Весной 1686 года в Королевское общество пришло прошение о публикации книги Исаака Ньютона под названием Philosophiae naturalis principia mathematica («Математические начала натуральной философии»). 19 мая, по настоянию Галлея, на встрече общества публикация книги была одобрена. Нужно сказать, что выражение «натуральная философия» означает примерно то, что сегодня мы скорее назовем физикой, а слова «математические начала» подчеркивают решение Ньютона использовать язык и возможности математики для объяснения физических явлений. Во введении к книге III «Математических начал натуральной философии» читаем:
Как написал научный историк Хосе Мануэль Санчес Рон, «существует другой аспект „Математических начал натуральной философии", который следует выделить: это высший пример того, что может называться методом Ньютона. И сам ученый завещал нам в этом труде – в других трудах тоже, но в этом особенно, – то, что составляет сущность современного научного метода: создание простых математических моделей, которые сравниваются с природными явлениями, и в результате этого возникают новые версии, более сложные по сравнению с предыдущими. Благодаря Ньютону математика по-настоящему вросла в физическую теорию».
Через две недели после подтверждения публикации книги совет Королевского общества улаживал щекотливый вопрос, связанный с оплатой расходов: «Было решено, что книга господина Ньютона будет опубликована и что господин Галлей возьмет на себя все связанные с публикацией вопросы, в частности понесет все расходы, что он и согласился сделать». Это решение обернулось для Галлея не одной бессонной ночью. С одной стороны, его экономическое положение на тот момент было не таким уж благополучным: Галлей жил в то время на более чем скромную зарплату ассистента в Королевском обществе. С другой стороны, он еще не знал точного размера и содержания «Математических начал натуральной философии», так как они очень быстро переросли рамки маленького трактата «О движении тел».
В процесс написания «Математических начал натуральной философии» вмешалось происшествие другого рода, которое едва не стоило Ньютону части книги. Роберт Гук узнал, что Ньютон использует в своем труде значение гравитационного притяжения (притяжение между двумя телами обратно пропорционально квадрату расстояния между их центрами), и мгновенно заявил свои права на эту формулировку.
Вначале Ньютон ограничился сообщением Галлею, что открыл теорию притяжения, обратно пропорционального квадрату расстояний, до того как Гук в 1679 году обнародовал свою гипотезу. Но вскоре гнев Ньютона начал расти, и через несколько недель он сказал Галлею, что исключит из «Математических начал натуральной философии» третью часть, посвященную системе мира.
Ньютон по отношению к Гуку становился все язвительнее: «Скажи, красиво ли это? – жаловался Ньютон Галлею. – Математики, которые исследуют, кропотливо собирают по крупицам и делают всю работу, должны смириться с тем, что они лишь подневольные счетоводы, а тот, кто ничего не сделал, а лишь имеет притязания и жадно хватается за все, что может, требует тех же прав на изобретение, как и те, кто его совершил первым».
Безусловно, ситуация была тревожной, ведь Галлей знал, что Гук не просто претендовал на благодарность: он обвинял Ньютона в плагиате. На официальных собраниях Королевского общества он еще сдерживался, но во время неформальных встреч, которые проводились в кафе, давал волю языку.
Ньютон во время спора с Робертом Гуком
Ярость Ньютона накипала, и он начал вымарывать имя Гука из текста: он вычеркнул ссылку на Гука, где признавался его приоритет, концепцию тяготения Гука во втором разделе и наблюдение Clarissimus Hookius («Славнейшего Гука») в дискуссии о кометах. В конце концов и к радости Галлея, осознав, с каким восторгом английское научное сообщество ждет выхода в свет этой книги, Ньютон подумал: лучшее, что он может сделать, чтобы задеть Гука, – это опубликовать третий том «Математических начал натуральной философии» в полном объеме.
5 июля 1687 года Галлей сообщил Ньютону, что подготовка к печати «Математических начал натуральной философии» завершена. Печатная версия представляла собой три тома, где, среди прочего, излагались три физических закона Ньютона. Какими были основные идеи, описанные в труде?
В первой книге излагаются три закона Ньютона о движении тел. Также определяются и проясняются фундаментальные концепции, такие как центростремительная сила – сила, которая при движении по круговой траектории притягивает тело к центру, в отличие от центробежной силы – термина, который использовал Гюйгенс для представления идеи отдаления от центра. Также Ньютон ввел в научную терминологию понятие массы, то есть количества материи, пропорционального плотности и объему тела.
Вторая книга – это трактат о механике жидкостей и воздействии трения на движение твердых тел в жидкой среде. Ученый пришел к мнению, что, например, сопротивление меняется пропорционально квадрату скорости. Книга исследует движение при сопротивлении среды и являет собой беспощадную критику декартовой теории вихрей. В финальной части Ньютон опровергает существование вихрей, с помощью которых Декарт объяснял движение планет. Он доказывает, что пространство должно быть свободно от трения любого вида, и хотя это может показаться противоестественным, существуют силы, способные действовать на расстоянии. Причину этого, по мнению Ньютона, следует искать в первом томе его книги и, более подробно, – в третьем.
В третьем томе, «Система мира», рассчитываются движения небесных тел в среде, где отсутствует сопротивление, описанное в первом томе. В третьей книге Ньютон заключает, что причиной движения планет, а также спутников и комет, приливов и отливов является сила тяготения, которая распространяется на все тела пропорционально количеству материи, которой они обладают. Без сомнений, это самая важная мысль труда, которую сам ученый назвал законом всемирного тяготения.
Таким образом, третий том «Математических начал натуральной философии» демонстрирует, как работают в физическом мире законы движения, описанные в первой книге. С помощью нескольких законов Ньютон связал Землю со всеми небесными явлениями.
В «Системе мира» центростремительная сила, удерживающая планеты на эллиптических орбитах, отождествляется с тяготением; как следствие, Луну на ее орбите удерживает та же сила, которая заставляет тела падать на поверхность Земли. В этой модели гравитационные силы всегда притягивающие; и действительно, отталкивающая сила, такая как центробежная, не могла бы создавать замкнутые орбиты, а тем более заставить яблоко упасть на землю. Кроме того, тяготение является всеобщим: все тела во Вселенной притягиваются друг к другу с силой, пропорциональной их массам и обратно пропорциональной квадрату расстояний. В связи с тем что этот закон включает законы планетарного движения Кеплера, можно сделать вывод, что этим принципам подчиняется и движение спутников вокруг планет, и движение комет вокруг Солнца, и возмущения, вызванные всеохватывающим действием гравитационного притяжения.
Ньютон изучал возмущения на примере движения Луны: «Мы наконец-то узнали, – написал Галлей в своей оде Ньютону, которая стала вступлением к первому изданию «Математических начал натуральной философии», – почему в другие времена казалось, что Луна движется неравномерными шагами, как будто смеется над нами, не позволяя рассчитать свой ход, до сих пор покрытый тайной для астрономов». Однако Галлей преувеличивал, потому что ньютоновское исследование лунной орбиты было недостаточно удовлетворительным; кроме того, необходимость сравнить теоретические прогнозы с результатами наблюдений стала причиной дискуссии Ньютона с королевским астрономом Джоном Флемстидом.
В «Системе мира» речь шла о разных вопросах, среди которых – теория приливов и отливов как результата гравитационного воздействия Солнца и Луны на Мировой океан, рассуждения о форме планет, обязательно приплюснутых на полюсах. Это предположение Ньютона имело разные последствия. С одной стороны, теории Декарта уверяли в противоположном: планеты должны были удлиняться по направлению к полюсам. Вопрос можно было решить, измерив соответствующие дуги меридиана у одного из полюсов и на экваторе, и это доказательство было, безусловно, областью большого научного интереса, так как оно могло исключить одну из двух самых важных теорий того времени. В итоге Парижская академия наук решилась на рискованное предприятие: в начале XVIII века были снаряжены две экспедиции (одна в Лапландию, другая – в Перу), чтобы измерить дугу меридиана. На это потребовались годы, но в результате было установлено, что Земля приплюснута на полюсах. Это стало окончательным триумфом ньютоновской системы над декартовой.
Закон всемирного тяготения, описанный в третьем томе ««Математических начал натуральной философии»
Кроме того, растянутость Земли у экватора позволила Ньютону объяснить один из самых таинственных астрономических феноменов, обнаруженный еще греческими учеными. Речь идет о предварении равноденствий, то есть медленном смещении полюса мира по отношению к звездам, и прохождении окружности с периодом почти 26 ООО лет. В древней геоцентрической концепции Вселенной полюс мира – это точка, в которой звездная сфера срезана по оси, перпендикулярной плоскости эклиптики и проходящей через центр Земли; в гелиоцентрической концепции предварение равноденствий – это небольшой поворот оси вращения Земли с периодом 26 000 лет.
Несмотря на кажущуюся незначительность, этот феномен, открытие которого приписывается греческому астроному Гиппарху (II век до н.э.), имеет фундаментальное значение для составления календарей, поскольку определяет длительность года. Предварение равноденствий не влияет на эклиптику и не воздействует на длительность сидерического года, то есть отрезка времени, за который Солнце проходит эклиптику, однако оно влияет на небесный экватор и, таким образом, на равноденствия – точки, когда эклиптика пересекает небесный экватор.
В течение периода прецессии – этих 26 ООО лет – каждое равноденствие медленно перемещается над эклиптикой из расчета полтора градуса каждые сто лет; таким образом, меняется время, которое требуется Солнцу, чтобы пройти от одного весеннего равноденствия до другого – этот период называется тропическим годом. В результате тропический год примерно на 20 минут короче сидерического и его сложнее измерить. Накопление этих 20 минут, не учтенных в юлианском календаре, и привело к необходимости реформы, которую осуществила католическая церковь в XVI веке.
Исламские ученые смогли описать предварение равноденствий, добавив к системе, составленной Птолемеем, новую сферу, но ни одна теория не была способна объяснить причины этого явления. Ньютон нашел ключ к разгадке в «Математических началах натуральной философии». Его объяснение было верным, хоть и немного несовершенным: в результате гравитационного притяжения Солнца и Луны земная ось смещается, описывая конус с периодом примерно 26 000 лет [
Начальная цена «Математических начал» в первом издании, выпущенном тиражом примерно 400 экземпляров, составила девять шиллингов. Однако маленький тираж быстро разошелся, и в начале XVIII века некоторые экземпляры продавались за более чем два фунта. При жизни Ньютона книга была переиздана еще два раза, и с каждым изданием в нее вносились изменения. Тираж второго издания в 1713 году составил примерно 750 экземпляров (выпуском руководил Роджер Коте), а тираж третьего в 1726-м – приблизительно 1250 экземпляров (изданием руководил Генри Пембертон).
Словно юла, теряющая скорость, Земля медленно и постепенно меняет свою ось вращения в течение периода продолжительностью приблизительно 26 000 лет. Предварение равноденствия происходит из-за гравитационного воздействия Солнца и Луны на экватор. Оно не сказывается на продолжительности сидерического года, но влияет на равноденствия. На иллюстрации внизу изображены равноденствия и полюса мира.
Распространение «Математических начал натуральной философии» вызвало восхищение Ньютоном в научном мире, но и послужило почвой для критики. Приверженцы механицизма заявляли, что абсурдно утверждать, будто тяготение может действовать на расстоянии. По их мнению, это толкование роднило силу тяготения с анимизмом и сближало теорию Ньютона с точкой зрения Аристотеля и схоластов. Гюйгенс и Лейбниц, особенно последний, тоже критиковали Ньютона. Лейбниц рассуждал в письме от 1715 года:
«Если любое тело имеет вес, то следует – что бы ни говорили его сторонники, хотя бы и страстно отрицали это, – что тяготение будет оккультным схоластическим свойством или, более того, чудесной силой. Недостаточно сказать: „Бог создал закон природы, поэтому это естественно". Необходимо, чтобы закон мог объяснить природу созданных вещей. Если, например, Бог дал свободному телу закон вращаться вокруг некоего центра, он должен был соединить это тело с другими, которые при помощи своего импульса держали бы тело на круглой орбите, или поместить его под стопы ангела. Я всем существом поддерживаю экспериментальную философию, но господин Ньютон сильно от нее отдалился, заявляя, что любая материя имеет вес – или что каждая часть материи притягивает другую, и, конечно, это не доказано экспериментально».
Ньютон понимал, что не может объяснить причину притяжения, поэтому защищался единственным возможным способом, взывая к тому, что опирался на вычисления и вероятные значения. Так, в первом издании «Математических начал натуральной философии» он пишет: «Здесь я использую общее слово „притяжение" для любого усилия, которое делают тела, чтобы приблизиться одно к другому; будь это усилие происходящим от действия этих же тел или стремления друг к другу или будь оно следствием действия эфира, или воздуха, или любого другого телесного и бестелесного средства, которое любым способом толкает одни тела к другим. В этом же общем смысле я использую слово „импульс". И я не определяю в этой книге типы или физические качества этих сил, но исследую их количества и математические пропорции». И далее приводит аргумент: «Наша единственная цель – понять количество и свойства этой силы по отношению к явлениям и применить наши открытия к некоторым простым случаям в качестве принципов, чтобы затем можно было оценивать математически воздействие, которое произойдет в более сложных случаях. Мы говорим „математически", чтобы избежать вопроса о природе или качестве этой силы, ибо не в наших намерениях заключать ее в рамки какой-либо гипотезы».
Все это было пропитано той же утилитарной философией, которая проступает в значительной части «Общих схолий» – комментариев, добавленных во второе издание труда: «Но я еще не мог раскрыть, основываясь на явлениях, причину этих свойств притяжения, и я не выдумываю гипотез. Потому что то, что нельзя вывести из феномена, должно называться гипотезой, а гипотезам либо метафизическим, либо физическим, либо оккультных свойств, либо механическим нет места в экспериментальной философии […]. И довольно того, что притяжение существует и действует по законам, истолкованным нами, и является достаточным для всех движений небесных тел и земного океана».
Ньютон настаивал на том, что его интересует не сущность притяжения, а его эффекты. Чтобы проиллюстрировать это, приведем точку зрения ученого, описанную в письме Ричарду Бентли в 1693 году:
Тот, кто сегодня начнет читать «Математические начала натуральной философии», удивится, не найдя в них и следа анализа бесконечно малых – великого математического изобретения Ньютона, которому посвящена значительная часть следующей главы. Для описания математических размышлений в своем труде ученый предпочел язык синтетической геометрии. Английский гений часто говорил, что использовал вычисления для большей части данных, приведенных в «Математических началах натуральной философии», хотя и представлял их затем на гораздо более строгом языке геометрии. Возможно, Ньютон и утверждал подобное, но документальных доказательств этому нет.
«Математические начала натуральной философии» появились после того, как Ньютон отверг новую аналитическую геометрию и обратился к идеям греков в области синтетической геометрии. Это превращение не может не удивлять, если знать, что вначале Ньютон изучал Декарта, а не Евклида, и с помощью декартовой геометрии обосновал свои расчеты со всей алгоритмической мощью. Между тем так все и было. Начиная с 1680 года Ньютон начал серию работ о синтетической геометрии, которую завершил к 1693 году попытками реставрировать греческие геометрические методы. Эти работы так и остались неопубликованными. Другая возможная причина отсутствия алгебраических расчетов состоит в том, что ученый, приступая к написанию «Математических начал натуральной философии», подумал: если он представит свои мысли на этом новом и недостаточно распространенном языке, понять написанное смогут немногие.
Чтобы принять всерьез научную теорию, необходимо, чтобы она была согласована с наблюдениями, доступными в момент ее разработки, и объясняла самые важные явления. Так как три закона Кеплера выводились из теории гравитации и согласовывались с результатами наблюдений за небесными телами, теория Ньютона, описанная в «Математических началах натуральной философии», переступила через незыблемое научное правило: соответствовать имеющимся данным.
Однако успех физической теории определяется точностью прогнозов, которые она позволяет сделать. Математическая формула всемирного тяготения в виде уравнений позволила делать прогнозы, и экспериментальное подтверждение подняло ее научную состоятельность. Теория гравитации была подтверждена в течение следующих двух веков, и некоторые сюжеты этого триумфа были весьма впечатляющими.
Два таких момента произошли почти одновременно в середине XVIII века. С одной стороны, крупные французские экспедиции в Лапландию и Перу подтвердили предсказание Ньютона о том, что Земля сплюснута у полюсов. С другой стороны, появились лунные таблицы, разработанные немецким астрономом Тобиасом Майером на основании теории тяготения Ньютона и расчетов швейцарского математика Леонарда Эйлера (1753). Английское адмиралтейство было готово заплатить немалую сумму, чтобы помочь своим кораблям определять положение в море.
Однако теорию гравитации ожидали гораздо более сложные испытания, так как каждое открытое тело в Солнечной системе означало новый вызов: следовало доказать, что наблюдаемая траектория совпадает с теоретической. В течение полутора веков после публикации «Математических начал» было обнаружено немало небесных тел. Среди них – планета Уран, открытая Уильямом Гершелем в марте 1781-го, и пояс астероидов между Марсом и Юпитером. Расчетные орбиты этих тел соответствовали наблюдаемым. Каждое совпадение вело к новым успехам, а сама теория завоевывала все большее доверие. Однако наиболее потрясающее ее достижение состояло в том, что исключительно с помощью теоретических выкладок и математических уравнений гравитации удалось предсказать и обнаружить новую планету дальше Урана.
Открытию Нептуна предшествовала угроза провала: по мере того как шли годы после открытия Урана, планета демонстрировала четкую тенденцию к отклонению от орбиты, которую ей приписывали законы Ньютона. Приблизительно в 1790 году с некоторой точностью был намечен путь, по которому должен был следовать Уран, учитывая силу, с которой его притягивало Солнце, и воздействие других планет, в основном Юпитера и Сатурна. В связи с отдаленностью от Солнца Уран имеет очень маленькую угловую скорость – ему нужно более 84 лет, чтобы совершить один оборот; его медленное перемещение и стало причиной того, что только в 1800 году было замечено: Уран отклоняется от орбиты. В расчеты вносились уточнения, которые Уран снова нарушал. В начале 1830-х годов отклонение Урана стало настолько угрожающим, что ученые пришли к выводу: либо он не подчиняется закону тяготения, либо существует нечто, препятствующее выполнению закона. Кто-то выдвинул предположение, что этой помехой может быть планета, расположенная дальше Урана, которая влияет на его орбиту; другие считали, что если бы эта планета существовала, ее уже давно локализовали бы при помощи математических расчетов. Словом, появилась задача определить размер и местоположение объекта, способного воздействовать таким образом на орбиту Урана. Независимо друг от друга необходимые расчеты сделали два астронома: француз Урбен Леверье (1811-1877) и англичанин Джон Адамс (1819-1892). Несмотря на несовершенство астрономических обсерваторий, где они проводили свои исследования, оба попали в цель, и, благодаря настойчивости Леверье, работавшего над проблемой в Берлинской обсерватории, сентябрьской ночью 1846 года была открыта планета, из-за которой смещается орбита Урана. Новая планета получила название Нептун.
Открытие Нептуна стало очередным подтверждением закона гравитации Ньютона. И хотя в Солнечной системе были и другие отклонения, в середине XIX века многие считали, что все их можно объяснить с помощью теории Ньютона.
Самое важное из этих отклонений было связано с перигелием Меркурия – самой ближней к Солнцу точкой на его орбите, которая каждый год немного перемещалась вокруг Солнца, вызывая смещение целой орбиты. Проблема, как объявил Леверье, состояла в том, что это смещение происходило быстрее, чем требует теория гравитации.
И наконец, этот «непорядок» мог бы означать, что хотя теория гравитации Ньютона объясняет устройство Солнечной системы, на самом деле в ней есть ошибки. Пространство Ньютона – это своего рода вместилище планет и звезд, которые двигаются в соответствии с законом гравитации. По Ньютону, пространство абсолютно, и тела, существующие в нем, не могут его изменить, как не могут сделать этого по отношению ко времени, которое также абсолютно и течет везде в одинаковом безвозвратном ритме. Однако окружающая нас Вселенная сложнее, чем представлял Ньютон.
Теория относительности Альберта Эйнштейна (1905) предложила идею неразрывно связанных времени и пространства. Время, масса, скорость относительны, и эти признаки меняются, если мы будем двигаться со скоростями, сравнимыми со скоростью света.
С другой стороны, общая теория относительности (1915) говорит нам, что пространство меняется под воздействием того, что в нем находится, что небесные тела изгибают его в зависимости от своей массы; например Солнце воздействует на пространство сильнее, чем Земля или Луна. Во время своей поездки в Соединенные Штаты в 1921 году сам Эйнштейн так объяснил свою идею толпе журналистов, которые попросили кратко рассказать, что такое общая теория относительности:
Общая теория относительности идеально объясняет, что происходит с Меркурием. Если тело в Солнечной системе движется не слишком быстро и на достаточном отдалении от крупной массы, законы Ньютона описывают его движение с великолепной точностью, а если и существует определенная погрешность, то она не фиксируется нашими измерительными приборами. Но Меркурий, приближаясь к своему перигелию, двигается слишком быстро, гораздо быстрее, чем другие планеты, и находится очень близко к Солнцу, поэтому его орбита выявляет ограничения закона тяготения Ньютона. Мы знаем, что Эйнштейн был более озабочен тем, чтобы объяснить явления, а не исправлять недочеты существующих физических теорий, будь то теория гравитации или движения эфира, хотя он и считал, что его идеи могут объяснить то, что идеи Ньютона объяснить не могли.
Эйнштейн испытал огромную радость, поняв, что его теория объясняла изменения орбиты Меркурия: «Я три дня был вне себя от радости». По словам Абрахама Пайса, одного из биографов Эйнштейна, его успех с перигелием Меркурия стал «самым сильным эмоциональным потрясением в научной жизни Эйнштейна, а может, и во всей его жизни. Природа заговорила с ним, и он знал это. „Я чувствовал, как меня переполняет радость". После ученый сказал другу, что его открытие вызвало у него сильную дрожь по всему телу. Или еще более глубокое переживание, которым он поделился с другим своим другом: когда Эйнштейн увидел, что его расчеты совпадают с астрономическими наблюдениями, которые нужно было объяснить, ему показалось, что что-то надорвалось внутри».
Слова Эйнштейна в 1907 году
Тот факт, что Эйнштейн, в качестве доказательства своих теорий, не один раз подчеркивал, что они основаны на подходе Ньютона, лишний раз говорит о том авторитете, которым пользовалась теория гравитации Ньютона в XX веке. Во введении к одной из своих работ 1916 года, которая подробно рассказывала об общей теории относительности, Эйнштейн писал:
Переход от теории тяготения Ньютона к теории относительности Эйнштейна не был таким же революционным, как переход от птолемеевой астрономии к астрономии Коперника. Как говорил Эйнштейн, гравитация Ньютона – это хорошее приближение к пониманию Вселенной, которая нас окружает. В действительности же речь идет об отличном приближении, если ограничиться Солнечной системой, на знаниях о которой построил Ньютон свою теорию. Это приближение настолько эффективно, что и по сей день мы используем его для описания траекторий искусственных спутников и космических кораблей или в расчетах сопротивления при строительстве подвесных мостов.
Когда Эйнштейн представил свою общую теорию относительности в 1915 году, она была не более чем объяснением космоса, полученным с помощью математических расчетов, начиная с физического принципа эквивалентности: силы гравитационного взаимодействия пропорциональны массе тела. В этот момент общая теория относительности имела не слишком прочную опору: да, в ее основе лежала теория тяготения Ньютона, и да, новая теория объясняла отклонение перигелия Меркурия, но это было достаточно скудной поддержкой для идеи, которой суждено было произвести революцию в научном мире. Кроме этого, можно было опираться на состоятельность Эйнштейна как ученого, однако этот аргумент не является научным.
Подтверждение общей теории относительности произошло благодаря тому, что ее прогнозы подтверждались экспериментально. Один из таких прогнозов устанавливает, что свет искривляется под воздействием гравитационного поля, или, иначе говоря, наличие материи искривляет пространство, и в этом искривленном пространстве углы в треугольниках, например, в сумме уже не составляют 180 градусов. Физические принципы и математический подход к этим принципам позволили Эйнштейну рассчитать искривление, вызванное воздействием массы Солнца на лучи света, посылаемые дальними звездами. В конце весны 1919 года англичане отправили в Гвинейский залив экспедицию во главе с Артуром С. Эддингтоном для наблюдения за полным солнечным затмением. После нескольких месяцев расчетов и проверок 6 ноября 1919 года Эддингтон пришел к заключению, что оценки Эйнштейна совпадают с наблюдениями. Газета Times вышла на следующий день со звучным заголовком: «Революция в науке: новая теория Вселенной низвергает идеи Ньютона». Это превратило Эйнштейна, до того дня известного лишь в научных кругах, в популярную фигуру, равную по масштабу английскому ученому, которого он «низверг».
Новость, однако, имела неоспоримый политический налет: прошел год после окончания Первой мировой войны, и лондонская Times «низвергла» Ньютона, самого восхваляемого из всех английских ученых, в пользу немца Эйнштейна. Конечно, Эйнштейн родился в Германии, был членом Прусской академии наук, однако сами немцы своим его не считали. В 1901 году он получил швейцарское гражданство и решительно стоял на позициях пацифизма во время войны. В 1918 году он писал: «По рождению я еврей, по гражданству – швейцарец, а по образу мыслей я человек, и только человек, без привязанности к какому-либо государству или национальному сообществу». Многое было сказано о том, был ли Эддингтон полностью объективен в своих выводах; неспроста же он заявил: «Это лучшее, что могло случиться для научных отношений между Англией и Германией». Но все эти подробности лишь подчеркивают политическую остроту новости.
Нечасто случается, что наука входит в сферу политики, и тот факт, что причиной этому стали работы и личность Ньютона – ученого, которого не было в живых уже почти 200 лет, – лишний раз говорит о его авторитете.
ГЛАВА 3 Математик и маг
Достижения Ньютона в математике известны меньше его работ по физике, однако они также достойны уважения. Самое значительное из них – анализ бесконечно малых, идея, появившаяся во время его первых лет в Кембридже. А помимо математики и физики, ученого крайне увлекали алхимия и толкование Библии.