Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: Квадратура круга - Яков Исидорович Перельман на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Как воспользоваться им для приближенной квадратуры круга?

8. Проверьте следующее соотношение: периметр прямоугольного треугольника с катетами в и диаметра круга, приближенно равен длине окружности этого круга.

Как помощью этого соотношения приближенно решить задачу о квадратуре круга?

9. Голландский инженер Петр Меций нашел (в 1585 г.) для π легко запоминаемое выражение . Представив его в виде десятичной дроби, установите, сколько в ней верных цифр.

10. Придумайте самостоятельно какое-нибудь правило, практически удобное для быстрого приближенного вычисления площади круга.


Ответы и указания


1. Если радиус круга R, то площадь его πR2, а длина окружности 2πR, Квадрат, площадь которого старинное правило принимает равной площади круга, имеет сторону длиною . Площадь такого квадрата равна


Отношение


показывает, что старинное правило дает преуменьшение почти на 22 %.

2. Из отношения


легко установить, что изложенное в задаче правило дает преувеличение примерно на 0,6 %.

3. Правило дает преуменьшение примерно на 2½%.

4. Оба выражения не решают задачи о квадратуре круга, потому что они не могут быть найдены помощью конечного числа математических операций.

5. Построив (рис. 6) прямоугольный треугольник с катетами в 1 и 3 единицы длины, получаем гипотенузу длиною в , т. е. тех же единиц. Этот отрезок приближенно выражает длину окружности, диаметр которой равен взятой единице длины. Зная это, можно построить прямоугольник, приближенно равновеликий кругу; таким прямоугольником будет, например, прямоугольник со сторонами в 1 и единиц длины.


Построенный прямоугольник легко превратить в равновеликий квадрат. (См. рис. 3 и относящийся к нему текст).

6. Сумма . Зная, что при радиусе, равном единице длины, есть сторона вписанного квадрата (рис. 4), a — сторона вписанного равностороннего треугольника (рис. 5), легко построить отрезок, приближенно равный длине полуокружности. Дальнейший ход построения читатель найдет сам, руководствуясь указаниями, данными выше.

7. Сумма . Для построения отрезка в единиц длины, надо уметь построить отрезок равный единиц длины. Построение может быть выполнено, как нахождение средне-пропорционального между отрезками в 1 и 1,8 ед. длины (рис. 7). Далее — см. решения предыдущих задач.


8. Так как выражение


равно , то задача является видоизменением предыдущей.

9. Семь верных цифр.

10. Подобных правил можно предложить много. Вот одно из возможных: площадь круга приближенно равна ¾ площади описанного квадрата плюс половина десятой доли этой величины. Легко видеть, что здесь π принимается равным 3,15 — приближение достаточное для многих практических целей.

Что читать


Исторические сведения, относящиеся к задаче о квадратуре круга, изложены в книгах:

Цейтен, Г. — История математики в древности и в средние века. ГТТИ. 1932. 230 стр.

Кэджори, Ф. — История элементарной математики. «Mathesis». 1917. 478 стр.

Чвалина, А. — Архимед. ГТТИ. 1934. 40 стр.

Полезные сведения дают брошюры:

Бончковский, Р. — Площади и фигуры, Акад. Наук СССР. 1937. 136 стр.

Лебедев, В. — Очерки по истории точных наук. Вып. IV. Знаменитые геометрические задачи древности. 1920. 71 стр.

Самым полным сочинением на эту тему является книга:

О квадратуре круга. ОНТИ. 1936. 236 стр. Классические сочинения Архимеда, Гюйгенса, Ламберта и Лежандра, которым предпослан очерк по истории вопроса Ф. Рудио.


Информация об издании

Ответственный редактор В. А. КАМСКИЙ.

Набор и матрицы изготовлены в Типографии № 1 им. Володарского, управление издательств и полиграфии исполкома Ленгорсовета, Л-град, Фонтанка, 57. М 49584. Подп. к печати 16/IV 1941 г. Заказ № 4021Тираж 50.000 экз.Отпечатано с матриц в тип. «Печатный Труд». Ленинград, В. О., 11 лин., д. 40. Зак. 2306

-



Поделиться книгой:

На главную
Назад