Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Том 31. Тайная жизнь чисел. Любопытные разделы математики - Хоакин Наварро на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:


Эта теорема, возможно, действительно была предложена в наполеоновскую эпоху, однако ее доказательство, по мнению экспертов, принадлежит не Наполеону. Формулировки этой теоремы с доказательством встречаются у разных авторов, старейшее принадлежит Резерфорду и датируется 1825 годом. Наполеон умер на острове Святой Елены четырьмя годами ранее, так что авторство теоремы вряд ли принадлежит ему. Любопытно, что Резерфорд опубликовал свое доказательство в развлекательном ежегоднике для дам — The Ladies' Diary.

Для теоремы Наполеона в прошлом веке было предложено несколько обобщений: Адриано Барлотти доказал ее уже не для равносторонних треугольников, а для правильных n-угольников.

О ценности вещей

Земли древнего Конго сегодня не вызывают особого интереса. Конго — одна из самых отстающих стран, где не прекращаются всевозможные племенные конфликты.

Эта страна — родина народа бакуба, народа геометров, который известен благодаря своим симметричным узорам. Их можно видеть на поясах и лентах, на масках, платках, на барабанах и даже статуях вождей. Европейцы в начале XX века попытались включить бакуба в список «цивилизованных народов» и, по давнему обычаю, поднесли королю дар — мотоцикл, который был для бакуба настоящим чудом. Однако главное внимание народа привлек не сам мотоцикл, а следы его шин. Бакуба скопировали эти узоры, оставленные протекторами, и король назвал их в свою честь. После такого впору задуматься: чем на самом деле измеряется ценность вещей?

Игры беспокойного разума

Героями кинофильмов стали немногие математики. Наибольшую известность среди них имеет Джон Форбс Нэш, главный герой фильма «Игры разума» (A Beautiful Mind), сошедший с ума в период расцвета творческой деятельности и вновь обретший разум много лет спустя, после вручения Нобелевской премии.

Джон Нэш (род. 1928) был не только нобелевским лауреатом, но и блестящим математиком. Его число Эрдёша равно 4. В книгах по алгебраической геометрии Нэш неизменно упоминается как автор теоремы, носящей его имя, согласно которой всякое риманово многообразие допускает изометрическое вложение в разновидность евклидова пространства. Эта важная теорема была опубликована в журнале «Анналы математики» в 1952 году под заглавием «Вещественные алгебраические многообразия» (Real Algebraic Manifolds). По легенде, настоящим автором статьи был сам редактор журнала, поскольку к тому времени Нэш уже был серьезно болен, и его рукопись напоминала непроходимые джунгли. Поэтому редактор статью переписал, и она была встречена с большим энтузиазмом. Возможно, это всего лишь легенда — симптомы паранойи начали проявляться у Нэша шестью годами позже, в 1958 году, но вообще об этом ученом рассказывают множество историй, которые так и просятся на киноэкран.


Джон Форбс Нэш.

Домохозяйка днем и геометр — ночью

Крайне редко бывает так, что простая домохозяйка в промежутках между варкой макарон и вышиванием демонстрирует всем, что ее мозг работает не хуже, чем у знаменитого сыщика Эркюля Пуаро. Но именно это и произошло с уставшей от домашних дел калифорнийской домохозяйкой Марджори Райс (род. 1923), которая всегда любила математику и головоломки. Сначала она помогала детям решать домашние задания по математике, а в конце концов даже специалистов заставила раскрыть рты от изумления. Как-то в руки Марджори попал номер журнала Scientific American, в котором его знаменитый колумнист Мартин Гарднер (1914–2010) объяснял результаты, полученные Кершнером и касающиеся замощения плоскости выпуклыми пятиугольниками. Марджори увлеклась этой задачей и в свободное время за два следующих года нашла четыре принципиально новых замощения плоскости выпуклыми пятиугольниками. Одно из ее решений изображено на рисунке.


Фрагмент найденного Марджори Роуз замощения плоскости пятиугольниками. Оно называется «рыбы»: если изобразить в каждом пятиугольнике узор, показанный сверху, то плоскость будет полностью покрыта рыбами, как на одной из знаменитых гравюр Маурица Корнелиса Эшера.

Это далеко не единственный случай, когда математик-любитель затмевал профессиональных ученых. Как видите, порой официальные титулы значат немного.

Удивительная история гения, который не хотел быть таковым

Об Александре Гротендике (род. 1928), математике немецкого происхождения, которого многие считают французом, написано немало. Его считают настоящим гением алгебраической геометрии, хотя объяснить суть его открытий в этой сфере очень и очень сложно. Гротендик изучал столь абстрактные разделы математики, что даже классифицировать его труды непросто. Он до сих пор жив, но мы говорим о нем в прошедшем времени, потому что математик удалился от мира в 1988 году: он оставил науку и поселился на юге Франции, близ Андорры, в совершенной изоляции от всего мира.

История Гротендика достаточно драматична: по происхождению он был евреем, родители оставили его в детстве, чтобы сражаться в гражданской войне в Испании, потом его отец умер в Аушвице. В биографии математика можно найти странные браки и непримиримую борьбу за мир, он отличался экстремистскими взглядами и выдающимся умом, благодаря которому открывал новые понятия и создавал передовые математические теории. Гротендик стал автором более десятка современных математических понятий с достаточно живописными названиями (схемы, топология и пространства Гротендика, теория детских рисунков, кристаллическая когомология и так далее).

В 1966 году ученый был удостоен Филдсовской премии, но отказался ее принять. В 1988 году ему была присуждена престижная премия Крафорда — аналог Нобелевской премии в дисциплинах, где эта премия не присуждается. Гротендик отказался и от нее. Золотые годы он провел в Институте высших научных исследований близ Парижа и покинул его, едва узнал, что финансирование частично предоставлялось источниками, близкими к вооруженным силам. Один из докторантов Гротендика, Пьер Делинь (род. 1944) в 1978 году был также удостоен Филдсовской премии.

Позднее были опубликованы остросюжетные, хотя и весьма путаные воспоминания ученого, а также несколько его трудов. Все эти книги отличались внушительными размерами. Он редко вступал в личный контакт, предпочитая переписку. Уже более 20 лет нам ничего неизвестно о его новых работах, и нет надежды, что имя Гротендика когда-нибудь промелькнет в новостях — разве что по случаю его кончины. Как жаль, что мы лишились такого ученого!

Тони Блэр и носорог

Как вы уже знаете, некоторые правители, к примеру Наполеон или Имон де Валера, испытывали любовь к математике. Например, экс-президент США Джеймс Гарфилд (1831–1881) во время одного из скучнейших заседаний даже нашел новое доказательство теоремы Пифагора. Однако существуют и политики, взаимоотношения которых с математикой не столь успешны. Известна очень смешная история о Тони Блэре, рассказанная учителем математики в Chorister School, где юный Блэр учился. В ответе к задаче о прямоугольных треугольниках он почему-то упомянул слово «носорог». Блэр признался, что использовал это слово по уважительной причине: «Я бы написал "гиппопотам", но не был уверен, как именно оно пишется, поэтому не захотел огорчать учителя и написал первое более или менее похожее слово, которое пришло в голову». Словом, которое никак не мог вспомнить Блэр, была «гипотенуза». В этот момент Евклид, наверное, перевернулся в гробу.

Путаница между словами «гиппопотам» (англ, hippopotamus) и «гипотенуза» (англ, hypotenuse) стала классической темой математических анекдотов. Мы привели здесь эту историю потому, что она подтверждена документально и в ней рассказывается об известной личности.

Бутылка, у которой нет «внутри» и «снаружи»

Как сказал бы капитан Хэддок, друг героя комиксов Тинтина, у всех бутылок в нашем мире есть «внутри» и «снаружи», и они либо пусты, либо в них что-то налито. Но правильнее было бы сказать «почти у всех», поскольку существуют математические бутылки (бесполезные для Хэддока и потому ему неизвестные), обладающие весьма необычными свойствами. Немецкий математик Феликс Клейн (1849–1925) в 1882 году описал бутылку, у которой, как вы можете видеть, нет ни внутренней, ни наружной части. И выпить из нее нельзя.


Читатель, конечно, может попытаться представить ее себе полной или пустой, но в нашей трехмерной Вселенной такая бутылка, к несчастью, пронзает сама себя, а вот в четырехмерном пространстве — вполне возможна. Со строго геометрической точки зрения, бутылка Клейна — это замкнутая неориентируемая поверхность без границы, которая изучается в топологии наряду со своей сестрой, лентой Мёбиуса.

Анекдотичность этой геометрической диковинки заключена в ее названии, куда вкралась ошибка: изначально на немецком языке бутылка Клейна называлась Kleinsche Flache, то есть «поверхность Клейна». Если кто-то хочет изобразить эту поверхность (для этого достаточно компьютерной программы и принтера), он должен будет построить график следующего уравнения в декартовых координатах:

(x2 + у2 + z2 + 2у — 1)·[(x2 + у2 + z2 — 2y — 1)2 — 8z2] + 16xz(x2 + y2 + z2 — 2y — 1) = 0

Однако даже математики порой ошибаются, и Kleinsche Flache стало писаться как Kleinsche Flasche, что как раз и означает «бутылка Клейна». А поскольку слово «бутылка» тоже довольно точно описывает поверхность Клейна, то это ошибочное название стало в научном мире общепринятым.

Открытие бутылки Клейна предоставило ряд возможностей и для бизнеса: в интернете вы найдете шапки, имеющие форму поверхности Клейна, или ковши для зачерпывания вина, которые представляют собой практически ее копию.

Глава 3

Анализ

А что такое эти флюксии? Скорости исчезающих приращений.

А что такое эти самые исчезающие приращения?

Они не есть ни конечные величины, ни величины бесконечно малые, но они и не нули.

Разве мы не имеем права назвать их призраками исчезнувших величин?

Епископ Джордж Беркли (1685–1753)

Процитированные выше строки взяты из памфлета «Аналитик» (The Analyst, 1734) — прекрасного интеллектуального упражнения англиканского епископа, посвященного «одному неверующему математику» — по-видимому, Беркли имел в виду Эдмунда Галлея (1656–1742), который славился своей недоверчивостью.

В памфлете Беркли выступает против недавно появившегося ньютоновского исчисления, столь обожаемого Галлеем и всем научным миром, возражая им (и небезосновательно), что если они не верят в Бога, поскольку священные тексты им непонятны, то не следует верить и в почти мистические хитросплетения математического анализа.

Прошли годы и даже столетия, доверие к математическому анализу было восстановлено благодаря более строгим и четким, но менее интуитивным определениям. Тем не менее не стоит забывать слова Беркли, превосходного философа-эмпирика (его именем назван знаменитый американский университет). Напротив, следует отдать ему дань уважения за грамотную и обоснованную критику.

Методы, описанные Ньютоном и Лейбницем, открыли множество путей в науке и вместе с тем породили множество анекдотичных ситуаций. Приведем некоторые из них.


Портрет епископа Джорджа Беркли кисти Джона Смайберта.

Гипотезы, теоремы и Ньютон

Очевидно, что гипотеза и теорема — не одно и то же. Гипотеза обретает статус теоремы только после доказательства, однако довольно долго это не учитывалось.

Рассмотрим, например, труды Иоганна Кеплера (1571–1630). Все мы не раз почтительно отзывались о его законах, которые представляют собой эмпирические выводы, основанные на таблицах Тихо Браге (1546–1601). Эти законы можно назвать гениальными, они широко известны в научном мире и точно описывают движение небесных тел, хотя для них не приводится какого-либо математического доказательства. Сегодня, с вершин нашего знания, можно сказать, что это были три блестящие гипотезы, но не три теоремы.

Лишь Исаак Ньютон (1643–1727) через 50 с лишним лет расставил все по своим местам. Именно он, применив элементарные законы дифференциального и интегрального исчисления к механике, вывел три закона Кеплера исходя из фундаментальной гипотезы — закона обратных квадратов, согласно которому два тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними. Раз уж мы заговорили о Ньютоне, который отличался особой мрачностью и неразговорчивостью, то расскажем о нем одну историю (разумеется, апокрифическую), в которой ученый предстает более человечным. У Ньютона была собака по кличке Даймонд (это действительно подтверждается разными источниками), которой он в шутку приписывал способности к математике. Как-то раз в разговоре с Валлисом Ньютон в шутку заметил: «Сегодня до завтрака Даймонд доказал две теоремы». Валлис подыграл ему: «Ваша собака, должно быть, гениальна». Ньютон ответил: «Ну что вы. Одно доказательство содержало ошибку, другое — патологический пример»[1].

Кто платит, тот и заказывает музыку

Как-то раз в 1684 году Эдмунд Галлей, архитектор сэр Кристофер Рен (1632–1723), автор проекта собора Святого Павла в Лондоне, и Роберт Гук (1635–1703), который первым стал использовать термин «клетка», вышли с собрания Королевского общества, зашли в кафе и завели разговор о том, какую форму имеет траектория планеты, притягиваемой Солнцем с силой, обратно пропорциональной квадрату расстояния до центра масс. Рен даже согласился выплатить денежную премию тому, кто решит эту задачу. Гук заявил, что траекторией планеты будет эллипс, но доказательства этому не привел. Участники встречи разошлись по домам.

Вскоре Галлей пришел к Ньютону и между делом поинтересовался, какую же форму будет иметь траектория планеты в этой задаче. «Эллипс», — незамедлительно ответил Ньютон. «Почему вы так уверены в этом?» — удивился Галлей. «Потому, что я это вычислил». Галлей наверняка подскочил от удивления — Ньютон не бросал слов на ветер. Однако он не смог найти доказательство среди бумаг и сделал вычисления повторно. Коротко изложим последующие события. Уступив уговорам Галлея, Ньютон записал свои расчеты, в которых применил закон обратных квадратов, и, слово за слово, через 18 месяцев на свет появились «Математические начала натуральной философии» — труд, сыгравший основную роль в формировании нашей картины мира. В нем Ньютон описал закон всемирного тяготения, закон обратных квадратов, эллиптические орбиты планет, а также заложил основы математического анализа. Некоторые ученые буквально рыдали от восторга, прочтя эту полную мудрости рукопись. Однако у Ньютона не было денег, чтобы оплатить публикацию, так что финансировать издание книги пришлось самому Галлею. Тем более что и родилась она отчасти благодаря его уговорам.

Галлей известен широкой публике тем, что рассчитал орбиту кометы, названной в его честь. Эта комета появляется на звездном небе каждые 75–76 лет, имеет видимую величину 28,2 (в 2003 году) и видна невооруженным глазом. Ученый наблюдал комету в 1682 году и, применив результаты наблюдений, законы механики Ньютона и собственную интуицию, предположил, что именно ее наблюдали Петер Апиан в 1531 году и Иоганн Кеплер в 1607 году. Если эта гипотеза верна, то, согласно расчетам Галлея, в следующий раз комета должна появиться на небе примерно в 1758 году. В 1682 году, Галлей, высказавший свою догадку, был уже немолод, а когда комета появилась в указанном месте точно в назначенное время, он уже был 16 лет как мертв.


Математик и астроном Эдмунд Галлей первым рассчитал орбиту кометы, которая сегодня носит его имя.

Блистательный маркиз

Следующая история доказывает, что деньги и желание пустить пыль в глаза часто идут рука об руку. Все началось со швейцарской семьи Бернулли, которой мы позже посвятим несколько строк, и с маркиза Лопиталя — Гийома Франсуа Антуана де Лопиталя, маркиза де Сен-Мэм и графа де Антрмон (1661–1704). С маркизом произошел постыдный случай, в котором оказались замешаны члены упомянутого семейства Бернулли.

Господин маркиз был прекрасным математиком. Также он был богат и хотел использовать деньги на благо математики и, как язвительно замечает историк Уильям Данэм, на собственное благо, поэтому приобрел у гениального Иоганна Бернулли права на все его открытия. Сегодня это кажется нам возмутительным, однако в то время взгляды были иными. Работы Иоганна Бернулли были опубликованы в 1696 году под заглавием «Анализ бесконечно малых для познания кривых линий». По словам Данэма, единственным, что получил маркиз в результаты сделки с Бернулли, стала эта превосходная книга. В 1704 году, уже после смерти Лопиталя, Бернулли рассказал подлинную историю произошедшего. Хотя ученый и говорил правду, ему мало кто поверил: об интриганстве Бернулли знали все, а сам он имел весьма сомнительную репутацию.

В 1921 году были найдены бумаги, подтверждающие, что Иоганн Бернулли действительно был автором большинства открытий, приписываемых Лопиталю, и до сих пор неясно, стремился ли маркиз к незаслуженной славе: во-первых, Лопиталь и сам был математиком высокого уровня, во-вторых, книга была опубликована без указания авторства, а в-третьих, в предисловии содержится множество благодарностей Иоганну Бернулли. Возможно, господин маркиз всего лишь хотел сделать математическое знание доступным для всех.


Обложка первого издания самой известной книги маркиза Лопиталя.

Теперь настало время сказать несколько слов о семье Бернулли. Старшими Бернулли были братья Якоб (1654–1705) и Иоганн (1667–1748), затем историю семьи знаменитых математиков продолжили сын Иоганна, Даниил (1700–1782), и племянник братьев, Николай Бернулли (1687–1759). На этом история семейства не заканчивается: до 1807 года в истории науки отметились целых девять Бернулли, и все они были выдающимися учеными. Сравниться с Бернулли талантом может разве что семья композиторов Бахов, однако математическое семейство вошло в историю также благодаря непростым родственным отношениям. Некоторые распри среди Бернулли стали просто легендарными, например, ссора Иоганна с собственным сыном Даниилом, у которого он украл часть результатов в области гидродинамики. Вот до чего может довести зависть…

Интеграл мельника

Математики-любители вызывают определенное восхищение у простых людей. Любители редко получают свои удивительные знания обычным путем и часто отличаются необычными способностями, как, например, польский математик Стефан Банах (1892–1945) или индиец Сриниваса Рамануджан — это лишь два примера ученых, не имевших классического образования, но занявших место на математическом Олимпе. Однако королем среди любителей был Пьер Ферма (1601–1665) — юрист, читавший книги по арифметике, поля которых были слишком узки для его поистине чудесных доказательств.

Прекрасным примером ученого-самоучки является также Джордж Грин (1793–1841), который совершенно самостоятельно прошел путь к математической мудрости. Он обладал одним странным для британца качеством: в его время в Англии считалось дурным тоном использовать в математическом анализе нотацию Лейбница вместо нотации Ньютона. Однако Грин мало оглядывался на общественное научное мнение и малопонятной нотации Ньютона предпочитал способ записи Лейбница. Такая независимость его мышления удивляет еще больше, если учесть, что он был простым мельником. Грин, сын разбогатевшего пекаря, до 40 лет не осмеливался поступить в Кембридж, и его насилу удалось уговорить. Именно благодаря его трудам сегодня нам известна теорема Грина (она также независимо от него была сформулирована русским математиком Михаилом Остроградским (1801–1861)), влияние которой прослеживается даже в современном дифференциальном и интегральном исчислении:


Работы Грина позднее позволили ученым добиться значительных успехов даже в квантовой механике — науке, совершенно немыслимой в XIX веке. Из «Небесной механики» Лапласа Грин вывел вполне достойную математическую теорию электричества. В последние годы жизни он часто прикладывался к бутылке. Словом, этот мельник — сегодня в его мельнице находится музей — в обычной жизни, скорее всего, был совершенно простым и довольно приятным человеком.



Поделиться книгой:

На главную
Назад