На рис. 23, где показаны дендритные шипики, мы видели, что рекомбинацию связей можно изучать и на примере коры головного мозга. Ученые показали, что, когда подопытную мышь помещают в обогащенную среду (как в экспериментах Розенцвейга), большинство новых шипиков коры отмирают в течение нескольких дней, однако значительная их часть остается нетронутой. Оба наблюдения согласуются с концепцией «выживания наиболее приспособленных»: получается, что новые синапсы выживают, лишь если используются для хранения воспоминаний. Однако полученные доказательства пока не слишком убедительны. Коннектомике еще предстоит выявить конкретные условия, при которых новые синапсы выживают или исчезают.
Мы уже видели, что мозг может не сохранить воспоминания, если не существуют требуемые связи. А значит, изменение веса связей само по себе имеет лишь ограниченную «емкость» для накопления новой информации, если связи между нейронами фиксированны и редки. Согласно теории нейронного дарвинизма, мозг обходит эту проблему, случайным образом создавая новые синапсы, чтобы поддерживать на должном уровне свой потенциал обучения (или даже повышать его), при этом уничтожая те синапсы, которые не приносят пользы. ИСВ и рекомбинация связей не являются независимыми процессами: они влияют друг на друга. Новые синапсы обеспечивают материал для хеббовского усиления, а уничтожение синапсов происходит в том числе и из-за нарастающего ослабления соответствующих связей. Не только ИСВ, но и рекомбинация связей увеличивает информационную емкость.
Еще одно преимущество рекомбинации связей – в том, что она может стабилизировать воспоминания. Чтобы яснее понять идею такой стабилизации, давайте рассуждать шире. Выше я подчеркивал, что воспоминания сохраняются благодаря синапсам. Теперь же следует упомянуть, что существуют доказательства в пользу существования другого мнемонического механизма – основанного на пикообразовании. Предположим, Дженнифер Энистон представлена у вас в мозгу не одним нейроном, а целой группой, организованной в клеточный ансамбль. Как только стимул – образ Дженни – заставляет эти нейроны дать нервный импульс, они начинают возбуждать друг друга посредством синапсов. Сигналообразование в клеточном ансамбле – самоподдерживающийся процесс, он будет идти и после того, как стимул исчезнет. Испанский ученый Рафаэль Лоренте де Но назвал это явление «реверберацией активности» – по аналогии с эхом в каньоне или соборе, которое продолжает слышаться, даже когда уже смолк породивший его звук. Такое самоподдерживающееся образование импульсов объясняет, почему вы способны запомнить только что увиденный объект, который уже не находится перед вашими глазами.
Судя по многим экспериментам, подобное самоподдерживающееся образование сигналов отвечает за кратковременную память – речь идет о периодах в несколько секунд. Однако существуют убедительные доказательства того, что долгосрочная память вообще не требует нейронной активности. Некоторых из утонувших в ледяной воде удавалось вернуть к жизни после того, как они десятки минут были, по сути, мертвы. Хотя их сердце уже не работало, ледяная вода предотвратила необратимые повреждения мозга. Наиболее везучим удалось при этом практически не потерять память, несмотря на то что при таком охлаждении нейроны их мозга были совершенно не активны. А значит, те воспоминания, которые сохранились после такого жестокого опыта, не могут зависеть от нейронной активности.
Как ни удивительно, нейрохирурги иногда намеренно охлаждают тело и мозг. В ходе смелой медицинской процедуры под названием «глубокий гипотермический циркуляторный арест» (ГГЦА) сердце останавливают, и тело пациента охлаждают ниже +18 °C, резко замедляя все жизненные процессы. ГГЦА настолько рискован, что его применяют, лишь когда жизнь больного находится в смертельной опасности. Однако процент успеха в случаях использования этой методики достаточно высок, причем память пациента, пережившего ГГЦА, часто остается неповрежденной, хотя в ходе процедуры его мозг был, по сути, отключен.
Успехи ГГЦА подкрепляют гипотезу «двойного следа» в памяти. Самоподдерживающееся пикообразование – след краткосрочной памяти, тогда как более постоянные, самоподдерживающиеся связи – след памяти долговременной. Чтобы хранить информацию на протяжении долгого периода времени, мозг трансформирует ее: теперь она выражается не активностью нейронов, а их связями. Чтобы вспомнить информацию, мозг снова переводит ее с языка связей на язык активности.
Концепция двойного следа объясняет, почему воспоминания могут храниться в долгосрочной памяти без помощи нейронной активности. Когда первоначально возникающая активность вызывает эффект хеббовской пластичности, информация записывается благодаря связям между нейронами в клеточном ансамбле или синаптической цепочке. В дальнейшем, когда информация вспоминается, эти нейроны активируются. Но в период между записью и припоминанием рисунок активности этих связей может оставаться непроявленным.
Как-то неизящно – иметь целых два способа хранения информации. Возможно, для мозга было бы эффективнее использовать лишь один? Полезная аналогия здесь – компьютеры, они ведь тоже применяются для хранения данных. У компьютера есть две системы хранения информации: запоминающее устройство с произвольным доступом (ЗУПД, оперативная память, random access memory, RAM) и жесткий диск. Тот или иной документ может долго храниться у вас на жестком диске. Когда вы открываете документ в текстовом редакторе, компьютер передает соответствующую информацию с жесткого диска в оперативную память. Когда вы редактируете документ, информация в RAM модифицируется. А когда вы его сохраняете, компьютер передает информацию из оперативной памяти обратно на жесткий диск.
Поскольку компьютеры созданы инженерами-людьми, мы знаем, почему у этих устройств две системы хранения данных. Дело в том, что и у жесткого диска, и у RAM есть свои преимущества. Жесткий диск обладает стабильностью: он может хранить информацию, даже когда отключено питание. Информация же в оперативной памяти легко теряется. Представьте, что в ходе редактирования текста отключилось электричество. Все электрические сигналы внутри компьютера затухают. Когда вы снова включите и загрузите компьютер, вам покажется, что ваш документ остался в целости и сохранности, ведь он лежал на жестком диске. Но если вы вглядитесь, то увидите, что сохранилась лишь прежняя версия текста. Ваша свежая правка, хранившаяся в оперативной памяти, исчезла.
Но если жесткий диск так надежен и стабилен, зачем же использовать еще и RAM? Дело в том, что RAM отличается высокой скоростью. Информацию в оперативной памяти можно модифицировать гораздо быстрее, чем информацию на жестком диске. Вот почему оправданно передавать документ в оперативную память для редактирования и затем отправлять его обратно на жесткий диск для надежного хранения. Часто бывает так: чем стабильнее вещь, тем ее труднее модифицировать.
Стивен Гроссберг, нейробиолог-теоретик, назвал эту взаимозависимость «дилеммой стабильность/пластичность». На нее обращал внимание еще Платон в своем диалоге «Теэтет». Он объяснял огрехи памяти чрезмерной жесткостью или мягкостью «воска на дощечке». Некоторые люди с трудом запоминают новое, поскольку воск у них слишком твердый, и отпечаток на нем оставить нелегко. Другие же испытывают трудности с хранением воспоминаний, поскольку отпечатки слишком легко стираются с их чересчур мягкого воска. Лишь когда воск не слишком тверд и не слишком мягок, он способен и хорошо принимать отпечатки, и долго хранить их.
Взаимозависимостью между стабильностью и пластичностью можно объяснить и то, почему мозг использует два хранилища для информации. Подобно данным в оперативной памяти, рисунок импульсов быстро меняется, вот почему они подходят для активного манипулирования информацией в ходе непосредственного восприятия и обдумывания. Но, поскольку эти узоры легко потревожить новыми впечатлениями и мыслями, они пригодны лишь для краткосрочного хранения сведений. Межнейронные связи, напротив, в этом смысле похожи на жесткий диск. Так как эти связи меняются медленнее, чем рисунок пиков, они меньше годятся для активного манипулирования информацией. Однако они достаточно пластичны для записи данных и достаточно стабильны для их длительного хранения. Гипотермия (охлаждение) гасит нейронную активность, подобно тому как отключение тока стирает оперативную память вашего компьютера. Межнейронные же связи остаются в неприкосновенности, так что долговременная память в результате не страдает. Но недавно приобретенная информация при этом теряется, поскольку она еще не успела перейти из формы активности в форму связей.
Способна ли взаимозависимость стабильности и пластичности также помочь нам понять, почему мозг иногда использует в качестве средства накопления воспоминаний рекомбинацию связей, а не только ИСВ? Благодаря хеббовской пластичности пикообразование в нейронах постоянно увеличивает силу синапсов. Следовательно, сила синапса не так уж постоянна, а значит, и воспоминания, сохраняемые путем изменения синаптического веса, тоже могут оказаться не такими уж стойкими. Вероятно, именно поэтому воспоминания о том, что вы ели вчера на обед, наверняка скоро потускнеют. В то же время само существование синапса может оказаться стабильнее, чем его сила. Воспоминание, сохраненное посредством ИСВ, можно стабилизировать с помощью рекомбинации связей. Скорее всего, так и происходит с информацией, которая не покидает нас всю жизнь (пример – ваше имя). Нестираемые воспоминания, видно, меньше зависят от необходимости поддерживать силу синапсов на постоянном уровне, но больше определяются необходимостью поддерживать само существование нужных синапсов. В качестве более стабильного, но менее пластичного мнемонического средства рекомбинация связей может удачно дополнять изменение синаптического веса.
Эта глава – смесь эмпирических фактов и теоретизирования. Причем, боюсь, последнего в ней больше. Нам точно известно, что в мозгу действительно происходит ИСВ и рекомбинация связей. Однако не вполне ясно, возникают ли в результате этих явлений клеточные ансамбли и синаптические цепочки. Да и вообще трудно доказать, что эти явления как-то вовлечены в процесс накопления и сохранения воспоминаний.
Один из перспективных методов такого доказательства – искусственным образом «отключить» хеббовскую синаптическую пластичность у подопытных животных, с помощью лекарств или генетических манипуляций влияя на соответствующие молекулы синапсов и затем изучая поведение этих животных, понять, пострадала ли в результате их память и если да, то как именно. Подобные эксперименты уже дали удивительные и многообещающие свидетельства в пользу основных положений коннекционизма. К сожалению, эти свидетельства – лишь косвенные и предположительные. Их интерпретация затруднена, поскольку не существует идеального способа избавиться от хеббовской пластичности, не породив при этом нежелательные побочные эффекты.
Нижеследующая история – моя попытка проиллюстрировать те трудности, с которыми сталкиваются нейробиологи, эмпирически проверяющие мнемонические теории. Предположим, вы – прилетевший на Землю инопланетянин. Земляне кажутся вам уродливыми и жалкими существами, но вам все-таки любопытно узнать о них больше. В ходе своих изысканий вы следите за одним определенным человеком. В кармане он носит записную книжку, время от времени доставая ее и делая в ней какие-то пометки ручкой. Иногда он вынимает книжку, раскрывает и, бросив на нее беглый взгляд, снова убирает в карман.
Такое поведение озадачивает вас, пришельца: вы никогда не слышали о процессе письма и никогда его не видели. Десятки миллионов лет назад ваши далекие предки использовали письмо, однако сейчас эта эволюционная стадия давно и прочно забыта. После долгих размышлений вы приходите к следующей гипотезе: данный человек применяет записную книжку как устройство памяти – то есть прибор для хранения информации.
И вот однажды ночью, дабы проверить свою гипотезу, вы прячете от него эту книжку. Проснувшись утром, несчастный долго бродит по дому, заглядывает под кровать, выдвигает ящики стола и т. п. До конца дня его поведение отличается от обычного, но лишь ненамного. Вы слегка разочарованы, поэтому решаете проделать еще кое-какие эксперименты для проверки своих предположений. Вы вырезаете из книжки несколько листков. Окунаете ее в воду, чтобы смыть значки. Меняете его книжку на принадлежащую кому-то другому.
Разумеется, наиболее непосредственный метод проверки вашей гипотезы состоял бы в том, чтобы попросту прочесть то, что написано в книжке. Расшифровав значки на ее страницах, вы, быть может, сумели бы предсказать завтрашние события в жизни подопытного человека. И если бы ваши предсказания сбылись, это стало бы веским доказательством в пользу того, что в записной книжке действительно хранится информация. К сожалению, вам, пришельцу, уже больше двадцати тысяч лет, и у вас развилась старческая дальнозоркость. И хотя ваша шпионская аппаратура позволяет вам заглядывать в записную книжку, вы не очень-то хорошо видите письмена в ней. (Немного натянутое допущение, но давайте предположим, что ваша инопланетная цивилизация не успела изобрести очки для чтения – обычные или бифокальные.)
Подобно вам, дальнозоркому пришельцу, нейробиологи хотят проверить свои гипотезы касательно памяти. Они полагают, что информация сохраняется благодаря модификации связей между нейронами. Чтобы проверить свою гипотезу, они разрушают те области мозга, где содержатся эти связи (вспомните, как вы прятали записную книжку). Они определяют, активируется ли конкретная область мозга при выполнении мнемонических задач (вспомните, как вы проверяли, вытаскивает ли человек из кармана свою записную книжку, когда ему надо что-нибудь припомнить).
Более прямой и продуктивной могла бы оказаться иная стратегия: пытаться считывать воспоминания непосредственно из коннектомов. Ищите клеточный ансамбль и синаптическую цепочку, убедитесь, что они действительно существуют. К сожалению, как глаза дальнозоркого пришельца не могут даже как следует различить письмена в книжке подопытного человека (не говоря уж о том, чтобы расшифровать их), так и нейробиологи пока не могут увидеть коннектомы. Вот почему нам требуются более совершенные методы, чтобы разобраться в загадках памяти.
Но перед тем, как описать рождающиеся сегодня новые технологии и возможные примеры их применения, следует обсудить еще один важный фактор, который формирует коннектомы. Да, приобретаемый опыт меняет синаптический вес и рекомбинирует межнейронные связи, однако гены тоже формируют коннектомы. Одна из наиболее вдохновляющих перспектив коннектомики – наконец раскрыть сложнейшую взаимозависимость между генами и опытом. Коннектом – вот где природа встречается с воспитанием!
Часть третья
Природа и воспитание
Глава 6
Разведение генов
Древние греки уподобляли человеческую жизнь тонкой нити, которую прядут, отмеряют и перерезают три богини – Парки. Современные биологи ищут секреты человеческой судьбы в другой нити, вернее, в двух нитях – нитях молекулы ДНК, сплетенных в двойную спираль. Каждая нить – цепочка из молекул меньшего размера, именуемых нуклеотидами. Эти молекулы могут быть четырех типов и обозначаются буквами А, Г, Ц и Т (аденин, гуанин, цитозин и тимин). В вашей ДНК миллиарды этих букв. Их последовательность как раз и составляет ваш геном. В ней десятки тысяч более коротких фрагментов, именуемых генами.
С давних времен люди подмечали, что дети, как правило, очень похожи на родителей. Когда рождается ребенок, тут же начинается: «Да у нее твои глаза!», «У него волосы вьются, как у тебя!». ДНК дает нам объяснение: дело в том, что дитя наследует половину генов от матери, а половину – от отца. А значит, младенцу передаются черты обоих родителей. В том, что касается тела, эту идею готов признать каждый. Но когда речь заходит об уме, все представляется куда более спорным.
Возможно, человеческий ум настолько поддается ковке и лепке, что формируется скорее благодаря опыту, а не генам: так считал Локк, сравнивавший ум с чистым листом бумаги, готовым к тому, чтобы на нем что-нибудь написали. Опять-таки, не возникает сомнений, что дети зачастую напоминают родителей не только внешне. Можете сколько угодно отрицать это сходство, слыша: «Весь в отца» или «Яблочко от яблони недалеко падает». Но придет день, когда вы поймете, что отреагировали на какую-то ситуацию
Фрэнсис Гальтон (еще не зная о генах) так и объяснял такое сходство – «природой» или «воспитанием». Лишь в XX веке спор между этими двумя объяснениями («Что важнее – природа или воспитание?») наконец вышел за пределы философствований и личных наблюдений. Убедительные доказательства предоставило изучение однояйцевых близнецов – происходящих из одной зиготы (оплодотворенной яйцеклетки) и, следовательно, имеющих один и тот же геном. Ученые выявили и исследовали монозиготных («идентичных») близнецов, разлученных в раннем детстве и воспитывавшихся в разных приемных семьях. По уровню IQ они оказались так же схожи, как и по внешним характеристикам – например, по росту или весу. Их уровень IQ оказался куда ближе, чем у изучавшихся пар людей, выбранных случайным образом. Такое сходство нельзя объяснить одной и той же средой, в которой они росли, поскольку эти близнецы воспитывались в разных приемных семействах. Можно предположить, что дело в их общем геноме, и это будет вполне правдоподобная версия. Отсюда вроде следует, что гены влияют на IQ так же сильно, как и на физические черты.
Подобное сравнение проводилось не только для интеллектуального коэффициента, но и для многих других умственно-психических параметров. Личностные тесты полны вопросов типа «Я считаю себя человеком, склонным перекладывать вину на других»; респондент может выбрать один вариант ответа: от «1. Категорически не согласен» до «5. Совершенно согласен». Близнецы показывают меньше сходства на таких личностных тестах, чем при исследованиях IQ, однако их результаты всё же ближе, чем у случайно выбранных пар, даже если близнецы воспитывались порознь. Значит, свойства личности пластичнее, чем IQ, однако генетические факторы оказывают немалое воздействие и на них.
Такие исследования близнецов долгое время встречали яростное сопротивление сторонников теории, согласно которой «воспитание важнее природы». Впрочем, сейчас эти изыскания воспроизведены уже столько раз, что практически не оставляют места для возражений. Психолог Эрик Туркхеймер так сформулировал свой первый закон генетики поведения: «Все поведенческие признаки человека могут наследоваться».
Этот закон применим не только для умственно-психических различий между здоровыми людьми, но и для психических расстройств. В былые времена ученые, придерживавшиеся психоаналитических традиций, полагали, что дети-аутисты рождаются у «замороженных матерей». В 1960 году журнал
Это приводит нас к другой причине аутизма – «неправильным» генам. Ученые проверяли эту идею опять-таки на близнецах. Если аутизм полностью определяется генетическими факторами, можно ожидать, что оба однояйцевых близнеца либо окажутся аутистами, либо нет. Но здесь нет полного соответствия. Да, если у одного близнеца наблюдается аутизм, то наблюдается он часто и у другого, но вероятность здесь – от 60 до 90 %. Поскольку эта вероятность, уровень соответствия, все-таки меньше 100 %, можно заключить, что аутизм
Разумеется, эта статистика сама по себе еще не аргумент. Поскольку близнецы чаще всего растут в одном и том же доме, у них нередко общие воспоминания, одни и те же переживания, они накапливают сходный опыт. Если бы «замороженность матерей», по Каннеру, действительно вызывала аутизм, то это давало бы высокие уровни соответствия. В опытах по изучению IQ генетические факторы и факторы среды удавалось развести, исследуя однояйцевых близнецов, с младенчества воспитывавшихся в разных приемных семьях. Непросто найти таких близнецов, еще труднее выявить среди них аутистов, так что генетики применяли другой подход. Они изучали близнецов, росших вместе, и оценивали роль генов, сравнивая однояйцевых близнецов с разнояйцевыми («отцовскими»). Как выяснилось, уровни соответствия по аутизму для разнояйцевых близнецов относительно низки – всего 10–40 %. Такое снижение уровня легко объяснить, если аутизм вызывается генетическими факторами: разнояйцевые близнецы значительно менее похожи друг на друга генетически, чем однояйцевые. (У разнояйцевых близнецов всего 50 % общих генов, тогда как у монозиготных – 100 %.)
А как насчет шизофрении? Уровень соответствия по ней опять-таки ниже для разнояйцевых близнецов (от 0 до 30 %), чем для однояйцевых (от 40 до 65 %). Эти цифры демонстрируют, что генетические факторы сказываются на возникновении шизофрении.
Итак, изучение близнецов показывает, что гены играют важную роль, однако не объясняет, почему это так. Прежде чем я попытаюсь дать ответ (или множество ответов) на этот вопрос, позвольте мне растолковать кое-что касательно генов.
Можно представить себе клетку как сложную машину, построенную из молекулярных деталей многих типов. Один из главных – класс молекул, именуемых белками. Одни белковые молекулы служат структурными элементами, они поддерживают клетку, как балки и столбы поддерживают каркас деревянного дома. Другие белковые молекулы играют функциональную роль, воздействуя на еще какието молекулы – как рабочие на конвейере, обрабатывающие деталь. Многие белки сочетают в себе и структурную, и функциональную роль. Поскольку клетка динамичнее большинства рукотворных аппаратов, многие из ее белков не стоят на месте, они подвижны.
Часто говорят, что ДНК содержит в себе «план жизни», поскольку в ней заложены инструкции, которым следуют клетки, синтезируя белки. ДНК – цепочка нуклеотидов, а белковая молекула – цепочка молекул меньшего размера, именуемых аминокислотами. В нашем организме существует двадцать типов аминокислот. Каждый вид белка характеризуется определенной последовательностью «букв», но этот алфавит содержит их двадцать (у ДНК, как мы помним, таких букв всего четыре). Эта аминокислотная последовательность в основном определяется соответствующей строчкой букв – генов в вашем геноме. Чтобы создать белковую молекулу, клетка читает нуклеотидную последовательность гена и «переводит» прочитанное на язык аминокислотной последовательности, чтобы синтезировать белок. (Словарь для такого перевода называется генетическим кодом.) Когда клетка читает ген и конструирует протеин, говорят, что идет экспрессия гена.
Вы начали жизнь одной-единственной клеткой – яйцеклеткой, оплодотворенной сперматозоидом. Эта клетка разделилась на две, ее потомство также разделилось, и так продолжалось много поколений, пока не возникло гигантское количество клеток, составляющих ваше тело. Каждая клетка при делении передает отпрыскам идентичные копии своей ДНК. Вот почему каждая клетка вашего организма содержит один и тот же геном. Но почему же тогда клетка печени и клетка сердца так отличаются по виду и по функциям? Дело в том, что клетки различных типов экспрессируют разные гены. Наш геном состоит из десятков тысяч генов, и каждый из них соответствует определенному виду белка. Каждый тип клеток экспрессирует определенный набор генов. Некоторые полагают, что нейроны – самый сложный тип клеток нашего организма. Поэтому неудивительно, что многие гены кодируют белки, которые полностью или частично поддерживают функционирование нейронов. Это предварительный ответ на вопрос, почему гены так важны для мозга.
Наши с вами геномы почти идентичны, они почти полностью совпадают с той последовательностью, которую расшифровали в рамках проекта «Геном человека». Но существуют и небольшие отличия. Геномика разрабатывает сейчас всё более быстрые и дешевые технологии, чтобы эти отличия обнаруживать. Иногда они сводятся к отдельным буквам, а иногда целые строчки оказываются стертыми или продублированными. Если подобное различие в геномах становится причиной изменения гена, можно строить догадки о последствиях такого изменения – при условии, что мы знаем функцию белка, кодируемого этим геном.
Вам уже известна гипотеза о том, что в основе умственно-психических функций лежит возбуждение импульса (пикообразование) и секреция. В оба процесса вовлечено множество видов белков. С одним из важных видов вы уже сталкивались – это рецепторы, ощущающие присутствие нейротрансмиттера. Они находятся на внешней мембране нейрона, частично выступая за пределы клетки. (Как голова и руки ребенка, плавающего на надувном круге, помните?) Я уже сравнивал связывание молекулы нейротрансмиттера и рецептора со вставлением ключа в замок. Некоторые рецепторы – это, по сути, замок плюс дверь. Через молекулу рецептора идет небольшой туннель, соединяющий внутреннюю часть нейрона с внешней средой, но основную часть времени этот туннель закрыт «дверью». Когда нейротрансмиттер связывается с рецептором, дверь на мгновение открывается, и через туннель может проскочить электрический разряд. Иными словами, нейротрансмиттер играет роль ключа, отпирающего дверь, позволяя электрическому току идти между внутренней частью нейрона и внешней средой.
Обычно мы используем термин «ионный канал», описывая любой тип белка, имеющего такой туннель, который позволяет электрическому току идти через мембрану. (Ионы – заряженные частицы, проводящие ток в растворах.) Многие типы ионных каналов не относятся к рецепторам. Некоторые позволяют нейрону давать пики; другие оказывают более тонкое воздействие на электрические сигналы, путешествующие между нейронами. Если ваш геном, паче чаяния, содержит аномальную ДНК-последовательность для рецептора или ионного канала, это плохо скажется на функционировании мозга. Заболевание, вызванное дефектами ДНК-последовательности, отвечающей за ионные каналы, называется
Существуют и другие типы белков – упаковывающие нейротрансмиттер в везикулы или помогающие опорожнить везикулы в синаптическую щель, когда приходит нервный импульс. Есть белки, способствующие разложению или повторному использованию нейротрансмиттера, попавшего в щель, чтобы он не задерживался в ней слишком долго или не уплыл к другим синапсам. Этот список – лишь верхушка айсберга. На самом деле пикообразование и секрецию обслуживает целая армия разнообразных белков. И дефекты в любом из них могут привести к развитию мозговых заболеваний.
Впрочем, функционирование мозга может нарушиться и по ряду других причин. Дефектные гены способны оказывать не только непосредственное воздействие «в настоящем времени»: иногда они оставляют следы в прошлом, негативно влияя на развитие юного мозга, что сказывается в дальнейшем.
Грубо говоря, мозг растет и развивается в четыре стадии. Нейроны создаются («рождаются») путем деления клеток, перемещаются на свои места в мозгу, раскидывают ветви и завязывают связи. Неполадки на любой из этих стадий могут привести к аномалиям в мозгу.
Что произойдет, если создание новых нейронов окончится неудачей? В пакистанском городе Гуджрат есть храм, воздвигнутый в честь святого XVII века по имени Шуа Дулах. В этом храме столетиями оставляли младенцев, родившихся с аномально маленькой головой. В Пакистане таких детей называли чуа – «крысиным народцем» (возможно, потому что их лица вытягивались вперед, словно морда крысы). Иногда детей чуа эксплуатировали их «хозяева», отправлявшие бедняжек просить милостыню и затем отбиравшие полученные деньги. Местные жители рассказывали всевозможные предания, объясняющие существование чуа. Согласно одной из жутких историй, чуа появлялись так: злые люди надевали на головы новорожденных металлические или глиняные колпаки, чтобы задержать рост их мозга.
На самом деле чуа появлялись на свет с врожденной болезнью – конгенитальной микроцефалией. При наиболее «чистой» форме микроцефалии (microcephaly vera) единственная аномалия – слишком маленькие размеры мозга при рождении. Кора головного мозга имеет меньшие размеры, однако узор складок и другие структурные свойства в общем нормальны. Неудивительно, что меньшие размеры коры при такой форме микроцефалии приводят к отставанию в умственном развитии.
Ученые установили, что эту разновидность болезни могут вызывать дефекты в целом ряде генов (в том числе в микроцефалине и гене ASPM[11]). Они кодируют белки, контролирующие возникновение кортикальных нейронов (то есть нейронов коры головного мозга). Дефекты в таких генах сокращают количество нейронов и приводят к микроцефалии. Поскольку в клетке есть две копии каждого гена, одна дефектная копия при наличии второй здоровой может и не вызывать никаких симптомов этого заболевания: одной правильной копии достаточно, чтобы мозг рос и развивался нормально. Но если два носителя заболевания, мать и отец, передадут по одной дефектной копии своему ребенку, тот точно родится микроцефалом. Обычно такое происходит редко, но в Пакистане это случается чаще из-за большой доли близкородственных браков – между двоюродными братьями и сестрами. (Поскольку кузены и кузины имеют большое генетическое сходство, вероятность того, что оба родителя окажутся носителями болезни, для них выше, чем для случайно выбранной пары.)
Может нарушаться и вторая стадия в развитии мозга – миграция нейронов на нужные места. При лиссэнцефалии (термин происходит от греческих корней, означающих «гладкий мозг») в коре не хватает складок, благодаря которым она обычно выглядит сморщенной. Возникают и другие структурные аномалии, они хорошо видны под микроскопом. Такое заболевание обычно сопровождается значительной задержкой умственного развития и эпилепсией. Причина лиссэнцефалии – мутации генов, контролирующих миграцию нейронов во время созревания плода.
Эти две стадии развития мозга относятся к пренатальному (дородовому) периоду. Однако к моменту рождения младенца создание и миграция нейронов уже практически завершены. Возможно, вы слышали о том, что при рождении у вас уже есть все ваши нейроны, и новых почти не появится. (Существует лишь несколько областей мозга, где нейроны продолжают возникать и после рождения.) Но это не значит, что развитие мозга закончилось. Нейроны продолжают отращивать ветви и спустя долгое время после вашего появления на свет. Этот процесс называют «подключением» мозга, поскольку аксоны и дендриты напоминают провода. Аксонам предстоит вырасти сильнее всего, ведь они гораздо длиннее дендритов. Вообразите себе крошечный растущий кончик аксона – «конус роста» (у него, грубо говоря, коническая форма). В мозгу он способен проходить огромные расстояния – так, если бы конус роста был размером с человека, его путь можно было бы сравнить с путешествием на другой конец города, в котором вы живете! Как же конусу роста удается не заблудиться? Это явление изучали многие нейробиологи. Они обнаружили, что конус роста ведет себя подобно псу, который по запаху находит дорогу домой. Поверхность нейронов покрыта особыми молекулами-гидами, они играют роль запахов, к которым принюхивается собака, обследуя землю на своем пути. В свою очередь, межнейронное пространство содержит движущиеся молекулы, также относящиеся к категории «гидов» и играющие роль запахов в воздухе, к которым тоже принюхивается заблудившийся пес. Растущие конусы снабжены молекулярными сенсорами, которые способны улавливать «запах» молекул-гидов и благодаря этому добираться до цели. Выработка молекул-гидов и их сенсоров также находится под генетическим контролем. Вот каким образом гены управляют подключением мозга.
Если аксоны не растут как надо, происходит «неправильное подключение». Вспомним о мозолистом теле (corpus callosum), это – толстый пучок из двухсот миллионов аксонов, соединяющих левое и правое полушария головного мозга. В редких случаях мозолистое тело частично или полностью отсутствует. К счастью, подобные изменения не так сильно сказываются на человеке, как микроцефалия. «Неверное подключение» может вызывать дефекты во многих генах, в том числе и тех, которые направляют аксоны при их росте.
На протяжении почти всего путешествия через мозг аксоны растут по прямой, подобно стволу дерева. Но как только конус роста достигает конечного пункта назначения, аксон начинает ветвиться. У специалистов есть основания полагать, что это финальное разветвление уже не столь строго контролируется генами. Если это так, узор ветвей нейрона в большой степени формируется под действием случайных факторов, хотя общая его форма, возможно, определяется факторами генетическими. Точно так же сосны в лесу выглядят похожими, так как являются плодом одного генетического плана. Однако нет двух деревьев, чьи ветви совершенно идентичны друг другу, поскольку на их рост влияет множество случайностей, а также характеристик той среды, в которой растет дерево.
После того как провода в мозгу протянуты, нейроны соединяются друг с другом, создавая синапсы. Я уже говорил о том, что существует гипотеза, согласно которой процесс возникновения синапсов идет случайным образом: когда нейроны контактируют друг с другом, есть некоторая вероятность, что в результате появится синапс. Генетический контроль этого процесса также возможен, поскольку нейроны различных типов, возможно, способны опознавать друг друга посредством молекулярных сигналов и на основе этих данных «решать», соединяться ли. (О типах нейронов – чуть позже.)
Итак, первоначальный коннектом, возникающий на самом раннем этапе развития организма, во многом является результатом деятельности генов и фактора случайности. Ученые продолжают изучать, какой вклад вносит то и другое. По одной из теорий гены проявляют свое влияние главным образом путем контроля за тем, как подключаются «провода» в мозгу. Гены определяют примерную форму нейрона и структуру той области, в которой он раскидывает свои отростки. Если области, которые занимают два нейрона, перекрываются, есть возможность наладить связь между ними. Но осуществится ли эта связь в действительности? Тут уже гены не властны. Вначале все зависит от случайных встреч между ветвями в тех областях, которые заданы генетически, и от случайного возникновения синапсов при этих встречах. Но по мере развития организма коннектом начинают формировать приобретаемые впечатления и опыт. Как же это происходит?
В мозгу новорожденного синапсы возникают с ошеломляющей скоростью. В одном только бродмановском поле 17 между двухмесячным и четырехмесячным возрастом появляется свыше полумиллиона синапсов в секунду. Чтобы обустроить все эти синапсы, нейриты увеличиваются и в размерах, и в общем количестве. На рис. 25 показан резкий прирост количества и размеров дендритных отростков с рождения и до двухлетнего возраста.
Рис. 25. Рост дендритов с рождения до двухлетнего возраста (после двух лет начинается сокращение их числа и размера)
В главе 5 я уже предостерегал: не следует думать, будто обучение у взрослого человека сводится лишь к созданию синапсов. То же самое можно сказать и о юном мозге, поскольку развитие еще и
Зачем мозг создает так много синапсов, ведь позже он многие из них разрушит? На самом деле многие такие «акты творения» названы не совсем верно, поскольку они включают в себя и творение, и уничтожение. Когда я пишу статью, я вначале сосредоточиваюсь на том, чтобы выразить на бумаге (или на экране компьютера) все мои мысли по данному вопросу, даже если пишу я в данный момент до отвращения скверно. На этой стадии количество слов растет. После того как готов первый грубый черновик, текст часто сокращается в ходе переписывания или редактирования. В окончательном варианте статьи слов меньше, чем в черновике. Как говорится, совершенства достигаешь не когда нечего прибавить, а когда нечего убавить.
Возможно, межнейронные связи, формируемые на ранних стадиях развития организма, как раз и напоминают такой черновик. Я уже говорил, что первоначальное «подключение» и создание связей направляются генами, но эти процессы подвержены и влиянию фактора случайности. Кроме того, я уже упоминал о теории, согласно которой уничтожение синапсов в зрелом мозгу вызывается их ослаблением, которое, в свою очередь, подвержено влиянию нового опыта. Рассуждая таким же образом, можно заключить, что опыт, скорее всего, является главным фактором, определяющим исчезновение синапсов в развивающемся мозгу. Вероятно и то, что исчезновение многих синапсов данного отростка ведет к его отмиранию. Эти разрушительные процессы правят первоначальный черновик, порождая зрелый коннектом, то есть коннектом взрослого человека.
Однако такой сценарий может ввести в некоторое заблуждение: он предполагает, что создание синапсов и их самоуничтожение происходят в две фазы. Аналогия с написанием статьи показывает, почему такая версия не очень правдоподобна. Работая над первым черновиком, я и вписываю, и стираю слова.
Если создание синапсов в основном подчиняется случайным факторам, а на их исчезновение главным образом влияет приобретаемый опыт, не будет ли обогащенная среда вызывать
Оксюморон «созидательное разрушение» – центральное понятие теории экономического роста и развития, предложенной австрийским экономистом Йозефом Шумпетером. Оно описывает создание новых компаний предпринимателями и параллельное разрушение неэффективных фирм из-за банкротства. Развитие мозга, написание статьи, экономический рост – всё это можно описать как сложнейшее взаимодействие процессов созидания и разрушения. Оба процесса необходимы для появления и развития сложных путей организации той или иной системы. В свете этой концепции представляется едва ли не тщетным пытаться оценивать развитие мозга по общему числу синапсов в нем, качество статьи по ее объему, а экономику – по количеству компаний в ней. Важно не то, сколько в мозгу синапсов, а то, как мозг организован.
Вы уже отчасти представляете себе, насколько сложны процессы развития мозга. И есть множество причин, по которым столь запутанные процессы могут пойти неправильно. Нарушения нормального хода ранних стадий развития, нормального процесса создания и разрушения нейронов могут, как предполагается, вызывать аномалии, которые легко увидеть – такие, как микроцефалия или лиссэнцефалия. Однако нарушения на более поздних стадиях развития могут привести к коннектопатиям – аномалиям в нейронных связях. Общее число нейронов и синапсов останется при этом нормальным, однако они будут связаны отнюдь не идеальным образом.
Помните суперкомпьютер
Как я уже упоминал, мозолистое тело иногда, в редких случаях, отказывается расти. Эту коннектопатию можно выявить с помощью МРТ, поскольку мозолистое тело обычно имеет сравнительно большие размеры. Но вообще мы не очень-то способны четко видеть связи в мозгу, так что подавляющее большинство коннектопатий, скорее всего, остаются необнаруженными. Их удастся выявить, когда мы получим более совершенные технологии для изучения коннектомов.
Выше я обращал внимание на самый загадочный аспект аутизма и шизофрении – нехватку ясных и однозначных нейропатологий. Изучая близнецов, специалисты еще много лет назад установили, что аутизм и шизофрению каким-то образом вызывают «неправильно работающие» гены. Но какие из десятков тысяч генов в этом повинны? Большинство исследователей сейчас подозревают, что многие из них, этих преступных генов, как-то вовлечены в развитие мозга. Аутизм и шизофрению называют
Каковы же улики в пользу сего подозрения? Случай с аутизмом – более четкий: его симптомы обнаруживают еще в раннем детстве. Каковы бы ни были здесь нейропатологии, они наверняка возникли в ходе беременности и младенчества, когда мозг растет быстрее всего. Я уже говорил, что у детей-аутистов в среднем более крупный мозг. Долговременное наблюдение за ростом мозга дает более сложную картину. При рождении мозг аутиста в среднем чуть меньше мозга обычного новорожденного, в возрасте от двух до пяти – крупнее, а к зрелым годам – такой же, как мозг среднего человека. Иными словами, у детей-аутистов аномальна
В первой половине XX века ученые не относили шизофрению к расстройствам нейроразвития. Они предполагали, что мозг шизофреника нормален в детстве и начинает деградировать лишь в период полового созревания или в ранней юности, из-за чего и происходит первая вспышка психоза. Однако им не удалось обнаружить нейропатологии, которые должны были бы сопровождать такую дегенерацию мозга, так что от этой теории пришлось отказаться.
Сегодня многие исследователи объявляют шизофрению и аутизм расстройствами нейроразвития. Как выясняется, многие шизофреники в детстве обучаются речи, движению, общению с небольшим отставанием. Вероятно, их мозг уже в детстве слегка аномален, а развитие их мозга «сбилось с правильного пути» еще в утробе: по статистике, женщины, голодавшие или перенесшие вирусное заболевание во время беременности, с большей вероятностью производят на свет детей, у которых позже развивается шизофрения.
Итак, современные ученые полагают: аутизм и шизофрению вызывает какая-то нейропатология, которую вызывает ненормальное развитие мозга, а оно, в свою очередь, вызвано аномальным влиянием генов и среды. Нейробиологи еще только начинают обнаруживать такие гены, что поможет им приблизиться к пониманию соответствующих процессов развития. Звучит многообещающе, но я вынужден со смущением признать, что еще предстоит найти ответ на самый важный вопрос: что это за нейропатология? Без эмпирических данных теория связана по рукам и ногам. А теорий в этой сфере существует великое множество, и исчерпывающий их обзор мне, признаться, не под силу. Лучше уж я сосредоточусь на одной-единственной, той, что кажется мне наиболее разумной. Согласно этой теории, аутизм и шизофрения – это коннектопатии.
Вспомните: в раннем детстве мозг аутистов растет быстрее, чем у нормальных детей. Этот чрезмерный рост несколько больше в коре лобных долей, чем в других долях мозга, – возможно, потому что здесь возникает слишком много межнейронных связей. Кроме того, ученые предполагают, что между корой лобных долей и другими участками мозга при этом возникает слишком
Печально сознавать, что эта концепция аутизма базируется на френологических доказательствах и выражается френологической терминологией. Как я уже упоминал, такое увеличение мозга у аутистов носит лишь статистический характер, речь идет о средних параметрах. Диагностика аутизма у конкретного ребенка, основанная на оценке размера мозга или его отдельных участков, будет чрезвычайно неточной. Утверждения о «слишком большом» или «слишком малом» количестве межнейронных связей отдают грубыми френологическими оценками типа «слишком большой» или «слишком маленький». Если причиной аутизма является некая коннектопатия, различие между больным и здоровым мозгом наверняка проявится в организации связей, а не в их общем количестве. Такую коннектопатию, впрочем, не удастся выявить с помощью нынешних технологий, вот почему все попытки найти четкую и недвусмысленную нейропатологию, которая отвечает за аутизм, пока оканчиваются неудачей.
Может быть, шизофрения тоже обусловлена какой-то коннектопатией? Здесь самые многообещающие доказательства предоставляют исследования процесса исчезновения синапсов. Я уже отмечал, что у взрослых меньше синапсов, чем у младенцев, но я не уточнял, когда происходит это снижение их количества. Как установили специалисты, число синапсов, достигнув максимума в младенчестве, вскоре быстро падает, затем, в детстве, остается практически неизменным, а в подростковые годы снова резко снижается. Возможно, в ходе этого второго сокращения числа синапсов в мозгу шизофреника происходят какие-то патологические изменения. Вероятно, этот дефект не сводится просто к слишком большому или слишком малому числу синапсов: такую разновидность нейропатологии уже обнаружили бы с помощью существующих методов. Скорее всего, исчезают не те синапсы, которые должны исчезать, что и подталкивает мозг к психозу.
Отыскание ясной и однозначной нейропатологии должно стать главной целью исследований аутизма и шизофрении. Если эти недуги – коннектопатии, нужно выйти за пределы френологических методов. Нам понадобятся технологии, которые дает коннектомика. Более того, я полагаю, что изучение аутизма и шизофрении без помощи коннектомики подобно изучению инфекционных заболеваний без микроскопа. Разглядывание микробов, вызывающих болезнь, конечно же, само по себе еще не лекарство, но оно ускоряет его создание. Точно так же, если мы найдем нейропатологию, которая четко и недвусмысленно отличает данное психическое расстройство, это еще не станет лекарством от него, но это будет шаг в нужном направлении.
Давайте рассмотрим противоположную точку зрения, чтобы больше прояснить мою собственную. Возможно, поиск такой нейропатологии – напрасная трата времени. Адепты геномики заявят, что причина аутизма в дефектных генах, так что следует сосредоточиться на их отыскании и не транжирить время на какие-то там коннектомы.
И в самом деле, стремительный прогресс геномики поражает. Когда генные технологии были медленными и дорогостоящими, исследователям приходилось изучать главным образом немногочисленные семейства людей, где на протяжении многих поколений страдали данным заболеванием. Теперь же, чтобы выявить аномалии, можно быстро обследовать геномы больших групп людей. Специалисты обнаружили аномалии в целом ряде различных генов, связанных с возникновением аутизма и шизофрении. Эти достижения впечатляют, но здесь есть и свои ограничения.
Геномика может с высокой степенью уверенности предсказать, что ребенок, появившийся на свет с определенным генетическими дефектами, в дальнейшем станет аутистом или шизофреником. Однако подавляющее большинство случаев этих болезней геномика предсказать не в состоянии, поскольку пока не известно ни одного отдельного дефекта, который сказывался бы в более чем 1–2 % случаев, а большинство известных дефектов проявляются в куда меньшей их доле. В этом смысле для предсказания развития аутизма или шизофрении у данного конкретного человека геномика сейчас неэффективна – точно так же, как неофренология не может заранее определить, каким будет IQ у отдельной личности.
Генетическое тестирование дает более успешные прогнозы касательно болезни Хантингтона (БХ), нейродегенеративного заболевания, которое обычно вспыхивает в среднем возрасте. БХ начинается с непроизвольных подергиваний и постепенно приводит больного к угасанию мыслительных способностей и слабоумию. Поскольку в этот процесс вовлечен всего один ген, БХ куда легче предсказывать, чем аутизм. Аномальный вариант гена можно обнаружить с помощью весьма точного ДНК-теста. Положительный результат теста означает, что у обследуемого разовьется БХ, отрицательный результат – что у него никогда не будет этого заболевания.
Понимание генетики аутизма и шизофрении дается не так легко, поскольку к ним причастно очень много генов. Один из возможных путей развития этих исследований – предположить, что аутизм на самом деле состоит из множества разновидностей, и каждая из них обусловлена своим дефектным геном. Каждую разновидность аутизма можно изучать независимо, разрабатывая для него свою методику лечения. Сейчас эту стратегию применяют многие исследователи, и мне кажется, на коротком отрезке времени она способна принести наибольший успех. Но в долгосрочной перспективе может оправдать себя иной подход: различные генетические дефекты отвечают за одну и ту же нейропатологию. И я полагаю, нам следует сосредоточиться на идентификации этой патологии и отыскании методов ее лечения.
Энтузиасты геномики возразят, что лечение нейропатологии – подход неправильный, ведь он направлен не на устранение причины болезни. Если дефектные гены служат причиной психических расстройств, нам следует применять генную терапию, чтобы заменить неудачную копию гена удачной. Специалисты уже пытаются применить такую стратегию, занимаясь генной инженерией животных, страдающих генетическими дефектами, которые вызывают заболевания мозга. В некоторых случаях им удалось добиться значительного успеха, корректируя генетические дефекты в ходе лечения взрослых животных. Такие работы могут привести к созданию методик лечения людей. Но эта стратегия, очень вероятно, не всегда будет действенной или же будет действенной лишь отчасти. Если генетический дефект нарушает главным образом функционирование мозга
Для ясности приведем следующую аналогию. Допустим, вы страдаете от депрессии из-за того, что ваш брак трещит по швам. Вы обращаетесь к старомодному психоаналитику, и он сообщает вам, что ваши проблемы коренятся в скверных отношениях, которые были у вас в детстве с вашей матерью. Может, и так, но каким образом это откровение поможет вам по-настоящему решить вашу проблему? Теперь, когда вы уже выросли, да и ваша родительница стала намного старше, замена ее на приемную мать ситуацию не спасет.
Говорить, что психические расстройства вызваны дефектами генов, – то же самое, что винить во всем родителей: когда-то это было весьма распространенное объяснение недугов и поведенческих отклонений. Только вот не совсем понятно, как использовать это «историческое» объяснение для выработки методов лечения. Генная терапия, применяемая к взрослому человеку, чей мозг с рождения развивался ненормально, столь же неэффективна, как и замена матери взрослого человека.
А теперь представим себе, что психическое расстройство вызвано коннектопатией. Чтобы найти настоящее средство его лечения, следует скорректировать аномальные связи. И теперь возникает очевидный вопрос: насколько мы можем изменить свои коннектомы и как это сделать лучше всего?
Глава 7
Обновление нашего потенциала
Жизнь можно сравнить с игрой в карты, только вместо карт вам сданы гены. Свой геном вы изменить не можете: таков уж вам достался расклад, с ним вам и придется играть. Геномная перспектива отдает пессимизмом, она узка и ограничена со всех сторон. Напротив, ваш коннектом меняется на протяжении всей вашей жизни, и вы до некоторой степени можете управлять этим процессом. Коннектом несет в себе оптимистический заряд возможностей и потенциала. Так это или нет? Насколько мы вообще можем себя менять?
Молитве о спокойствии, процитированной в начале главы 2, вторят старые стихи:
Схожим настроением проникнуты пособия из отдела «самоучителей жизни» в вашем ближайшем книжном. Проглядите содержимое этих полок, и вы наткнетесь на множество книг, которые отнюдь не учат вас, как измениться: они учат покорности судьбе и смирению. Если вы убедитесь, что изменить свою супругу или супруга не получится, очень может быть, что вы наконец-то перестанете ныть и научитесь радоваться собственному браку. Если вы верите, что ваш вес предопределен генетически, очень может быть, что вы наконец-то слезете с диеты и снова начнете получать удовольствие от еды.
С другой стороны спектра находятся руководства по правильному питанию с названиями вроде «Я заставлю вас похудеть» или «Станьте хозяином своего метаболизма». Эти заглавия призваны внушать оптимизм тем, кто намерен сбросить вес. В своем путеводителе по «учебникам жизни», названном «Что вы способны изменить и что – нет», психолог Мартин Селигман выводит эмпирическое доказательство похуденческого пессимизма. Дело в том, что лишь 5–10 % людей действительно достигают долговременной потери веса благодаря диете. Это весьма низкий показатель, он многих приведет в уныние.
Так возможны ли изменения? Изучение близнецов показало, что гены влияют на человеческое поведение, однако не полностью определяют его. Тем не менее появилась еще одна разновидность детерминизма, на сей раз – основанная на свойствах мозга. Она тоже отдает пессимизмом. Часто можно услышать, как говорят: «Уж таков наш Джонни, у него в мозгу просто всё иначе подключено». Такой
Наиболее очевидное следствие коннектомного детерминизма таково: легче всего менять людей в первые годы жизни. Конструирование мозга – процесс долгий и сложный. Разумеется, эффективнее вмешиваться в него на ранних стадиях. Пока дом строится, еще сравнительно легко отклониться от изначального плана архитектора. Но, как знают все, кто когда-нибудь делал у себя перепланировку, куда труднее внести масштабные изменения в уже готовое здание. Если вы в зрелом возрасте пытались выучить иностранный язык, вы наверняка обнаружили, что это очень нелегко. Даже если вы добились успеха, вы, скорее всего, не говорите как носители языка. А дети, похоже, выучивают второй язык без видимых усилий, их мозг кажется более «ковким». Но распространяется ли это свойство и на другие умственно-психические способности?
В 1997 году тогдашняя первая леди США Хиллари Клинтон проводила в Белом доме конференцию под названием «Что говорят нам о наших самых маленьких детях новые исследования мозга». Адепты движения «От нуля до трех лет» собрались, чтобы услышать, как убедительно нейронаука доказала эффективность вмешательства в физиологию ребенка на протяжении первых трех лет его жизни. На мероприятии присутствовал актер и режиссер Роб Райнер, как раз в 1997 году основавший фонд «Я – твое дитя». Тогда он затевал цикл обучающих видеофильмов для родителей – о принципах воспитания детей. Название первого фильма звучало так: «Первые годы жизни длятся вечно».