – и доказал, что предполагавшиеся отсылки на Бэкона – это полная чушь. Он писал, что по тем же схемам дешифровки можно «доказать» что угодно: например, что «Юлия Цезаря» написал Теодор Рузвельт. Тем не менее Фридман заинтересовался генетикой как биологическим инструментом расшифровки кодов и после успешных попыток реальной дешифровки стал криптографом, работающим на правительство США. Основываясь на статистических знаниях, накопленных из генетики, Фридман вскоре сумел прочитать секретные телеграммы, которые в 1923 году спровоцировали так называемый скандал «Крышка заварника», связанный с получением взяток представителям власти. В начале 1940-х годов он приступил к расшифровке японских дипломатических кодов, включая десяток скандально известных депеш, отправленных из Японии в японское посольство в Вашингтоне и перехваченных 6 декабря 1941 года: в этих депешах говорилось о том, что война неминуема.
Фридман бросил генетику, потому что в первой четверти ХХ века (по крайней мере на фермах) генетикам приходилось слишком много времени просто сидеть вокруг и ждать, пока глупые звери начнут размножаться: это было больше похоже на животноводство, чем на научный анализ данных. Если бы Фридман родился поколением-двумя позже, он бы смог взглянуть на те же вещи совершенно иначе. К 1950-м годам биологи уже регулярно ссылаются на пары оснований А-Ц-Г-Т как на биологические «биты» и на генетику в целом как на код, который нужно взломать. Генетика окончательно превратилась в анализ данных и продолжала развиваться в этом направлении – в том числе благодаря работе более молодого последователя Уильяма Фридмена – инженера Клода Шеннона. Его работы охватывают как криптографию, так и генетику.
Ученые регулярно цитируют магистерскую диссертацию Шеннона, написанную 21-летним студентом Массачусетского технологического института в 1937 году: эта работа признается самой важной магистерской диссертацией в истории. В ней Шеннон изложил метод комбинирования электронных схем и элементарной логики для проведения математических операций. С помощью этого метода молодой ученый мог проектировать схемы для выполнения сложных вычислений, на которых основываются все цифровые цепи. Десять лет спустя Шеннон написал статью об использовании цифровых цепей для кодирования сообщений и более эффективной их передачи. Едва ли будет преувеличением сказать, что благодаря этим двум открытиям были с нуля созданы современные цифровые коммуникации.
Совершая судьбоносные открытия, Шеннон находил время и для других занятий. В своем офисе он любил жонглировать, ездить на одноколесном велосипеде, а порой делать и то и другое одновременно. Дома он постоянно возился со всяким хламом в подвале. Среди его прижизненных изобретений – фрисби с ракетным двигателем, палочки пого с моторчиком, машины для сборки кубика Рубика, механическая мышь по имени Тесей, выбирающаяся из лабиринтов, программа THROBAC, проводящая вычисления в римских цифрах, и «переносной компьютер» размером с пачку сигарет, предназначенный для того, чтобы срывать банк на рулетке[25].
Шеннон проявил интерес к генетике и в своей докторской диссертации, которую защитил в 1940 году. В то время биологи дорабатывали такой вопрос, как связь между генами и естественным отбором, но многих из них отпугнул большой объем статистики. Хотя позже Шеннон признавался, что в то время почти не разбирался в генетике, он погрузился в эту проблему. Он постарался сделать для генетики то, что уже сделал для электронных схем: свести все сложности к простым алгебраическим расчетам, в результате чего для любых вводных данных (генов в популяции) можно легко и быстро рассчитать результаты (какие гены будут успешно развиваться, а какие – исчезнут). Шеннон посвятил этой статье несколько месяцев, а потом, после защиты докторской, был окончательно соблазнен электроникой и больше никогда не возвращался к генетике. Впрочем, это неважно. Его новая работа послужила основой для информационной теории: настолько универсальной области знаний, что она и без непосредственного участия Шеннона начала активно применяться в генетике.
В соответствии с теорией информации Шеннон определяет, как передавать сообщения с наименьшим количеством ошибок – цель, которую реализовали биологи, аналогична разработке лучшего генетического года, минимизирующего количество ошибок в строении клетки. Кроме того, биологи приняли работы Шеннона об эффективности и избыточности различных языков. Как однажды подсчитал Шеннон, английский язык как минимум на 50 % является избыточным (бульварный роман Реймонда Чандлера, который он исследовал, и вовсе оказался избыточным на 75 %). Биологи также изучали эффективность, так как, согласно естественному отбору, эффективные организмы являются и более здоровыми. Соответственно, менее избыточная ДНК, по их выводам, приведет к тому, что клетка будет накапливать больше информации и быстрее ее обрабатывать, что является серьезным преимуществом. Однако членам клуба галстуков РНК известно, что ДНК в этом отношении более чем неоптимальна. Целых шесть триплетов А-Ц-Г-Т для одной-единственной аминокислоты – чрезвычайная избыточность! Если бы клетки экономили и использовали меньшее число триплетов для аминокислоты, они бы могли собирать больше аминокислот, чем канонические 20, что открыло бы новые горизонты молекулярной эволюции. Ученые в действительности доказали, что должным образом подготовленные клетки в лабораторных условиях могут использовать до 50 аминокислот.
Однако если у избыточности есть недостатки, то, как указывал Шеннон, должны быть и достоинства. Некоторая избыточность языка гарантирует, что мы сможем поддержать беседу, даже если некоторые слоги или целые слова будут утрачены. Блшнств лдй бз прблм мжт прчт прдлжн с прпснн бкв. Другими словами, если слишком большая избыточность отнимает время и энергию, небольшая – препятствует появлению ошибок. Применительно к ДНК избыточность тоже имеет смысл: это делает менее вероятным появление неверных аминокислот в результате мутаций. Более того, биологи подсчитали, что даже если мутация внедрит в организм неправильную аминокислоту, мать-природа подтасует так, что в любом случае шансы на то, чтобы новая аминокислота имела те же физические и химические характеристики и, следовательно, сложилась надлежащим образом, увеличатся. Это можно назвать аминокислотой-синонимом, так как клетки могут сохранить смысл «предложения».
Избыточность может иметь место и за пределами генов. Некодирующая ДНК – длинная последовательность ДНК между генами – содержит некоторые слишком избыточные отрезки символов, которые выглядят так, как будто кто-то не глядя провел пальцами по клавиатуре природы. Хотя эти и прочие участки кажутся мусором, ученым неизвестно, действительно ли такие последовательности не представляют никакой ценности. Один ученый задумался: «Геном – это низкопробный роман, в котором можно вырвать сто страниц, и ничего не изменится, или же он больше похож на произведение Хемингуэя, где вся сюжетная линия может потеряться из-за утраты одной страницы?» Однако в ходе исследований мусорной ДНК, в которых применялись теоремы Шеннона, обнаружилось, что их избыточность во многом похожа на избыточность в языке – это может значить, что некодирующая ДНК имеет еще не открытые лингвистические возможности.
Все это поразило бы Шеннона и Фридмана. Но, пожалуй, самое примечательное здесь то, что помимо прочих разумных функций ДНК также подсказала нам идеи, которые помогли изобрести мощнейшие на сегодня инструменты обработки информации. В 1920-х годах выдающийся математик Давид Гильберт пытался определить, существуют ли какие-либо механические процессы или алгоритмы, позволяющие доказывать теоремы автоматически, почти без размышлений. Гильберт при этом представлял людей, включающихся в этот процесс с карандашом и бумагой в руках. Однако в 1936 году математик (и любитель мастерить фигурки из бумаги) Алан Тьюринг набросал эскиз машины, способной выполнять такую работу. Машина Тьюринга выглядела очень просто: всего лишь длинная магнитофонная лента и устройство, проматывающее и маркирующее ленту, – но теоретически могла рассчитать ответ на каждую имеющую решение задачу, независимо от ее сложности, разбивая задачу на мелкие логичные ходы. Машина Тьюринга вдохновила многих мыслителей, в том числе и Клода Шеннона. Вскоре инженеры начали конструировать работающие модели – мы называем их компьютерами – с длинными магнитными лентами и записывающими головками, во многом похожие на модели Тьюринга.
Биологи, впрочем, знают, что машины Тьюринга практически ничем не напоминают механизмы, которые используются клетками для копирования, маркировки и чтения длинных цепочек ДНК и РНК. Эти тьюринговские биомашины работают в каждой живой клетке, ежесекундно решают любые, самые сложные задачи. Фактически ДНК работает лучше, чем машины Тьюринга: механизмы компьютера нуждаются в программном обеспечении; ДНК же – это и «хард», и «софт» одновременно, они и накапливают информацию, и выполняют команды. Они даже содержат инструкции копировать себя как можно чаще.
И это еще не все. Даже если бы ДНК была способна лишь на то, о чем мы уже узнали – раз за разом создавать свои точные копии, вытягивать в нити РНК и белки, выдерживать повреждения от ядерных взрывов, кодировать слова и фразы, даже высвистывать популярные мелодии, – уже это позволило бы ей считаться чудесной молекулой, одной из лучших. Но помимо всех этих достоинств ДНК отличается способностью строить предметы в миллиарды раз больше себя самой – и запускать их в путешествие по всему земному шару. ДНК даже может сохранять «путевые дневники», в которых указано, что каждое из ее созданий видело и делало в своей жизни, и сейчас, наконец, несколько особо удачливых существ, изучивших основы того, как работает ДНК, могут читать эти истории.
Часть II. Наше зоологическое прошлое
Глава 5. Реабилитация ДНК
Почти сразу после прочтения одной статьи сестра Мириам Майкл Стимсон поняла, что работа ее жизни, стоившая десяти лет упорного труда, потерпела фиаско. В течение 1940-х годов эта монахиня-доминиканка, постоянно носившая черно-белую рясу с капюшоном, упорно и продуктивно делала карьеру ученого-исследователя. В стенах небольших религиозных колледжей в Мичигане и Огайо она проводила опыты с заживляющими раны гормонами и даже помогла в создании известного крема от геморроя (Preparation H), прежде чем найти свое призвание в изучении оснований ДНК.
В этой области она прогрессировала очень быстро и вскоре опубликовала открытие, доказав, что основания ДНК по сути своей очень изменчивы и способны ежесекундно менять форму. Идея была очень проста, но вместе с тем имела серьезные последствия для понимания работы ДНК. Однако в 1951 году двое коллег, отрицательно относившихся к теории сестры Мириам, опровергли ее труд в совместной работе, назвав выводы ложными и «незначительными». Это было крайне унизительно. Как и всякая женщина-ученый того времени, сестра Мириам и без того несла тяжкое бремя: ей часто приходилось выслушивать снисходительные слова коллег-мужчин, которые были неизбежны, даже если речь шла о ее собственных разработках. Публичное унижение, подобное этой статье, разрушило добытую с большим трудом репутацию сестры Мириам так же легко и необратимо, как раскручиваются нити ДНК.
Это, конечно, не могло послужить большим утешением, но в течение нескольких последующих лет стало очевидным, что неудача сестры Мириам стала важным шагом для совершения главного биологического открытия ХХ века – двойной спирали ДНК Уотсона и Крика. Джеймс Уотсон и Фрэнсис Крик были необычными биологами для своего времени, так как чрезвычайно редко проводили опыты самостоятельно, попросту синтезируя труды других специалистов. Даже сверхтеоретик Дарвин держал целый питомник и заслужил репутацию эксперта во всех вопросах, связанных с усоногими раками, включая их сексуальные отношения. Склонность к «собирательству» порой доставляла Уотсону и Крику проблемы – самый известный подобный случай связан с Розалиндой Франклин, которая открыла важный способ подсвечивать двойную спираль рентгеновскими лучами. Однако Уотсон и Крик построили свой фундаментальный труд на десятках работ других, менее известных ученых, в том числе и сестры Мириам. Правда, ее работа не была самым важным трудом в этой области. В самом деле, ее ошибки сохранили многое из ранних, неправильных представлений о ДНК. Впрочем, как и в случае с Томасом Хантом Морганом, для нее много значило предъявление доказательств того, что кто-то столкнулся с ее ошибками. И, в отличие от многих других ученых, потерпевших крах, сестра Мириам оказалась достаточно смиренной – или достаточно сообразительной – чтобы вернуться в лабораторию и в итоге внести свою лепту в открытие двойной спирали.
В середине ХХ века биологи самыми разными способами пытались решить все ту же задачу – как же выглядит ДНК? – которую решал и Фридрих Мишер, ученый, первым открывший эту необычную смесь сахаров, фосфатов и кольцевых оснований. Наиболее досадным было то, что никто не мог определить, как длинные нити ДНК могут цепляться и сливаться друг с другом. Сейчас нам известно, что цепочки ДНК соединяются автоматически: А совмещается с Т, а Г с Ц, но в 1950-х годах этого еще никто не знал. Все думали, что символы объединяются в пары случайным образом. Поэтому ученым приходилось размещать каждую нескладную последовательность символов внутри своих моделей ДНК: порой приходилось соединять друг с другом и нескладные А с Г, и изящные Ц и Т. Ученые быстро поняли, что вне зависимости от того, как поворачивать или сжимать эти неправильные пары оснований, они будут образовывать вмятины и выпуклости, а не спирали ожидаемой обтекаемой формы. Уотсон и Крик даже попытались послать к черту этот биомолекулярный тетрис и потратили несколько месяцев, возясь с моделью ДНК, вывернутой наизнанку (и имеющей три цепочки)[26], в которой основания были размещены лишь бы как – просто чтобы поскорее сложить картинку.
Сестре Мириам удалось решить важнейшую часть задачи по определению структуры ДНК: определить точную форму оснований. То, что монахиня работает в технической области, кажется необычным и в наши дни, однако Мириам впоследствии вспоминала, что именно монахини составляли большую часть женщин-ученых, с которыми ей довелось встречаться на конференциях и съездах. Женщины в то время, как правило, отказывались от карьеры после замужества, в то время как незамужние работающие женщины (вроде Розалинды Франклин) вызывали подозрение, а то и становились мишенью для насмешек, а платили им порой так мало, что это не позволяло сводить концы с концами. При этом католические монахини, незамужние, но имеющие безупречную репутацию жительниц спокойных обителей, имели финансовую поддержку и были достаточно независимы для того, чтобы заниматься наукой.
Впрочем, нельзя сказать, что жизнь монахини была лишена проблем, как профессиональных, так и личных. Так же как Мендель – урожденный Иоанн, но Грегор в монашестве – Мириам Стимсон и ее товарки-новички приняли новые имена после прибытия в один из монастырей штата Мичиган в 1934 году. Мириам выбрала имя Мэри, но во время церемонии крещения архиепископ с ассистентом пропустили начало списка, поэтому большинство женщин были благословлены не под теми именами, которые выбрали. Никто не посмел возразить, и, поскольку для последней в списке Мириам не осталось имени, сообразительный архиепископ дал ей первое имя, которое пришло ему в голову: мужское имя Майкл. Монашество подразумевает брак с Христом, и поскольку Бог (или архиепископ) соединяет новобрачных раз и навсегда, монахини так и остались жить с неправильными именами.
Требования послушания стали еще более обременительными, когда сестра Мириам начала работать. Это очень осложнило ее научную карьеру. Вместо полноценной лаборатории она сумела выпросить у начальства лишь маленькую каморку, переделанную из ванной, и проводила опыты там. Причем и на это у нее было совсем немного времени: ей приходилось работать «коридорной сестрой», отвечающей за студенческое общежитие, а кроме того, брать полную педагогическую нагрузку. Также она была обязана даже в лаборатории носить рясу с громадным капотом вроде капюшона кобры: это ничуть не способствовало проведению сложных экспериментов. Она даже не могла водить машину, потому что капот закрывал ей обзор по сторонам. Тем не менее Мириам была по-настоящему умна – друзья прозвали ее «М2», намекая на Менделя – и, как и у Менделя, ее монашеский орден поддерживал и вдохновлял ее любовь к науке. Правда, они делали это в том числе и для того, чтобы США получили шанс побить безбожных азиатских коммунистов, однако и для того, чтобы понять, как Бог творит живых существ и позаботиться обо всех его творениях. Действительно, Мириам и ее коллеги привлекались к производству лекарств (отсюда и работа над Preparation H). Изучение ДНК было естественным продолжением этих трудов, и Мириам Стимсон, казалось, добилась успеха в конце 1940-х годов, определив форму оснований ДНК с помощью изучения их составных частей.
Аденин, тимин, цитозин и гуанин состоят в основном из атомов углерода, азота и кислорода, однако содержат и водород, что все усложняет. Атомы водорода находятся на периферии молекул, они самые легкие и наиболее подверженные воздействию других атомов, поэтому могут занимать разные позиции, придавая основаниям различную форму. Эти различия не играют большой роли – молекула остается практически одной и той же, однако позиция атома водорода имеет значение для соединения нитей двойной спирали ДНК.
Атом водорода содержит один электрон, который вращается вокруг одного протона. Но водород обычно отделяет эту свою отрицательную частицу от внутренней, кольцевой поверхности основания ДНК. Поэтому он сохраняет способность образовывать новые связи. Нити ДНК соединяются, сопоставляя позитивно заряженные части оснований одной нити с отрицательно заряженными частями оснований – другой нити. Негативные отрезки обычно концентрируются на кислороде и азоте, которые придерживают электроны. Эти водородные связи не так прочны, как обычные химические связи, но это, наоборот, отлично, так как клетки при необходимости могут легко освободить свою ДНК.
Водородные связи были широко распространены в природе, но их появление в ДНК специалисты начала 1950-х годов считали невозможным. Водородная связь требует идеального выравнивания положительно и отрицательно заряженных участков – примерно такого, какое наблюдается между А и Т, Г и Ц. Но снова никто не знал, что в пары объединяются определенные символы, – а в других комбинациях положительные и отрицательные заряды не выстраивались так безупречно. Исследования Сестры М2 и других специалистов впоследствии запутали эту картину. В рамках своей работы Мириам Стимсон помещала основания ДНК в растворы различной кислотности (чем выше кислотность, тем больше ионов водорода содержится в растворе). Мириам было известно, что растворенные основания и водород как-то взаимодействуют: когда она осветила раствор ультрафиолетом, основания пропускали свет по-разному, что указывает на изменение формы. Однако она, рискнув, предположила, что изменения обусловлены смещением атомов водорода и что это естественным образом происходит по всей длине ДНК. Если бы это оказалось правдой, исследователи ДНК вынуждены были бы рассматривать водородные связи не только для несовпадающих оснований, но и для многочисленных форм каждого из таких оснований. Позже Уотсон и Крик с раздражением вспоминали, что даже учебники того времени показывали расположение атомов водорода в основаниях ДНК как бог на душу положит, в зависимости от предрассудков и капризов автора. Это делало построение моделей практически невозможным.
Как только сестра Мириам опубликовала статьи со своей теорией «изменчивой» ДНК в конце 1940-х годов, она почувствовала, что ее статус в научном мире значительно возрос. Впрочем, кто высоко взлетает, тот низко падает. В 1951 году два лондонских ученых доказали, что кислотные и нейтральные растворы никуда не перемещают атомы водорода из ДНК-оснований. Вместо этого растворы или прикрепляли новые атомы водорода в нечетных местах, или избавлялись от уязвимых атомов. Другими словами, эксперименты Мириам позволяли получить искусственные, не природные основания. Ее работа оказалась бесполезной для получения каких-либо знаний, связанных с ДНК, и тайна формы ДНК-оснований осталась неразгаданной.
Несмотря на ошибочность выводов сестры Мириам, некоторые технологии экспериментов, которые она представила в своих исследованиях, оказались чертовски полезными. В 1949 году исследователь ДНК биолог Эрвин Чаргафф адаптировал метод ультрафиолетового анализа, открытый Мириам. Используя эту технику, Чаргафф определил, что ДНК содержит одинаковое количество А и Т, а также Ц и Г. Он так и не смог в полной мере воспользоваться этой идеей, но разболтал об этом чуть ли не каждому встречному коллеге. Сначала он планировал передать это открытие Лайнусу Полингу – главному сопернику Уотсона и Крика, но находившийся в круизе Полинг был раздражен тем, что отпуск может прерваться, и пропустил слова Чаргаффа мимо ушей. Более дальновидные Уотсон и Крик обратили внимание на Чаргаффа (хоть он и считал их молодыми глупцами) и благодаря его озарению наконец определили, что А соединяется с Т, а Ц с Г. Это была последняя из необходимых им подсказок, и, немного доработав идеи сестры Мириам, они открыли двойную спираль.
Но что насчет водородных связей? Открытию Уотсона и Крика пятьдесят лет пели осанну, но на самом деле их модель была основана на неаргументированном и даже весьма шатком предположении. Основания в этой модели плотно упакованы внутри двойной спирали – и соединены, вероятно, водородными связями – только если каждое основание имеет определенную специфическую форму, причем в единственном варианте. Однако после разгрома работы Мириам Стимсон никто не знал, что формирует основания ДНК в живых организмах.
Решив помочь коллегам на этот раз, сестра Мириам вернулась в лабораторию. После кислотно-ультрафиолетового фиаско она исследовала ДНК, используя свет с другого конца спектра – инфракрасное излучение. Стандартный способ исследовать вещество с помощью инфракрасных лучей включает в себя погружение в жидкость, но основания ДНК не всегда могут перемешиваться должным образом. Поэтому Мириам разработала способ смешивать ДНК с белым порошком – бромидом калия. Чтобы делать достаточно тонкие образцы, пригодные для изучения, команде Мириам пришлось позаимствовать оборудование у соседней корпорации «Крайслер». С помощью этого оборудования порошок формировался в «пилюли» диаметром примерно с таблетку аспирина, затем отправлялся в цех, где пилюли штамповали промышленным прессом: полученные диски имели толщину всего в один миллиметр. Вид заходящих в грязный заводской цех группы монахинь в рясах весьма забавлял работяг, но Мириам вспоминала, что рабочие подшучивали над ними с джентльменской учтивостью. В конце концов при поддержке военно-воздушных сил лаборатория обзавелась собственным прессом, так что Мириам теперь сама могла штамповать диски (студенты вспоминали, что их преподавательница держала пресс в нижнем положении так долго, что за это время можно было произнести две молитвы Богородице). Поскольку тонкие слои бромида калия невидимы для инфракрасных лучей, проходящее через таблетку излучение затрагивало лишь А, Ц, Г и Т. И в течение следующего десятилетия исследования с применением инфракрасных лучей и дисков (в совокупности с прочей работой) доказало правоту Уотсона и Крика: основания ДНК имеют лишь одну естественную форму, единственную, которая продуцирует водородную связь. С этой и только с этой точки зрения ученые могут сказать, что постигли структуру ДНК.
Конечно, понимание этой структуры – не конечная цель: впереди было еще много исследований. Но несмотря на это, М2 продолжала заниматься незаурядной работой: в 1953 году читала лекции в Сорбонне (став первой женщиной на такой работе после Марии Склодовской-Кюри) и пока была жива – Мириам Стинсон скончалась в 2002 году в возрасте 89 лет – ее научные амбиции постепенно иссякали. В либеральные шестидесятые она перестала носить рясу с клобуком (и научилась водить), но, не считая этого небольшого отступления от правил, она посвятила свою жизнь монашескому ордену и перестала делать опыты. Ее работы позволили другим ученым-первооткрывателям, среди которых были и две женщины, разгадать, как ДНК на самом деле участвует в построении красивой и сложной жизни[27].
История науки изобилует дублирующими друг друга открытиями. Естественный отбор, кислород, Нептун, пятна на солнце – каждое из этих открытий одновременно делали два, три, четыре специалиста. Историки продолжают спорить, почему так получается. Возможно, каждый случай – это невероятное совпадение, или один из первооткрывателей заимствует идеи другого. Вероятно, открытия были невозможны, пока обстоятельства не сложатся должным образом, и неизбежны – когда это произошло. Но вне зависимости от того, в какую из причин верите вы, научная синхронность остается фактом. Несколько команд почти дошли до идеи двойной спирали, а в 1963 году две группы ученых открыли другой важнейший аспект ДНК. Одна из этих групп использовала микроскопы, чтобы запечатлеть митохондрии: элементы в форме фасолины, производящие энергию внутри клетки. Вторая группа измельчала митохондрии и просеивала их через мембрану. Обе группы пришли к открытию, что митохондрии обладают собственным ДНК. Пытаясь обелить свою репутацию среди коллег в конце XIX века, Фридрих Мишер определил ядро как единственно возможный дом для ДНК, однако затем история в очередной раз его опровергла.
Некоторым открытиям способствуют исторические события: наука нуждается в бунтарях – типах, которые привыкли плыть против течения и могут рассмотреть благоприятные обстоятельства, на которые большинство из нас не обратит никакого внимания. Порой нам даже нужны особо неприятные бунтари – так как если бы они не высказывали провокационных мыслей, их теории не привлекли бы нашего внимания. Так обстояли дела и с Линн Маргулис. Большинство специалистов из середины 1960-х годов весьма примитивным образом объясняли происхождение митохондриальной ДНК (мтДНК): якобы клетки «одалживают» часть ДНК и никогда не получают ее назад. Но Маргулис на протяжении 20 лет, начиная с защиты докторской диссертации в 1965 году, продвигала свою идею о том, что митохондриальная ДНК ни в коей мере не является курьезом. Она увидела в этом доказательство более глобальной проблемы, доказательство того, что в жизни есть больше путей смешивания и развития, чем биологи-консерваторы могут себе представить.
Эндосимбиотическая теория Маргулис выглядела примерно так. Все мы произошли от первых бактерий на Земле, и все живущие организмы до сих пор сохраняют определенные гены (в среднем около сотни) как часть этого наследия. Первые бактерии вскоре начали разделяться на группы. Одни из них превратились в гигантские капли, другие, наоборот, съежились до совсем уж крохотных размеров – и разница в размерах определила их возможности. Большие бактерии стали глотать и переваривать остальные, в то время как те отравляли и убивали тех, кто был большим и неосторожным. По любой из этих двух причин, доказывала Маргулис, большая бактерия в один прекрасный день когда-то проглотила маленькую, и произошло нечто странное: не произошло ничего. Или маленькая бактерия смогла избежать переваривания, или ее хозяин сдержал свои внутренние процессы. Противостояние продолжилось, и хотя каждая из них продолжала бороться, никому не удавалось покончить с соперником. И через много поколений эта первоначально беспринципная жестокая схватка перетекла в кооперативное сотрудничество. Маленький микроб постепенно научился хорошо синтезировать высококачественное топливо из кислорода, а большая клетка постепенно утратила свои способности накапливать силу и вместо этого стала специализироваться на обеспечении своих элементов питательными веществами и пристанищем. Словом, все по Адаму Смиту: разделение труда принесло пользу каждой из сторон, и вскоре ни одна из них уже не могла отказаться от партнера и при этом выжить. Микроскопические проглоченные бактерии мы сейчас называем митохондриями.
Теория в целом недурна – но и только. К сожалению, когда Маргулис проповедовала ее, она не нашла понимания среди коллег-ученых. Ее первую статью по эндосимбиозу отвергло пятнадцать журналов, и хуже того – многие биологи в открытую нападали на ее гипотезу. И с каждым новым выступлением ее оппоненты выдвигали все больше доказательств и были более нетерпимы, придавая особое значение независимому поведению митохондрий, подчеркивая, что они плавают внутри клетки, размножаются по собственному расписанию, имеют собственные мембраны, напоминающие клеточную стенку. И их «мусорная» ДНК – якобы неизбежный случай: клетки редко позволяют ДНК уходить из ядра на периферию, и если такое случается, то ДНК, как правило, не выживает. Кроме того, мы наследуем митохондриальную ДНК иначе, чем хромосомную, – только от матерей, так как мама передает своим детям все свои митохондрии. Маргулис пришла к выводу, что митохондриальная ДНК может происходить только из ранее независимых клеток.
Ее оппоненты возражали (и правильно делали), что митохондрии не работают поодиночке: для нормального функционирования им необходимы хромосомные гены, поэтому их вряд ли можно считать независимыми. Маргулис парировала, что три миллиарда лет назад многие гены, необходимые для независимой жизни, вполне могли исчезнуть, как Чеширский Кот, от которого осталась одна лишь улыбка – митохондриальный геном. Оппоненты этому не поверили – в первую очередь из-за недостатка доказательств, но в отличие, например, от Мишера, который практически не имел оснований для своей защиты, Маргулис и не думала сдаваться. Она продвигала свою теорию в лекциях и письменных трудах и восхищалась, наблюдая удивление аудитории. Однажды она начала беседу с вопроса: «Есть ли здесь профессионалы-биологи? К примеру, молекулярные биологи?» Затем посчитала поднятые руки и засмеялась: «Отлично. Вы сейчас будете негодовать».
И биологи негодовали при упоминании эндосимбиоза, и перебранки продолжались и продолжались, пока новые технологии сканирования в 1980-х годах не доказали, что митохондрии хранят свою ДНК не в длинных продолговатых хромосомах, как животные и растения, а в кольцах – как бактерии. Тридцать семь плотно упакованных в обруч генов участвовали в производстве белков (таких же, как у бактерий), и последовательность А-Ц-Г-Т выглядела удивительно похожей на аналогичную последовательность у бактерий. Работая над этим доказательством, ученые даже идентифицировали живущих родственников митохондрии, среди которых оказалась тифозная бактерия. Аналогичная работа установила, что хлоропласты – зеленоватые пятнышки, управляющие фотосинтезом внутри растительных клеток, также содержат петли ДНК. Как и в случае с митохондриями, Маргулис предположила, что хлоропласты зародились, когда большие бактерии заглотили фотосинтезирующую тину, а потом образовалось нечто вроде стокгольмского синдрома. Двух независимых случаев эндосимбиоза было уже слишком много, чтобы оппоненты отделались своими прошлыми объяснениями. Маргулис торжествовала: она оказалась права.
В дополнение к расшифровке митохондрий теория Маргулис помогла разгадать страшную тайну о жизни на Земле: почему после многообещающего начала эволюция была близка к исчезновению? Без толчка со стороны митохондрий примитивная жизнь могла бы так никогда и не развиться до высших форм, не говоря уже о появлении разумных людей.
Чтобы увидеть, насколько существенным было эволюционное торможение, стоит осознать, насколько легко Вселенная производит жизнь. Первые органические молекулы на Земле, возможно, появились спонтанно, у вулканических жерл на дне океана. Тепловая энергия может переплавить простые молекулы, богатые углеродом, в сложные аминокислоты и даже пузырьки, которые используются в качестве примитивных мембран. Кроме того, Земля, вероятно, импортировала органические вещества из космоса. Астрономы открыли изолированные аминокислоты, плавающие в пылевых облаках межзвездного пространства, а химики подсчитали, что ДНК-основания (к примеру, аденин) могут сформироваться и в космосе, так как аденин не содержит ничего, кроме пяти простых молекул HCN (да-да, цианида!), свернутых в двойное кольцо. Основания ДНК могли сохранить и состоящие изо льда кометы. По мере образования лед становится очень нетерпимым к посторонним примесям и сжимает все органические вещества внутри себя в концентрированные пузырьки. В этих пузырьках под давлением образовывается «кисель», внутри которого создание сложных молекул видится весьма вероятным. Ученые уже подозревают, что на заре существования нашей планеты ее океан подвергся бомбардировке комет, которые и посеяли в его воды «био-биты».
Из этого кипящего органического бульона в течение всего лишь миллиарда лет (если вдуматься, это довольно быстро) образовались автономные микроорганизмы со сложными мембранами и сменными движущимися частями. И вот от этого общего начала в кратчайшие сроки появилось много различных видов, которым требовались различные средства пропитания и которые изобретали мудреные способы выживания. Однако после этого чуда эволюция остановилась. На планете было много по-настоящему живых существ, но эти микробы практически не развивались в течение примерно миллиарда лет – а могли и вовсе не развиться.
Что же почти погубило их? Потребление энергии. Примитивные микроорганизмы тратят 2 % всей своей энергии на копирование и поддержание ДНК, но целых 75 % уходит на производство белков из ДНК. Так что даже если микроб развивает ДНК для того, чтобы сформировать выигрышную эволюционную черту (например, закрытое ядро, или «пузо» для переваривания других микробов, или аппарат для коммуникации с себе подобными), на практике производство новой черты очень сильно ослабляет организм. О добавлении сразу двух новых черт не может идти и речи. В подобных обстоятельствах эволюция бесполезна; клетки не могут стать более сложными. Достающаяся почти даром митохондриальная энергия расширила эти рамки. Митохондрия, как и, например, молния, накапливает столько энергии, сколько ей позволяет размер, а подвижность митохондрий позволяет их владельцам одновременно накапливать много новых свойств и развиваться до многоклеточных организмов. На самом деле митохондрии позволяют клеткам расширить свой запас ДНК в 200 тысяч раз, не только изобретать новые гены, но и в больших количествах добавлять регуляторную ДНК, делая клетки гораздо более податливыми для использования генов. Этого могло никогда не произойти с митохондриями, и мы могли бы никогда не пролить свет на эти темные времена в эволюции, если бы не теория Маргулис.
Митохондриальная ДНК позволила открыть совершенно новые отрасли науки – к примеру, генетическую археологию. Поскольку митохондрии могут воспроизводить самих себя, генов мтДНК в клетках более чем достаточно, гораздо больше, чем хромосомных генов. Поэтому когда ученые собираются покопаться в телах пещерных людей, мумиях или чем-то подобном, они часто извлекают и изучают именно митохондриальную ДНК. Специалисты могут использовать эту ДНК и для того, чтобы с беспрецедентной точностью проследить генеалогию. Сперматозоиды несут лишь немногим больше полезной информации, чем ядерная ДНК, поэтому дети получают все свои митохондрии из гораздо более просторных источников – материнских яйцеклеток. Митохондриальная ДНК таким образом передается по женской линии в практически неизменном виде от поколения к поколению, что делает ее идеальной для того, чтобы отследить родословную по матери. Более того, поскольку ученые знают, как медленно в митохондриях накапливаются изменения – одна мутация в 3500 лет – они могут использовать мтДНК в качестве часов. Для этого они сравнивают мтДНК двух людей, и чем больше мутаций находится, тем больше лет прошло с тех пор, как у этих двоих был общий предок по материнской линии. Фактически эти часы способны показать нам, что все семь миллиардов людей, живущих на Земле, могут проследить свои родословные по материнской линии к одной-единственной женщине, которая жила в Африке 170 тысяч лет назад, – так называемой митохондриальной Еве. Конечно, эта Ева никогда не была единственной женщиной на Земле. Она была самым старым предком по материнской линии каждого человека, который сейчас живет на нашей планете[28].
После того как митохондрии оказались столь важными для науки, Маргулис воспользовалась моментом, чтобы продвигать прочие неординарные идеи. Так, она начала доказывать, что микроорганизмы еще и подарили различные двигательные приспособления животным, например хвостики сперматозоидам, даже несмотря на то, что у этих структур никакого ДНК нет. Она перестала считать клетку всего лишь накопителем запчастей, а провозгласила грандиозную теорию, которая объявляла эндосимбиоз двигателем всей эволюции, оставляя естественному отбору и мутациям второстепенные роли. Согласно этой теории, мутации изменяют живые организмы лишь незначительно. Настоящие изменения происходят лишь тогда, когда гены скачут от вида к виду или когда целые геномы сливаются вместе, скрещивая совершенно различных существ. Только после подобных «горизонтальных» трансферов в ДНК начинается естественный отбор, который просто занимается «редактурой», препятствуя появлению уж совсем безнадежных монстров. А небезнадежные монстры, получившие выгоду от слияния, процветают.
Хотя Маргулис называла эту теорию революционной, в каком-то смысле ее теория слияния лишь расширяет классический спор между биологами, которые выступают (почему – попробуйте расспросить их сами) за быстрые скачки и спонтанное образование видов, и биологами, поддерживающими консервативные суждения и постепенное образование видов. «Архиградуалист» Дарвин рассматривал постепенные изменения и общее происхождение как закон природы и поддерживал идею постепенно растущего древа жизни без всяких ответвлений. Маргулис же примкнула к радикалам. Она доказывала, что слияния могут создавать настоящих химер – смешанных существ, которые технически не отличаются от русалок, сфинксов или кентавров. С этой точки зрения старомодное древо Дарвина должно уступить дорогу небрежно сплетенной паутине жизни с пересекающимися под разными углами линиями.
Несмотря на то, что она далеко забрела в своем радикализме, Маргулис заслужила право на инакомыслие. Это даже немного двулико, хвалить человека за то, что он придерживается нетрадиционных научных взглядов, и ругать – за нонконформизм в других ситуациях; нельзя просто так выключить часть сознания, отвечающую за предрассудки, только тогда, когда вам удобно. Известный биолог Джон Мейнард Смит однажды признался: «Думаю, что она [Маргулис] часто ошибалась, но большинство людей, которых я знаю, уверены, что ее присутствие важно, так как ее ошибки связаны со столь плодотворными областями исследования». И не будем забывать, что ее первая крупная идея оказалась потрясающе верной. Прежде всего, ее работа напоминает нам, что красивые растения и позвоночные животные не доминируют в истории жизни. Доминируют микробы, и именно они составляют эволюционный исходный материал, откуда произошли все мы – многоклеточные организмы.
Линн Маргулис получала удовольствие от конфликтов, а вот ее старшая современница Барбара Мак-Клинток старалась их избегать. Она предпочитала спокойные размышления публичной конфронтации, и ее весьма своеобразные идеи возникли не от стремления к бунтарству, а от чистой воды эксцентричности. Мак-Клинток весьма своевременно посвятила свою жизнь изучению своеобразной генетики растений вроде кукурузы. Взяв на вооружение всю странность этого растения, Мак-Клинток расширила наши представления о том, на что способна ДНК. Она нашла очень важные подсказки для понимания второй великой тайны нашего эволюционного прошлого: как ДНК строит многоклеточные организмы из описанных Линн Маргулис сложных, но одиночных клеток.
Биографию Барбары Мак-Клинток можно разделить на два периода: до 1951 года она вела счастливую полноценную жизнь ученого, после 1951 – горькую жизнь отшельника. Впрочем, до 1951 года все тоже было не то чтобы идеально. С раннего детства Барбаре приходилось постоянно ссориться с матерью: в основном из-за того, что девочка упорно интересовалась наукой и спортом – в частности, катанием на коньках – а не более характерными для девочек занятиями, которые, по мнению ее матери-пианистки, должны были улучшить ее перспективы выйти замуж. Мать даже наложила запрет на мечту Барбары поступить в Корнелльский университет, чтобы (как Херманн Миллер и Уильям Фридман когда-то) изучать генетику: потому что хорошие мальчики не женятся на слишком умных девочках. К счастью для науки, отец Барбары, врач, вмешался в дело до наступления осеннего семестра 1919 года и отправил дочь в северную часть штата Нью-Йорк на поезде.
В Корнелльском университете Барбара Мак-Клинток преуспевала, став президентом женского первого курса и выйдя на главные роли в научных лабораториях. Тем не менее однокурсники не всегда ценили ее острословие, особенно когда девушка критиковала их работу с микроскопом. В то время изготовление препаратов для микроскопа (а для этого надо было нарезать клетки, как ветчину, и поместить их желеобразное содержимое на многочисленные стеклышки, ничего не пролив) было сложной и ответственной работой. Само использование микроскопа тоже было непростым занятием: даже опытный ученый не всегда точно мог отличить одно пятнышко внутри клетки от другого и определить, что эти следы обозначают. Но Барбара Мак-Клинток освоила искусство обращаться с микроскопом очень быстро, к выпуску став признанным специалистом мирового класса. Будучи магистрантом Корнелла, она усовершенствовала метод давленых препаратов, который позволял ей разравнивать целые клетки пальцем и сохранять их нетронутыми на одном препарате, облегчая тем самым их изучение. Используя этот метод, она стала первым ученым, который смог идентифицировать все десять хромосом кукурузы (что не так-то легко: в этом может убедиться каждый, кто когда-либо наблюдал мешанину похожих на спагетти хромосом в живой клетке).
В 1927 году Корнелльский университет предложил Мак-Клинток заняться исследовательской и преподавательской работой на постоянной основе, и она начала изучать взаимодействие хромосом с помощью своей лучшей студентки – Харриет Крайтон. Обе эти «амазонки» коротко стриглись и часто одевались как мужчины: носили бриджи и высокие носки. Они были похожи друг на друга, даже анекдоты о них рассказывали одни и те же. Например, молва так и не могла определиться, кто из «биологинь» однажды утром поднимался по водосточной трубе на второй этаж, забыв ключи от кабинета. Харриет Крайтон все же была более открытым человеком. Так, в честь окончания Второй мировой войны она купила драндулет и отправилась на нем в Мексику. Сдержанная Мак-Клинток никогда бы так не поступила. Тем не менее они образовали отличную команду и вскоре сделали выдающееся открытие. Ученики Моргана, специализировавшиеся на дрозофилах, к тому времени уже несколько лет как продемонстрировали, что хромосомы могут пересекаться своими плечами и обмениваться некоторыми участками. Однако их доказательства оставались голой статистикой, основанной на абстрактных предположениях. И хотя многие ученые под микроскопом наблюдали переплетение хромосом, никто не мог сказать, действительно ли они обмениваются генетическим материалом. Мак-Клинток и Крайтон, которые знали, как выглядит каждый бугорок и нарост на каждой хромосоме кукурузы, смогли определить, что хромосомы физически обмениваются своими сегментами. Они даже смогли связать эти обмены с изменением в работе генов, что послужило решающим доказательством. Мак-Клинток не торопилась публиковать результаты своих опытов, но когда о них узнал Морган, он убедил ее сделать это немедленно. Публикация вышла в 1931 году. Два года спустя Морган получил Нобелевскую премию.
Мак-Клинток была довольна своей работой, которая, в частности, привела к тому, что их с Крайтон биографии попали в известную книжную серию «Люди науки», но она хотела достичь большего. Ей хотелось изучать не только хромосомы сами по себе, но и то, как они изменяются и мутируют, как подобные изменения приводят к созданию сложных организмов с различной расцветкой, формой корней и листьев. К сожалению, как только она попыталась открыть собственную лабораторию, против нее сыграли социальные обстоятельства. В университетах того времени (как, например, и в церковных приходах) кафедру могли получить только мужчины (кроме кафедры домоводства), и в Корнелле не собирались делать исключение для Мак-Клинток. Против своей воли она покинула родной университет и временно работала вместе с Морганом в Калифорнии. Стажировалась в Миссури и Германии, но ни там, ни там ей не понравилось.
Честно говоря, у Мак-Клинток было много других проблем, если не считать принадлежности к «неправильному» полу. Характер у нее был не сахар, а после одной неприятной истории она и вовсе заслужила репутацию неуживчивой эгоистки. В течение долгого времени Мак-Клинток разрабатывала незаметно от своего коллеги ту же проблему, что и он, и опубликовала результаты раньше, чем он закончил работу. Столь же проблематичным оказалось то, что Мак-Клинток работала с кукурузой.
Да, в генетические исследования кукурузы вкладывались хорошие деньги, потому что кукуруза – продовольственная культура. Один из лучших американских генетиков, Генри Уоллес – будущий вице-президент в правительстве Франклина Делано Рузвельта – сделал себе состояние, управляя семенной компанией. Кроме того, кукуруза имеет богатую научную родословную: ее изучали и Дарвин, и Мендель. К мутациям кукурузы проявляли интерес и военные. Когда США начали проводить ядерные испытания на атолле Бикини в 1946 году, ученые из правительства размещали под бомбами кукурузные зерна, чтобы узнать, как радиация повлияет на растение.
Мак-Клинток, впрочем, было наплевать на традиционные цели исследований кукурузы (повысить урожайность, сделать зерна слаще и т. п.). Кукуруза была для нее лишь средством, способом изучать наследование и развитие живых организмов в целом. К сожалению, для такой работы эта зерновая культура имела серьезные недостатки. Растет кукуруза мучительно медленно, ее капризные хромосомы часто разрушаются, раздуваются, расплавляются или случайным образом раздваиваются. Барбаре Мак-Клинток дополнительные сложности были только в радость, но большинство генетиков хотело избежать подобной головной боли. Они верили выводам ее работы – тем более что никто не мог тягаться с Мак-Клинток в искусстве обращения с микроскопом – но ее преданность кукурузе поставила ее в невыгодное положение между учеными-прагматиками, помогающими фермерам из Айовы вырастить больший урожай, и «чистыми» генетиками, отказывавшимися возиться с неуправляемой ДНК кукурузы.
В конце концов Мак-Клинток в 1941 году получила работу в захолустной лаборатории Колд-Спринг-Харбор, в тридцати милях к востоку от Манхэттена. Теперь она не должна была отвлекаться на занятия со студентами, да и ассистента наняла лишь одного: для того, чтобы вручить ему ружье и объяснить, что чертово воронье должно держаться от ее кукурузы подальше. Мак-Клинток оказалась один на один со своей кукурузой, почти вне общества – но именно это ей и было нужно. Немногочисленные друзья описывали ее как мистика от науки, постоянно увлеченную погоней за знанием, которое поможет разобраться со всеми существующими проблемами и нерешенными задачами генетики. Один из ее друзей заметил: «Она ждала, когда же у нее в голове загорится лампочка». В Колд-Спринг-Харборе у нее было время и место для размышлений, и именно с этой лабораторией связаны самые продуктивные годы в ее карьере, которые длились вплоть до 1951 года.
Ее исследования достигли пика в марте 1950 года, когда один из коллег Мак-Клинток получил письмо от нее. Оно занимало десять листов, напечатанных одинарным интервалом, при этом целые абзацы вычеркивались и дописывались, а поля были исписаны эмоциональными пометками, которые соединялись стрелками и ползли по краям страниц, как плющ. Сегодня, когда получаешь такое письмо, сразу закрадываются сомнения – а не отравлено ли оно сибирской язвой? Впрочем, описанная в нем теория также не внушала доверия. Морган считал гены жемчужинами, закрепленными в хромосомном ожерелье. Мак-Клинток утверждала, что видела, как эти «жемчужины» двигаются: прыгают от хромосомы к хромосоме и переселяются в них.
Более того, эти прыгающие гены определяют цвет кукурузных зерен. Мак-Клинток работала с кремнистой кукурузой – сортом, в початках которого встречаются синие и красные зерна и который чаще всего можно увидеть на платформах во время праздника урожая. Она увидела, что прыгающие гены атакуют плечи хромосом внутри этих семян, разрушая хромосомы и оставляя разрывы, напоминающие открытые переломы. Каждый раз, когда это происходит, зерна перестают производить пигмент. Позже, впрочем, когда неугомонный прыгающий ген перемещается куда-нибудь в другое место, сломанное хромосомное плечо заживает, а производство пигмента возобновляется. В каракулях того самого письма Мак-Клинток предполагает, что «перелом» хромосомы мешает гену образовывать пигмент. Действительно, наличие паттернов «вкл/выкл» казалось убедительным объяснением причудливой окраски зерен из початков Мак-Клинток.
Другими словами, прыгающие гены контролируют производство пигмента, поэтому Мак-Клинток назвала их «контролирующими элементами» (теперь их называют транспозонами, или, более обобщенно, мобильной ДНК). Как и Маргулис, Мак-Клинток использовала свое замечательное открытие, чтобы продвигать более амбициозную теорию. Пожалуй, самым затруднительным вопросом для биологов 1940-х годов был следующий: почему клетки неодинаковы? В конце концов, клетки кожи, печени, мозга содержат идентичную ДНК – так почему же у них не одинаковые функции? Ранее биологи объясняли это тем, что деятельность генов регулирует содержимое клеточной цитоплазмы, нечто находящееся за пределами ядра. Мак-Клинток нашла доказательства того, что хромосомы, находясь внутри ядра, регулируют сами себя и что этот контроль позволяет активировать и останавливать гены в определенный момент.
На самом деле (как Мак-Клинток и подозревала) возможность активировать и останавливать работу генов оказалась важным шагом в истории возникновения жизни. После того как появились сложные клетки, описанные Линн Маргулис, развитие живых организмов снова застопорилось более чем на миллиард лет. Затем, около 550 миллионов лет назад, в огромных количествах начали появляться многоклеточные существа. Вероятно, первые из них стали многоклеточными по ошибке: клетки слиплись и не смогли освободиться. Однако со временем, тщательно контролируя, какие гены в какие моменты активизируются в соединившихся образцах, клетки смогли начать специализироваться – а это и есть отличительная черта высших форм жизни. Теперь Мак-Клинток думала, что на нее наконец-то снизошло озарение по поводу того, как произошло это важнейшее изменение.
Мак-Клинток переделала свое созданное наспех письмо в полноценную лекцию, с которой она выступила в Колд-Спринг-Харборе в июне 1951 года. Вдохновленная своими надеждами, она говорила более двух часов подряд, прочитав при этом тридцать пять страниц мелким шрифтом. Она, наверное, могла бы простить, если бы зрители клевали носом, но с тревогой заметила, что они оказались просто сбитыми с толку. В основном это было обусловлено недостатком фактов. Ученым была известна репутация Мак-Клинток, поэтому, когда она утверждала, что видела, как гены скачут подобно блохам, большинство коллег отнеслось к этой информации спокойно. Коллег обеспокоила теория генетического контроля. Вставки и прыжки, по сути дела, казались слишком случайными. Эта случайность могла прекрасно объяснить и красно-синие кукурузные початки – но вот как прыгающие гены могут объяснить все развитие многоклеточных существ? Ни ребенка, ни даже бобовый стебель нельзя создать с помощью генов, которые случайно включаются и выключаются! Мак-Клинток не смогла толком ответить на эти вопросы, и по мере того как неудобные расспросы продолжались, аудитория все больше настраивалась против выступающей. Вся ее революционная идея о контролирующих элементах была сведена[29] к очередному дурацкому свойству кукурузы.