Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта. Благодаря им мы улучшаем сайт!
Принять и закрыть

Читать, слущать книги онлайн бесплатно!

Электронная Литература.

Бесплатная онлайн библиотека.

Читать: От водорода до …? - Пётр Рейнгольдович Таубе на бесплатной онлайн библиотеке Э-Лит


Помоги проекту - поделись книгой:

Бета-лучи — это поток отрицательно заряженных частиц, одинаковых по природе, величине заряда, массе с электронами. Проникающая способность бета-лучей значительно меньше, чем гамма-лучей, и для воздуха измеряется 18–20 м. Слой свинца в 3 мм толщиной полностью задерживает бета-лучи.

Альфа-лучи — это поток положительно заряженных частиц, называемых альфа-частицами и представляющих собой ядра атомов гелия. Каждая альфа-частица содержит 2 протона и 2 нейтрона, т. е. массовое число ее равняется четырем, а заряд — двум единицам. Скорость распространения альфа-частиц достигает 20 000 км в сек. Проникающая способность альфа-лучей еще меньше, чем бета-лучей. В воздух альфа-лучи проникают на 10–12 см, а лист обыкновенной писчей бумаги задерживает их почти полностью. В состав радиоактивного излучения не обязательно входят все три вида лучей одновременно.

В настоящее время различают естественную и искусственную радиоактивность. Естественной называют радиоактивность естественных, т. е. встречающихся в природе, химических элементов, или их изотопов. Радиоактивность, которой обладают элементы, или их изотопы, полученные искусственным путем, называется искусственной радиоактивностью.

Изучение радиоактивности показывает, что испускание тех или иных лучей сопровождается распадом атомов одних химических элементов и образованием других. Иными словами, атомы элементов могут превращаться друг в друга. Так, например, твердый радиоактивный элемент радий в процессе излучений переходит в другой, тоже радиоактивный, но уже газообразный элемент — радон. Последний в процессе излучения, вновь распадаясь, превращается в новый элемент полоний и т. д.

Все образующиеся в процессе излучения продукты можно расположить в единый радиоактивный ряд, или семейство элементов. Такое превращение одного радиоактивного элемента в другой происходит до тех пор, пока в результате радиоактивного распада не образуются атомы устойчивого нерадиоактивного элемента. В настоящее время известны 4 радиоактивных ряда: ряд урана, ряд тория, ряд актиния и ряд нептуния. Каждый ряд заканчивается нерадиоактивным изотопом свинца. Поэтому все элементы, расположенные в таблице Д. И. Менделеева за свинцом, как правило, обладают естественной радиоактивностью. Для характеристики продолжительности существования, или, как говорят, «жизни» радиоактивного элемента, пользуются специальным понятием, называемым периодом полураспада. Периодом полураспада называется время, в течение которого количество радиоактивного вещества уменьшается наполовину. Так, например, период полураспада радия с массовым числом 226 равен 1590 лет. Это значит, что от одного грамма радия через 1590 лет останется полграмма, через следующее 1590 лет — четверть грамма и т. д. Периоды полураспада могут колебаться в весьма широких интервалах. Так, период полураспада урана с массовым числом 238 равен 4,5 млрд. лет, в то время, как полоний с массовым числом 213 имеет период полураспада, равный одной миллионной доле секунды.

Изучение радиоактивности открыло новый способ воздействия на атомное ядро, а именно: воздействие радиоактивным излучением. В 1919 г. английский физик Резерфорд применил для разрушений атомных ядер энергию альфа-частиц. «Бомбардируя» имя атомы азота, он получил ядра одного из изотопов кислорода. Вскоре с помощью альфа-частиц удалось расщепить ядра и других химических элементов.

Изучая действие альфа-частиц на атомы устойчивых элементов, известные французские ученые Ирен и Фредерик Жолио-Кюри открыли возможность получения радиоактивных изотопов многих элементов искусственным путем. Открытый этими учеными способ заключается в облучении атомов химических элементов быстро двигающимися частицами. Для сообщения частицам больших скоростей в настоящее время применяют специальные устройства — ускорители. Это огромные технические сооружения, позволяющие с помощью электрической энергии сообщать частицам огромные скорости, а значит и энергию. Чтобы судить о развиваемой при этом скорости, достаточно сказать, что в одну секунду частица совершает путь, во много раз превышающий длину окружности экватора. В крупнейшем ускорителе, советском синхрофазотроне, вступившем в строй в 1957 г., частицы получают огромные энергии — в 10 млрд. электронвольт. О размерах советского синхрофазотрона можно судить по электромагниту, весящему 36 000 т.

Открытие ядерных реакций, ведущих к получению новых, не встречающихся в природе радиоактивных изотопов, явилось величайшим достижением человеческого гения, позволившим создавать радиоактивные изотопы для любого элемента периодической системы Д. И. Менделеева. Хотя общее число радиоактивных изотопов, полученных в настоящее время, как уже указывалось, приближается к тысяче, наибольшее практическое применение имеет сравнительно небольшое их число.

Сами о себе

Многие века ученые полагали, что все существующие в природе цвета и их оттенки происходят в результате смешивания света с… «тьмой!». А так как «тьму» представляли носительницей черного цвета, то считалось, что основным цветом в природе является черный, от разбавления которого бесцветным «светом» получаются все остальные. Выходило, что, например, в синем цвете много «тьмы» и мало «света», в желтом, наоборот, много «света» и мало «тьмы».

Так думали, так считали, так утверждали. Однако никто не мог доказать справедливость такого заключения, никто не мог разложить какой-либо цвет на «тьму» и «свет».

И только в 1666 г. тогда еще молодой и мало известный, а впоследствии знаменитый физик, математик и астроном Исаак Ньютон впервые провел свой знаменитый опыт по разложению света с помощью стеклянной призмы. Суть этого опыта состоит в том, что если свет пропустить через стеклянную призму, то, пройдя ее, он развертывается в яркую полоску, составленную из различных постепенно переходящих один в другой цветов. В цветной полоске, получившей название спектра (от латинского слова «спектрум» — видимое) насчитывается семь цветов. Ньютон доказал, что существовавшее объяснение цветов неправильно. Оказалось, что не «тьма», а бесцветный свет, или белый цвет, как стали называть его впоследствии, является основным и состоит в свою очередь из семи цветов.

Почти двести лет спустя (в 1858 г.) после опытов Ньютона, профессор химии в Гейдельбергском университете Роберт Бунзен изобрел горелку для сжигания горючих газов. С помощью горелки Бунзена можно было получать пламя очень высокой температуры. Помещая в пламя горелки различные вещества, Бунзен заметил, что они, раскаляясь и превращаясь в пар, окрашивают пламя в различные цвета. Замечательным было то, что каждое вещество окрашивает пламя в определенный цвет. Так, например, медь дает пламя зеленого цвета, натрий — желтое пламя, стронций — малиново-красное.

Вначале Бунзен решил, что он открыл чрезвычайно простой, точный и, главное, быстрый способ анализа. Вместо длительных операций химического исследования вещества достаточно было внести исследуемое вещество в пламя горелки, чтобы по окраске пламени решить вопрос о природе вещества. Зеленое пламя укажет медь, желтое «скажет» о натрии, малиново-красное «откроет» стронций.

Но вскоре же пришло разочарование. Оказалось, что, например, литий дает пламя одинакового цвета со стронцием, слабая фиолетовая окраска пламени от калия исчезает, если вместе с ним присутствуют соединения натрия. Убедившись в том, что различные вещества, нагреваясь в горелке, дают очень часто пламя одинакового цвета, Бунзен уже был склонен прекратить свои исследования. Но ему помог Густав Кирхгоф, профессор физики, занимавший кафедру в том же Гейдельбергском университете.

Кирхгоф решил пропускать свет от окрашенного пламени через призму, рассчитывая установить закономерности спектра различных веществ. Расчет Кирхгофа оправдался: оказалось, что пламя каждого из различных веществ дает особый, отличный от всех других, спектр. Причем спектры пламени отличались от спектра белого света своим видом: они были не сплошными, а состояли из отдельных узких цветных полосок, почти линий, располагающихся в различных частях спектральной дорожки. Так, спектр лития состоял из одной яркой красной линии и одной оранжевой послабее. Спектр стронция, пары которого окрашивали пламя бунзеновской горелки в такой же малиново-красный цвет, как и литий, состоял из одной голубой, двух красных, оранжевой и желтой линий. Пары натрия давали спектр с двумя желтыми линиями, так близко расположенными друг к другу, что вначале она была принята за одну.

Усовершенствовав прибор для наблюдения спектров и назвав его спектроскопом (от слов «спектр» и «скопео» — наблюдаю, смотрю), Кирхгоф передал свой прибор Бунзену, который стал исследовать буквально все, что попадалось ему под руку. Множество различных веществ исследовал Бунзен, помещая их в жаркое пламя своей горелки и наблюдая спектр раскаленных паров. Теперь у него уже не было сомнений в том, что открыт новый способ распознавания химических веществ. Вскоре Бунзен убедился и в необычайной чувствительности и точности нового способа исследования. Так, исследуя кусочки гранита, отколотые от скалы в окрестностях Гейдельберга, Бунзен обнаружил в них с помощью спектроскопа литий. Это вещество он нашел и в воде источника, вытекавшего у подножья той же скалы. Тогда Бунзен решил исследовать листья растений, цепляющихся за склоны скалы, желая проверить в листьях наличие лития. По мнению Бунзена, этот элемент должен был попасть в растения вместе с водой, поглощенной корнями растений из почвы, покрывавшей тонким слоем гранитные глыбы. Спектроскоп указал наличие лития и в листьях растения. Бунзен покормил корову этими листьями и обнаружил после этого в ее молоке тот же литий. Больше того, литий был обнаружен и в крови людей, пивших молоко этой коровы.

Точность и чувствительность нового метода была исключительной. Достаточно было, например, потереть пальцами над пламенем горелки, чтобы в спектроскопе вспыхнула желтая линия натрия, входящего в состав ткани. В буквально невесомых частицах, стертых с поверхности кожи, содержится не более одной десятимиллионной доли миллиграмма[6]. Никакими иными способами невозможно обнаружить такие количества вещества. И действительно, достаточно было человеку, носящему, например, очки в медной оправе, поправить их, у себя на носу, чтобы можно было с помощью спектроскопа обнаружить медь на его пальцах.

Возникновение и характер спектров, как это было установлено значительно позже, связаны со строением атомов вещества. Так как различные атомы дают и различные спектры, то, очевидно, в природе существует столько же различных спектров, сколько и различных «сортов» атомов. Атомы любого вещества, подобно микроскопическим радиостанциям, способны подавать свой, им только свойственный «сигнал» — спектр, по которому эти атомы и могут быть обнаружены, где бы они ни находились.

В 1860 г., исследуя спектр минерала, полученного из Саксонии и называвшегося лепидолитом, Бунзен и Кирхгоф увидели красные линии, которые не совпадали с положением линий в спектрах известных в то время элементов. С тем же самым столкнулись исследователи и при изучении спектра сухого остатка, полученного при выпаривании воды из источников курортного местечка Дюркгейм. Только на этот раз линии в спектре были красивого небесно-голубого цвета. Бунзен решил, что лепидолит и дюркгеймская вода содержат новые еще неизвестные элементы.

Действительно, в том же году Бунзен выделил из лепидолита и минеральной воды новые элементы. Один из них за красный цвет спектральных линий назвали рубидием (от латинского слова «рубидус» — красный), другой за голубые линии — цезием («цезиус» по-латыни — голубой).

В качестве веселого курьеза можно рассказать о проделке известного физика Роберта Вуда. У студентов, проживающих в частном пансионате, возникло сомнение в доброкачественности пищи; не готовит ли хозяйка завтрак из остатков обеда? Вуд оставил во время обеда на тарелке кусок мяса, посыпав его хлористым литием. Получив завтрак, он озолил его в муфельной печи, а золу проверил с помощью спектроскопа. Появилась предательская красная линия!

Хозяйка пансионата была разоблачена!

Открытие новых элементов было блестящей победой нового способа исследования природы, который был назван спектральным анализом. Спектральный анализ получил в науке широкое распространение и обогатил ее большим числом замечательных открытий. С помощью спектроскопа человек определил состав далеких звезд, Солнца, метеоров, сгорающих в яркой вспышке высоко над Землей и т. д. В настоящее время спектроскоп — необходимый прибор каждой хорошо оборудованной лаборатории. Он нужен физику и химику, астроному и геологу, агроному и минералогу, врачу и биологу, инженеру и металлургу.

Кирпичи мироздания

Из огня рождающий… воду

1. Водород — Hydrogenium (Н)

Вода из огня! Это кажется невероятным, но это факт. И этот факт впервые установил (1781–1782) английский ученый Генри Кэвендиш. Он сжег в закрытом сосуде бесцветный, без вкуса и запаха газ, который в те времена называли «горючим воздухом», и обнаружил, что продуктом горения была вода. Вначале Кэвендиш не поверил полученному результату, но, проделав ряд точных опытов по сжиганию «горючего воздуха», он убедился, что продуктом горения была только вода, «которая не имела ни вкуса, ни запаха и при испарении досуха не оставляла ни малейшего заметного осадка».

Следует отметить, что еще до Кэвендиша выдающийся английский естествоиспытатель Д. Пристли наблюдал появление влаги при горении и взрыве смеси «горючего воздуха», но … не обратил на это должного внимания.

Несмотря на то, что «горючий воздух» был известен еще средневековому немецкому врачу и естествоиспытателю Парацельсу (XVI в.), а знаменитый английский химик, физик и философ Роберт Бойль в 1660 г. сумел не только получить «горючий воздух» из серной кислоты и железа, но и собрать его в сосуд, чего не умели делать до него, простая (элементарная) природа этого газа была установлена только в 1783 г. В этом году французский ученый Антуан Лоран Лавуазье, желая проверить опыты Кэвендиша, провел точные исследования по изучению продукта горения «горючего воздуха». Они подтвердили опыты Кэвендиша — продуктом горения «горючего воздуха» была только вода. Это доказал Лавуазье не только путем сжигания «горючего воздуха», но и разлагая продукты его горения. Правда, поводом к анализу воды послужило отыскание дешевого способа получения водорода, предпринятое Лавуазье по заданию французской Академии наук в связи с начавшимся развитием воздухоплавания.

За способность производить воду «горючий воздух» стали впоследствии называть водородом. Научное название водорода — «хидрогениум» происходит от греческих слов «хидор» — вода и «генао» — рождаю, произвожу. Таким образом, в названии водорода отражено его основное свойство — способность при горении образовывать воду.

Атомы водорода имеют наименьший вес среди всех атомов других химических элементов, и поэтому водород занимает первое место в периодической системе Д. И. Менделеева.

Водород — один из наиболее распространенных элементов природы, он всюду обнаружен во Вселенной — на Солнце, звездах, в туманностях, в мировом пространстве. На Земле основная масса водорода находится в связанном состоянии в виде различных соединений, главным образом на поверхности земли в виде воды. Общее количество водорода в земной коре достигает 1 % от веса земной коры.

В межзвездном пространстве атомы водорода встречаются в несколько сот раз чаще, чем атомы всех остальных элементов, вместе взятых. Водород преобладает над другими элементами в атмосферах звезд и является главной составной частью солнечной атмосферы.

Значение водорода во Вселенной исключительно велико, он играет особую роль, являясь «космическим топливом», дающим энергию звездам, а в их числе и нашему Солнцу.

В недрах Солнца, где температура достигает 20 миллионов градусов и вещество находится под давлением восьми миллиардов атмосфер, атомы водорода теряют электроны и ядра таких атомов (протоны) приобретают скорости, при которых протекают ядерные реакции. Ядерные реакции, происходящие при очень высокой температуре, называются термоядерными. Термоядерная реакция, при которой из четырех ядер водорода образуется ядро нового химического элемента — гелия, и является источником солнечной энергии.

Образование гелия из водорода, как показал немецкий ученый Бете, происходит на Солнце значительно сложнее, но конечный итог реакции дает тот же результат: вместо четырех ядер водорода появляется ядро гелия. Энергия, освобождающаяся при этой реакции, обеспечивает излучение того огромного количества тепла и света, которое дает Солнце в течение уже многих миллиардов лет. Чтобы представить себе количество энергии, излучаемой Солнцем, достаточно сказать, что для выработки такой энергии понадобилось бы 180 000 000 миллиардов электростанций, обладающих мощностью Волжской ГЭС.

Водород в свободном состоянии встречается на земле в вулканических газах; небольшое количество водорода выделяется растениями. В атмосфере, даже в верхних ее слоях, водород содержится в незначительных количествах, не превышающих 0,00005 % по объему.

В чистом виде водород представляет газ в 14,45 раз легче воздуха, не имеющий цвета, запаха и вкуса. Не ядовит. Водород диффундирует и эффундирует быстрее всех других газов и лучше всех их проводит тепло (теплопроводность водорода в 7 раз больше чем у воздуха).

В природе водород встречается в виде трех изотопов: обычный водород, тяжелый и сверхтяжелый водород. Тяжелый водород содержится в обычном водороде в небольших количествах. На 5 тыс. атомов обычного водорода приходится 1 атом тяжелого. От греческого слова «деутерос», что значит второй, тяжелый водород, как второй изотоп водорода, называется дейтерием. По аналогии с протоном ядро этого атома получило название дейтон; часто его называют дейтерон.

Обозначают дейтерий или латинской буквой D, или сохраняют химическое обозначение водорода и, указывая цифрой 2 его массовое число, пишут Н2.

Дейтерий отличается от обычного водорода строением ядра. Ядро дейтерия состоит из протона и нейтрона, поэтому масса атома дейтерия в два раза больше массы атома обычного водорода. Такое резкое расхождение в массах изотопов одного и того же химического элемента является единственным случаем среди известных изотопов различных элементов. Обычный водород, атомы которого являются простейшими (состоят из одного протона и одного электрона), от слова «протос» — простой — называется иногда протием.

Вода, в которой протий заменен дейтерием, называется тяжелой. Она отличается от обычной своими свойствами. Так, тяжелая вода замерзает не при 0°, как обычная, а при +3,8 °C, кипит не при 100 °C, а при 101,4 °C, имеет большую плотность (1,1056), чем обычная; в тяжелой воде невозможна жизнь. В обычной воде всегда содержится примесь тяжелой. Количество ее невелико и составляет 0,02 % от общей массы. Однако собранная со всего земного шара, она могла бы наполнить водоем, равный по величине объему Черного моря.

Тяжелая вода используется при получении атомной энергии в ядерных реакторах в качестве вещества, замедляющего нейтроны.

Получение тяжелой воды в чистом виде — длительный и дорогой процесс, основанный на электролизе (разложении электрическим током) воды, при котором в первую очередь разлагаются молекулы «обыкновенной» воды, тогда как тяжелая накапливается в остатке. В Западной Европе производство тяжелой воды в промышленном масштабе было впервые осуществлено немцами в годы второй мировой войны на территории оккупированной Норвегии, располагавшей дешевой энергией гидроэлектростанций. Тяжелая вода предназначалась для создания нового вида оружия (атомной бомбы), на которое командование фашистских армий возлагало последние надежды. 28 февраля 1943 г. норвежские патриоты совместно с английскими парашютистами взорвали цех тяжелой воды. Начавшиеся вслед за этим налеты на завод английской авиации вынудили фашистское командование перевезти оборудование и накопленный запас воды в Германию. Норвежские бойцы из армии сопротивления 20 февраля 1945 г. взорвали пароход, уничтожив вместе с оборудованием и 16 куб. м тяжелой воды.

Стоимость тяжелой воды все еще высока. По данным зарубежной печати, один кубический метр тяжелой воды стоит не менее 300 тыс. долларов.

Известен и третий «сверхтяжелый» изотоп. Тритий — называют этот изотоп от латинского слова «тритиум» — третий. Он может быть получен искусственным путем в результате ядерных реакций, например, при «стрельбе» нейтронами в атомы легкого металла лития. В ядрах атомов трития имеется два нейтрона и один протон. В природе распространенность трития ничтожно мала. Один атом трития приходится на миллиард миллиардов атомов обычного водорода. Тритий является радиоактивным изотопом водорода. Он излучает бета-частицы и превращается в изотоп гелия с атомным весом 3. Период полураспада трития около 12,5 лет.

Совсем недавно появилось сообщение о новом изотопе, которому еще не дано названия, хотя и установлено, что атомный вес его равен 4. Группа итальянских физиков, изучив несколько тысяч снимков ядерных реакций, обнаружила этого четвертого «брата» в семействе атомов водорода. Насколько трудной была задача обнаружения «сверхтяжелейшего» водорода, говорит время его существования, равное 0,00000000001 доли секунды.

Кроме обычных молекул водорода, состоящих из двух атомов, предполагается возможность получения трехатомной молекулы — гизония. Не исключено, что гизоний столь же недолговечен, как и «сверхтяжелейший» водород.

Практическое применение водорода разнообразно. Являясь наилегчайшим газом, он используется для наполнения оболочек воздушных шаров, метеорологических зондов, стратостатов и других воздухоплавательных аппаратов. История воздухоплавания, начиная с воздушного шара в 18 куб. м, созданного французским физиком Шарлем, до гигантских управляемых дирижаблей германского конструктора Цеппелина, неразрывно связана с водородом. Однако горючесть водорода при легкой его воспламеняемости от случайных и трудно устранимых причин (грозовые разряды, искры при электризации трением и др.) ограничивала возможности его использования в воздухоплавании.

…С ясного и безоблачного неба в самых неожиданных местах на территории США в годы второй мировой войны падали бомбы, раздавались взрывы, пылали пожары. Но об этих таинственных налетах, без сигналов тревоги и вражеских самолетов в воздухе, хранила молчание даже падкая на сенсации американская печать. Лишь несколько лет назад было сообщено, что эти таинственные бомбардировки осуществлялись воздушными шарами, запущенными с японских островов. Таких шаров было запущено более тысячи.

Прозрачные шары из полиэтиленовой пленки, наполненные водородом (до 10 тыс. куб. м) и снабженные оборудованием для шпионских целей, американская разведка пыталась запускать и на нашу территорию в послевоенные годы.

В химической промышленности водород служит исходным материалом для получения различных веществ (аммиака, твердых жиров и т. д.). Высокая температура горения водорода (до 2500 °C) в кислороде используется с помощью специальных горелок для плавления кварца, тугоплавких металлов, разрезания стальных плит и т. д.

Весьма заманчива своей дешевизной идея двигателя внутреннего сгорания, использующего в качестве топлива водород. Такой мотор, потребляя водород и воздух, выбрасывает в качестве продукта сгорания воду.

Специалисты из агрессивного блока НАТО предполагают, что такие водородные шары пригодны для транспортировки атомных бомб и доставки ракет с заводов к пусковым площадкам.

Для получения водорода в качестве топлива нужна только… вода. Запасы воды — основного «сырья» для получения водорода — на земном шаре буквально неисчерпаемы и составляют 2 · 1018 (2 миллиарда миллиардов) тонн. Так же неисчерпаема и энергия текучей воды крупных рек, которая, превращаясь на электростанциях в энергию электричества, может служить для получения водорода из воды разложением ее электрическим током.

Успехи атомной физики и химии открыли путь к возможности использования в практических целях изотопов водорода. К сожалению, эти возможности в первую очередь были использованы для целей военного характера, для создания водородной бомбы.

В водородной бомбе используется энергия термоядерной реакции (между дейтерием и тритием), ведущей к образованию гелия и выделению нейтронов.

Чтобы между изотопами водорода началась реакция, надо нагреть их до сверхвысоких температур порядка не менее 10 млн. градусов. Такая температура возникает при взрыве атомной бомбы, которая играет роль запала в водородной бомбе.

Водородная бомба превосходит по своей силе атомную. Дело в том, что в атомной бомбе количество атомного взрывчатого материала ограничено и не может превышать определенной так называемой критической массы; в водородной бомбе количество взрывчатого вещества (смесь изотопов водорода) не ограничено.

Рассчитывая на монопольное обладание секретом изготовления водородной бомбы, американский империализм пытался запугать миролюбивые народы и сделать их послушными интересам капитализма.

Однако этот расчет поджигателей войны был уничтожен в самой основе. 20 августа 1953 г. было опубликовано правительственное сообщение об успешном испытании водородной бомбы в СССР. Однако в этом сообщении, как и в ряде последующих заявлений, правительство СССР еще раз подтвердило свою готовность пойти на запрещение всех видов атомного и водородного оружия, что и нашло свое отражение в подписанном недавно Московском договоре о запрещении испытаний ядерного оружия в воде, атмосфере и космическом пространстве.

Неисчерпаемая энергия легчайшего элемента должна служить миру и счастью народов.

Его нашли на солнце

2. Гелий — Helium (He)

18 августа 1868 г. ожидалось полное солнечное затмение. Астрономы всего мира деятельно готовились к этому дню. Они надеялись разрешить тайну протуберанцев — светящихся выступов, видимых в момент полного солнечного затмения по краям солнечного диска. Одни астрономы полагали, что протуберанцы представляют собой высокие лунные горы, которые в момент полного солнечного затмения освещаются лучами Солнца; другие думали, что протуберанцы — это горы на самом Солнце; третьи видели в солнечных выступах огненные облака солнечной атмосферы. Большинство же считало, что протуберанцы — не больше, как оптический обман.

В 1851 г. во время солнечного затмения, наблюдавшегося в Европе, немецкий астроном Шмидт не только увидел солнечные выступы, но и успел разглядеть, что очертания их меняются с течением времени. На основании своих наблюдений Шмидт заключил, что протуберанцы являются раскаленными газовыми облаками, выбрасываемыми в солнечную атмосферу гигантскими извержениями. Однако и после наблюдений Шмидта многие астрономы по-прежнему считали огненные выступы обманом зрения.

Только после полного затмения 18 июля 1860 г., которое наблюдалось в Испании, когда многие астрономы увидели солнечные выступы собственными глазами, а астрономам — итальянцу Секки и французу Делларю удалось не только зарисовать, но и сфотографировать их, ни у кого уже не было сомнений в существовании протуберанцев.

К 1860 г. был уже изобретен спектроскоп — прибор, дающий возможность путем наблюдений видимой части оптического спектра определять качественный состав тела, от которого получается наблюдаемый спектр. Однако в день солнечного затмения никто из астрономов не воспользовался спектроскопом, чтобы рассмотреть спектр протуберанцев. О спектроскопе вспомнили, когда затмение уже закончилось.

Вот почему, готовясь к солнечному затмению 1868 г., каждый астроном в список инструментов для наблюдения включил и спектроскоп. Не забыл этот прибор и Жюль Жансен, известный французский ученый, отправляясь для наблюдения протуберанцев в Индию, где условия для наблюдения солнечного затмения по вычислениям астрономов были наилучшими.

В момент, когда сверкающий диск Солнца был полностью закрыт Луной, Жюль Жансен, исследуя с помощью спектроскопа оранжево-красные языки пламени, вырывавшиеся с поверхности Солнца, увидел в спектре, кроме трех знакомых линий водорода: красной, зелено-голубой и синей, новую, незнакомую — ярко-желтую. Ни одно из веществ, известных химикам того времени, не имело такой линии в той части спектра, где ее обнаружил Жюль Жансен. Такое же открытие, но у себя дома, в Англии, сделал астроном Норман Локиер.

25 октября 1868 г. парижская Академия наук получила два письма. Одно, написанное на следующий день после солнечного затмения, пришло из Гунтура, маленького городка на восточном побережье Индии, от Жюля Жансена; другое письмо, от 20 октября 1868 г., было из Англии от Нормана Локиера.

Полученные письма были зачитаны на заседании профессоров парижской Академии наук. В них Жюль Жансен и Норман Локиер, независимо один от другого, сообщили об открытии одного и того же «солнечного вещества». Это новое вещество, найденное на поверхности Солнца с помощью спектроскопа, Локиер предлагал назвать гелием от греческого слова «солнце» — «гелиос».

Такое совпадение удивило ученое собрание профессоров Академии и в то же время свидетельствовало об объективном характере открытия нового химического вещества. В честь открытия вещества солнечных факелов (протуберанцев) была выбита медаль. На одной стороне этой медали выбиты портреты Жансена и Локиера, а на другой — изображение древнегреческого бога солнца Аполлона в колеснице, запряженной четверкой коней. Под колесницей красовалась надпись на французском языке: «Анализ солнечных выступов 18 августа 1868 г.».

В 1895 г. лондонский химик Генри Майерс обратил внимание Вильяма Рамзая, известного английского физика-химика, на тогда уже забытую статью геолога Хильдебранда. В этой статье Хильдебранд утверждал, что некоторые редкие минералы при нагревании их в серной кислоте выделяют газ, не горящий и не поддерживающий горения. В числе таких редких минералов был клевеит, найденный в Норвегии Норденшельдом, знаменитым шведским исследователем полярных областей.

Рамзай решил исследовать природу газа, содержащегося в клевеите. Во всех химических магазинах Лондона помощникам Рамзая удалось купить всего только … один грамм клевеита, заплатив за него всего 3,5 шиллинга[7]. Выделив из полученного количества клевеита несколько кубических сантиметров газа и очистив от примесей, Рамзай исследовал его с помощью спектроскопа. Результат был неожиданным: выделенный газ из клевеита оказался… гелием!

Не доверяя своему открытию, Рамзай обратился к Вильяму Круксу, крупнейшему в то время в Лондоне специалисту спектрального анализа, с просьбой исследовать выделенный из клевеита газ.

Крукс исследовал газ. Результат исследования подтвердил открытие Рамзая. Так, 23 марта 1895 г. на Земле было обнаружено вещество, 27 лет назад найденное на Солнце. В тот же день Рамзай опубликовал свое открытие, отправив одно сообщение в Лондонское Королевское общество, а другое — известному французскому химику академику Бертло. В письме к Бертло Рамзай просил сообщить о своем открытии ученому собранию профессоров парижской Академии.

Через 15 дней после Рамзая, независимо от него, шведский химик Ланглэ выделил гелий из клевеита и так же, как Рамзай, сообщил о своем открытии гелия химику Бертло.

В третий раз гелий был открыт в воздухе, куда, по мысли Рамзая, он должен был поступать из редких минералов (клевеита и др.) при разрушении и химических превращениях на земле.

В небольших количествах гелий был обнаружен и в воде некоторых минеральных источников. Так, например, он был найден Рамзаем в целебном источнике Котрэ в Пиренейских горах, английский физик Джон Вильям Рэлей нашел его в водах источников на известном курорте Бат, немецкий физик Кайзер открыл гелий в ключах, бьющих в горах Шварцвальда. Однако больше всего было обнаружено гелия в некоторых минералах. Он содержится в самарските, фергусоните, колумбите, монаците, уранините. В минерале торианите с острова Цейлон содержится особенно много гелия. Килограмм торианита при нагревании докрасна выделяет 10 л гелия.

Вскоре было установлено, что гелий встречается только в тех минералах, в составе которых находятся радиоактивные уран и торий. Альфа-лучи, испускаемые некоторыми радиоактивными элементами, представляют собой не что иное, как ядра атомов гелия, которые, присоединяя электроны, превращаются в атомы гелия.

Гелий — прозрачный газ, без вкуса и запаха, следующий по величине атомного веса после водорода элемент. Он абсолютно инертен, т. е. не вступает ни в какие реакции. Из всех веществ гелий имеет самую низкую температуру кипения –269 °C. Жидкий гелий — самая холодная жидкость. «Замерзает» гелий при –272 °C. Эта температура всего на один градус выше температуры абсолютного нуля.

Гелий — лучший газ для воздухоплавательных аппаратов. Для их наполнения обычно используется смесь гелия (85 %) с водородом (15 %). Огромные количества гелия (до 200 000 куб. м), в прошлом необходимые для наполнения дирижаблей, добывались в основном из природных газов.

Для бомбардировки крупных городов, главным образом, столиц Англии и Франции, немецкое командование в первую мировую войну использовало цеппелины. Для наполнения их употребляли водород. Поэтому борьба с цеппелинами была сравнительно простой: зажигательный снаряд, попадавший в оболочку цеппелина, поджигал водород, цеппелин мгновенно вспыхивал и сгорал. Из 123 цеппелинов, построенных в Германии за время первой мировой войны, 40 сгорело от зажигательных снарядов.

Но однажды генеральный штаб английской армии был удивлен сообщением особой важности. Прямые попадания зажигательных снарядов в немецкий цеппелин не дали результатов. Цеппелин не вспыхнул, а медленно, по-видимому, истекая каким-то неизвестным газом, улетел обратно.

Военные специалисты недоумевали и, несмотря на экстренное и подробное обсуждение вопроса о невоспламеняемости цеппелина от зажигательных снарядов, не могли найти нужного объяснения. Загадку цеппелина разгадал английский химик Ричард Трелфолл. В письме в адрес Британского адмиралтейства он писал: «…полагаю, что немцы изобрели какой-то способ добывать в большом количестве гелий, и на этот раз наполнили оболочку своего цеппелина не водородом, как обычно, а гелием…».

Убедительность доводов Трелфолла, однако, снижалась фактом отсутствия в Германии значительных источников гелия. Правда, гелий содержится в воздухе, но его там мало: в одном кубическом метре воздуха содержится всего только 5 кубических сантиметров гелия. К тому же холодильная машина системы Линде, превращающая в жидкость несколько сот кубических метров воздуха в один час, могла дать за это время не более 3 л гелия.

3 литра гелия в час! А для наполнения цеппелина нужно 5–6 тыс. куб. м. Для получения такого количества гелия одна машина Линде должна бы работать без остановки около двухсот лет, двести таких машин дали бы нужное количество гелия в один год. Постройка 200 заводов по превращению воздуха в жидкость для получения гелия экономически весьма невыгодна, а практически бессмысленна.

Откуда же немецкие химики получали гелий?

Этот вопрос, как выяснилось позже, был решен германским империализмом сравнительно просто. Задолго до войны немецким пароходным компаниям, возившим товары в Индию и Бразилию, дано было указание грузить возвращающиеся пароходы не обычным балластом, а монацитовым песком, который содержит гелий. Так был создан запас «гелиевого сырья» — около 5 тыс. т монацитового песка, из которого и получался гелий для цеппелинов. Кроме того, гелий добывался из воды минерального источника Наугейм, дававшего до 70 куб. м гелия ежедневно.

Случай с несгораемым цеппелином явился толчком для новых поисков гелия. Гелий стали усиленно искать химики, физики, геологи. Он неожиданно приобрел огромную ценность. В 1916 г. 1 кубометр гелия стоил 200 000 рублей золотом, т. е. 200 рублей литр. Если учесть, что литр гелия весит 0,18 г, то 1 г его стоил свыше 1000 рублей.

Гелий сделался объектом охоты коммерсантов, спекулянтов, биржевых дельцов. Гелий в значительных количествах был обнаружен в природных газах, выходящих из недр земли в Америке, в штате Канзас, где после вступления Америки в войну, близ города Форт-Уорс был построен гелиевый завод. Но война закончилась, запасы гелия остались неиспользованными, стоимость гелия резко упала и составляла в конце 1918 г. около четырех рублей за кубический метр.

Добытый с таким трудом гелий был использован американцами только в 1923 г. для наполнения теперь уже мирного дирижабля «Шенандоа». Он был первым и единственным в мире воздушным грузопассажирским кораблем, наполненным гелием. Однако «жизнь» его оказалась непродолжительной. Через два года после своего рождения «Шенандоа» был уничтожен бурей 55 тыс. куб. м, почти весь мировой запас гелия, собиравшийся в течение шести лет, бесследно рассеялся в атмосфере во время бури, длившейся всего 30 минут.



Поделиться книгой:

На главную
Назад