Интенсивность излучения можно было измерить без особых проблем. Она определялась как функция частоты, ее графиком является кривая, выходящая из начала координат, следующая через точку максимума и приближающаяся к нулю по мере роста частоты. Эта кривая напоминает асимметричный колокол, высота и ширина которого зависят от температуры. Однако эту кривую нельзя было объяснить с помощью известных в то время теорий. К 1910 году немецкий ученый Макс Планк эмпирическим путем получил математическую формулу, описывавшую результаты наблюдений для любой частоты и температуры. Для теоретического подкрепления этой формулы Планку пришлось выдвинуть крайне специфическую гипотезу (по его словам, это было «актом отчаяния»): ученый предположил, что излучение с частотой ƒ не может передавать материи произвольную величину энергии; энергия должна быть кратной некой минимальной величине, пропорциональной частоте излучения. Энергообмен описывался дискретной величиной
Значение этой постоянной очень мало: h= 6,6 • 10-34, и из-за этого гипотеза Планка никак не проявляется в повседневной жизни. Конечно, сегодня эту гипотезу называют революционной, однако в свое время никто не ожидал подобного эффекта. Ученые, изучавшие абсолютно черное тело, использовали чудесную формулу Планка, корректность которой находила все новые подтверждения, но не придавали никакого значения его рассуждениям.
Исключением стал Эйнштейн – он не только серьезно отнесся к гипотезе Планка, но и пошел дальше него, совершив настоящую революцию в физике. В одной из своих знаменитых статей 1905 года – в работе «Об одной эвристической точке зрения, касающейся возникновения и превращения света» – Эйнштейн предположил, что свет образован квантами энергии, или частицами, которые с 1924 года называются фотонами. Иными словами, излучение передает дискретные величины энергии потому, что оно само состоит из дискретных элементов. Эта новая гипотеза помогла Эйнштейну объяснить два интересных экспериментальных результата. Одним из них был фотоэффект – явление, которое заключается в испускании металлом электронов под воздействием ультрафиолетовых лучей. Эйнштейн объяснил результаты, полученные Филиппом фон Ленардом в 1902 году, и выдвинул несколько гипотез, которые подтвердил Роберт Милликен в 1916 году. Еще одно любопытное достижение ученого было связано с удельной теплоемкостью – физической величиной, характеризующей изменение температуры тел при нагреве. С начала XIX века известно, что удельная теплоемкость тел при достаточно высоких температурах постоянна. Однако при низких температурах в классическую трактовку теплоемкости вносятся все новые и новые исключения. В работе, которую впоследствии уточнил голландский ученый Петер Дебай, Эйнштейн доказал, что кванты энергии в точности описывают результаты экспериментов с теплоемкостью тел при любой температуре. Таким образом, гипотезу Планка для частной задачи об излучении абсолютно черного тела Эйнштейн применил к самым разным областям.
Однако с гипотезой о фотонах появилась новая проблема. На протяжении XIX века ученые получали все новые доказательства того, что свет по своей природе представляет собой электромагнитную волну. Но если свет состоит из частиц, как быть с волновой теорией? Эйнштейн осознавал эту трудность, поэтому в названии его статьи и говорилось «об одной эвристической точке зрения» – то есть о чем-то, что нельзя строго доказать, но можно лишь подтвердить, сопоставив с результатами наблюдений. Фотонная гипотеза была подтверждена в 1922 году американским ученым Комптоном. В своем эксперименте он облучил электроны пучком рентгеновских лучей и доказал, что полученные результаты можно объяснить, если предположить, что рентгеновские лучи состоят из частиц. Что же такое свет – волна или множество частиц? По мнению Эйнштейна, корректны обе теории. Он считал, что в итоге будет найдена общая теория, объединяющая корпускулярную и волновую. Нечто подобное действительно произошло, хотя и не совсем так, как предполагал Эйнштейн.
Все фотоны, электроны и другие частицы безумны, но, к счастью для физиков, все они безумны одинаково и больны одним недугом, который называется корпускулярно-волновым дуализмом.
В 1923 году французский ученый Луи де Бройль применил идеи Эйнштейна в новой области. Он счел, что если свет представляет собой волну, образованную частицами, то электрон – это частица, связанная с волной. Де Бройль показал, что произведение импульса электрона,
Следовательно, электроны и любые субатомные частицы ведут себя так же необычно, как и свет, и проявляют себя и как частица, и как волна. Позднее мы еще вернемся к этому явлению, а пока расскажем о последнем элементе головоломки, с которой начиналась квантовая физика.
В V веке до н. э. древние греки создали несколько разных теорий об устройстве материи. Одной из них был атомизм. Атомисты считали, что материя состоит из частиц, обладающих идеальными свойствами. Эти частицы невидимые, неделимые (именно так с греческого переводится слово «атом»), полные, вечные и имеют разную форму. Однако в западной цивилизации в течение более чем 20 веков господствовала другая теория, согласно которой любое вещество есть сочетание четырех элементов: воздуха, огня, земли и воды.
В XIX веке химики опровергли эту теорию экспериментально и предложили новую концепцию атома. С одной стороны, французский ученый Лавуазье называл «элементарными» вещества, которые нельзя разложить на другие, более простые – таким образом, вода, воздух, земля и огонь не могли быть базовыми элементами всего сущего. С другой стороны, английский ученый Дальтон показал, что закономерности, наблюдаемые при химических реакциях, можно объяснить, допустив существование крайне малых дискретных величин – атомов. Новую концепцию поддерживали далеко не все ученые, хотя она и подтверждалась экспериментально. Философы Эрнест Ренан, Огюст Конт и Георг Гегель, а также ученые Марселей Бертло, Эрнст Мах и Вильгельм Оствальд не признавали существования чего-то в принципе ненаблюдаемого. Однако оставим в стороне развитие атомистической теории и перенесемся в 1911 год, когда было обнаружено, что само название «атом» не вполне корректно.
Эксперименты, проведенные в Манчестере группой ученых под руководством новозеландца Эрнеста Резерфорда (1871-1937), показали, что атомы имеют собственную структуру. В центре атома находилось положительно заряженное ядро, в котором была заключена почти вся масса атома. Вокруг ядра перемещались отрицательно заряженные электроны, количество которых было достаточным, чтобы общий заряд атома равнялся нулю. Полученная модель напоминала планетарную систему, в которой на смену гравитационному взаимодействию пришло электромагнитное. Однако в силу законов электромагнетизма эта модель должна быть нестабильной, так как при любом движении электрического заряда возникает излучение. Именно на этом основан принцип действия любой антенны: информация, транслируемая передатчиком, преобразуется в переменный ток, то есть в ускорение зарядов в антенне. Эти заряды испускают электромагнитные волны, которые фиксируются другой антенной и декодируются в виде звука или изображения. Электрон, вращающийся вокруг ядра, представляет собой электрический заряд, движущийся с ускорением, следовательно, при его движении должно возникать излучение. Так как излучаемая энергия никак не восполняется, электроны должны довольно быстро потерять всю свою энергию и упасть на ядро.
С другой стороны, кажется очевидным, что атомные спектры содержат информацию о внутренней структуре атомов. В 1913 году Бор предложил решить эту проблему с помощью квантификации. Он писал: «Каким бы ни было изменение законов движения электронов, кажется необходимым ввести величину, чуждую классической электродинамике. Эта величина – постоянная Планка». В следующей главе мы расскажем подробнее о первых моделях атома, а пока вновь вернемся к главному герою нашего повествования.
Война началась 1 августа 1914 года со столкновения стран Антанты (Великобритании, России и Франции) и Германской и Австро-Венгерской империй. Позднее в противоборство вступили и другие государства. Конфликт завершился 18 ноября 1918 года. Таким образом, в начале войны Гейзенберг учился в четвертом классе, а к ее концу – в восьмом. Начало войны сопровождалось национальным подъемом и единением. Все страны считали себя не агрессорами, а жертвами, при этом все они несколько лет готовились к будущей войне.
Стратегия Германии включала завоевание нейтральной Бельгии. Катастрофические разрушения и человеческие жертвы, а также пожар в библиотеке Лувенского университета привели к тому, что государства Антанты начали в прессе кампанию против Германии, которую называли страной варваров и разрушителей культуры. В ответ на это группа из 93 преподавателей немецких университетов выпустила манифест «К цивилизованному миру». Принимая сторону немецких военных, ученые выступили «против лжи и клеветы, которыми наши враги стараются очернить правое дело Германии». В манифесте говорилось: «Без немецкого милитаризма немецкая культура была бы давным-давно уничтожена в самом зародыше».
В ответ на манифест Георг Николаи, преподаватель физиологии в Берлинском университете, выступил с пацифистским воззванием, под которым подписались только физик Альберт Эйнштейн, астроном Вильгельм Фёрстер и философ Отто Бук. В своем «Воззвании к европейцам» Николаи, помимо прочего, писал, что «в войне едва ли есть победитель и, возможно, есть лишь побежденные», он призывал к объединению Европы и пророчески предостерегал «не допустить, чтобы условия заключения мира стали предпосылками к будущим войнам». Однако манифест девяноста трех в большей мере отражал настроения немецкого общества и имел огромный резонанс в научном мире.
Отец Гейзенберга, как и многие другие преподаватели, был мобилизован. Во время войны в Максимилиановской гимназии поддерживалась патриотическая доктрина, в которой немецкая культура отождествлялась с милитаризмом. В 1910 году группа мюнхенских военных сформировала общество Wehrkraftverein (Баварская ассоциация оборонительных сил) с целью преподавания старшеклассникам во внеурочное время начальной военной подготовки. Общество напоминало военизированную организацию скаутов и в годы войны играло особую роль. Большинство школьников, достигнув 15 лет, вступали в него и в течение двух лет готовились к будущему призыву на военную службу. Гейзенберг также в 1916 году вступил в ячейку общества в своей гимназии. В конечном итоге в армию он не попал: за месяц до 17-летия Вернера было заключено перемирие. А вот его брат Эрвин провел на фронте больше года.
Война затягивалась, и энтузиазм первых лет постепенно снижался. Человеческие жертвы, недостаток продовольствия и топлива – все это вело к росту социального напряжения. В январе 1918 года в Германии начались забастовки и демонстрации – люди требовали прекращения войны. Митинги были подавлены военными, а 8 ноября 1918 года началось матросское восстание в Вильгельмсхафене и Киле, которое переросло в Ноябрьскую революцию, охватившую всю страну. На следующий день Вильгельм II отрекся от прусского престола и оставил трон императора Германии. В Берлине была провозглашена Веймарская республика. После подписания мирного договора консерваторы и правые отказались признать поражение. Они заявляли, что перемирие стало «ударом в спину» со стороны предателей – большевиков и евреев. В течение многих лет в стране сохранялась сложная политическая обстановка, не прекращались уличные бои, попытки государственных переворотов, то тут, то там вспыхивали революционные и контрреволюционные восстания. Все эти события повлияли на политические взгляды Гейзенберга и его понимание гражданского долга.
Когда в апреле 1919 года в Мюнхене была провозглашена Баварская Советская Республика, правительство отправило на подавление беспорядков воинские части и военизированные организации, состоявшие из фронтовиков и искателей приключений, монархистов и правых, которым были чужды как республика, так и революция. Руководство университетов убеждало студентов записываться в ополчение, чтобы защитить Баварию от большевизма. На Мюнхен была наложена экономическая блокада, началась подготовка к вторжению извне и возможной осаде. С помощью Wehrkraftverein учащиеся были мобилизованы на борьбу с большевиками, и Гейзенберг с апреля по июнь числился в правительственном полку. Он был проводником и писарем, занимался перевозкой оружия и охранял пленных, судьба которых была предрешена: когда в начале мая правительственные войска взяли Мюнхен, менее чем за неделю по приговорам полевых судов было расстреляно свыше 1000 человек.
В общем случае я бы сказал, что научиться чему-то возможно, только решая задачи. Очень важно, чтобы ученики пытались решать задачи. […]
В том, чтобы только слушать, мало пользы.
После войны молодежь предложила продолжить деятельность Wehrkraftverein, но сделать организацию менее военизированной. Так появилось движение «Искатели нового пути» (от нем. Neupfadfinder). Несколько учащихся Максимилиановской гимназии, которым было около 14 лет, решили создать собственную ячейку движения и попросили Гейзенберга возглавить ее. Эти события происходили в середине апреля 1919 года, в период расцвета Баварской Советской Республики. В начале августа более 200 руководителей ячеек «искателей» из Германии и Австрии собрались близ Регенсбурга, чтобы обсудить реформу молодежного движения. Все они были глубоко задеты исходом войны и чувствовали, что старшее поколение, приведшее страну к поражению, отчасти предало их, что личность растворялась в обществе, полном алчности и лицемерия. «Искатели» говорили, что нужно вернуться к фундаментальным ценностям и восстановить на их базе истину и добродетель в человеке и обществе, – словом, участники собрания отстаивали ценности немецкого романтизма. Они выступали против науки и рационализма и были довольно аполитичны. К ним присоединился и Гейзенберг, с ранних лет понимавший непреходящую ценность не только науки, но и музыки, поэзии и философии.
Гейзенберг с членами семьи в автомобиле. На переднем сиденье – Вернер (в центре), его отец и брат Эрвин.
Гейзенберг (слева, стоит) с братом Эрвином и родителями. Фотография сделана в конце Первой мировой войны.
Хотя группа Гейзенберга разделяла идеи «Искателей нового пути», она сохраняла определенную независимость. Ее члены устраивали турпоходы, организовывали встречи, посвященные музыке, поэзии, философским обсуждениям или игре в шахматы. Кстати, Гейзенберг был хорошим шахматистом и мог сыграть с друзьями партию в уме во время похода, а по возвращении домой полностью восстановить ее. Даже когда ученый уехал из Мюнхена для защиты докторской диссертации, он поддерживал отношения с членами своей ячейки и часто встречался с ними, пока нацисты не запретили все общества подобного рода. Участие юноши в молодежном движении укрепило его патриотические чувства и определило жизненную позицию. Зная об этом, можно лучше понять мотивы поступков ученого во время Второй мировой войны и по ее завершении. Как иронично отмечал Вольфганг Паули, Гейзенберг на многие годы остался подростком и часто вел себя как бойскаут.
В последние годы войны школы из-за нехватки топлива на зиму закрывались, а ученики должны были заниматься дома и посещать гимназию только для того, чтобы сдать выполненные задания и получить новые. Как и следовало ожидать, Гейзенберг намного опередил одноклассников. К примеру, он самостоятельно изучил анализ бесконечно малых и интегральное исчисление. В основе этих дисциплин лежат достаточно простые правила, однако чтобы развить интуицию, позволяющую видеть способы решения новых задач, необходимы длительные упражнения.
Гейзенберга интересовали атомы, в основном по философским причинам, о чем он пишет в первой главе своих мемуаров «Беседы вокруг атомной физики». Ученый вспоминал, что в его пособии по физике при объяснении химических реакций приводились изображения атомов с крючками и кольцами. Подобная модель казалась ему абсурдной.
Однако биограф Гейзенберга, Дэвид Кэссиди, утверждает, что в школьном учебнике не было никаких крючков и колец. Лишь один раз в нем была изображена молекула воды – точно такая, как мы ее представляем сегодня: три шарика, соединенные двумя палочками, которые обозначают химические связи. По-видимому, Гейзенберг, сам того не осознавая, дополнил школьные воспоминания более поздними идеями. Он также упоминает диалог Платона «Тимей», который прочел на греческом языке в рамках школьной программы. В этом диалоге Платон связывает каждый из четырех элементов (землю, огонь, воду и воздух) с одним из четырех правильных многогранников – кубом, тетраэдром, икосаэдром и октаэдром соответственно. Гейзенберг считал, что идеи Платона не имеют никакого основания, и не понимал, как мог столь проницательный мыслитель верить в нечто подобное. Юноша пришел к выводу: чтобы познать свойства материи, нужно определить ее элементарные составляющие. Именно этим и занималась атомная физика.
…Меня привлекала идея о том, что даже в мельчайших частицах материи можно встретить математические формы.
Будущий ученый также интересовался теорией относительности и прочел брошюру, написанную Эйнштейном специально для учеников средней школы. Позднее он ознакомился с трудом Германа Вейля «Пространство. Время. Материя», опубликованным в 1918 году. В этой увлекательной книге подробно объяснялась общая теория относительности и весь необходимый математический аппарат.
Однако интерес Гейзенберга к этой теме был связан не с физикой, а скорее с философией. В то время Вернер увлекся идеей о пересмотре понятий пространства и времени:
В конце июня 1920 года Гейзенберг сдал итоговый экзамен на получение аттестата зрелости и поступил в Мюнхенский университет, чтобы изучать математику.
Глава 2 Кризис атомной физики
Излучение, испускаемое или поглощаемое атомами, содержит информацию об их структуре и свойствах.
Уже во время учебы в университете Гейзенберг смог увидеть, что существовавшие в то время модели атомов опирались на странную смесь классических идей и квантовых гипотез, не всегда обоснованную и не лишенную противоречий.
Через несколько дней после окончания Первой мировой войны в Берлине состоялось заседание Прусской академии наук. Макс Планк, выступавший на нем, сказал: «[…] Есть кое-что, что никакой враг, ни внешний, ни внутренний, не смог отнять у нас: это положение немецкой науки в мире». По его мнению, наука была ярким проявлением немецкой культуры, и ее следовало использовать для того, чтобы восстановить национальное достоинство. Однако в сложившихся экономических условиях сделать это было непросто. Планк стал одним из основателей Чрезвычайной ассоциации немецкой науки – сообщества ученых, которое финансировалось из государственного и местных бюджетов, а также за счет частных пожертвований. Полученные средства направлялись на выплату стипендий и проведение исследований. Именно в этой непростой обстановке Гейзенберг открыл для себя атомную физику и квантовую теорию во всей их сложности и противоречивости.
В октябре 1920 года Гейзенберг поступил в Мюнхенский университет, где, как и во многих немецких вузах того времени, настроения все больше приобретали правый уклон. Гейзенберг хотел посвятить себя математике и последовать отцовским путем, то есть закончить обучение, получить степень доктора, преподавать в Максимилиановской гимназии и одновременно заниматься исследованиями, необходимыми для хабилитации, и, наконец, возглавить кафедру в университете.
Чтобы получить докторскую степень, требовалось закончить шесть семестров (примерно по четыре месяца в каждом) и записаться на семинар к одному из преподавателей. Студенты, допущенные к семинарам, изучали специализированные темы, вели собственные исследования, публиковали статьи в профильных журналах. Как правило, на семинар записывались студенты последних курсов, но Гейзенберг вспоминал: «[Я] был нескромен и посчитал, что уже в первом семестре могу записаться на семинар к одному из преподавателей». К этому времени он уже самостоятельно изучил дифференциальное и интегральное исчисление, теорию чисел и решил, что обладает достаточными знаниями математики. Однако, как признавался Вернер спустя несколько лет, его знания были достаточно беспорядочными и обрывочными.
Отец Гейзенберга обратился к математику Фердинанду фон Линдеману, который был известен тем, что доказал: число тт трансцендентно, то есть не является корнем многочлена с целыми коэффициентами. Из этого следовало, что с помощью циркуля и линейки нельзя построить квадрат, площадь которого будет равна площади данного круга, то есть древняя задача о квадратуре круга не имеет решения. Линдеману не очень хотелось допускать на свой семинар первокурсника, и он воспользовался первой же возможностью, чтобы избавиться от юноши. Профессор на собеседовании поинтересовался у Вернера, какие книги по математике тот недавно прочел. Гейзенберг упомянул «Пространство. Время. Материю» Германа Вейля. Эта книга, написанная специалистом по прикладной математике, превосходно подходила для физика, но не для того, кто интересовался теоретической математикой. Линдеман сказал, что после труда Вейля Гейзенберг потерян для математики. На том встреча и завершилась.
«Меня восхищает в вас то, что вы воспитали много талантливых юных ученых […] Вы, должно быть, обладаете даром пробуждать умы слушателей и обогащать их».
Смущенный юноша счел, что альтернативой математике может стать теоретическая физика. Отец сомневался в выборе сына: это научное направление не считалось очень престижным, да и получить место преподавателя гимназии с таким дипломом было затруднительно. Тем не менее он задействовал свои связи и организовал встречу Вернера с преподавателем теоретической физики Арнольдом Зоммерфельдом, который уже привык к вундеркиндам – двумя годами ранее он принял на свой семинар австрийца Вольфганга Паули, также первокурсника. Кроме того, Зоммерфельду понравилось, что Гейзенберг прочел книгу Вейля. Он остался доволен итогами беседы и включил нового студента в число участников семинара, намереваясь получше присмотреться к юноше уже по ходу работы.
Я помню лишь, что выступил очень плохо, поскольку Зоммерфельд позднее сказал мне: «Возможно, вы понимали себя самого, но, несомненно, не смогли донести это до остальных».