Газ, накопляющийся при горении ракеты в ее тесной полости, сильно сжат и распирает ракету во все стороны: вправо и влево, вперед и назад, вверх и вниз. Напор вправо уравновешивается напором влево; напор вперед уравновешивается напором назад. А напор вверх уравновешивается ли напором вниз? Одинаково ли давит в ракете газ вверх и вниз? Он давил бы одинаково, если бы внизу не было отверстия, но мы знаем, что внизу стенка с дыркой; значит, там не хватает части стенки, на которую газ мог бы напирать. Давление вниз поэтому меньше, чем давление вверх. Ясно, что раз напор вверх сильнее, то ракета и увлекается вверх.
Вы видите, что ракета летит вверх напором не того газа, который из нее вытекает, и не того, который находится под ней, а напором того газа, который заключается внутри ее самой. Для полета ракеты безразлично поэтому, окружена ли она воздухом или же воздуха кругом нее вовсе нет. Отсюда следует то, о чем многие не подозревают: что ракета может летать, набирая скорость, в пустом пространстве. Более того, в пустоте она должна подниматься даже лучше, чем в воздухе, потому что ей не приходится тогда рассекать над собой воздух; ведь воздух — большая помеха быстрому движению.
Еще лучше поймете вы истинную причину полета ракеты, если сравните ракету с ружьем. Что происходит при выстреле из ружья? Курок спущен; от удара вспыхнул порох. В тесном пространстве ружейного ствола позади пули образовалось от горения пороха много горячего газа, который давит во все стороны. Ствол имеет прочные стенки, они не поддаются распору; впереди же нет стенки, там ствол заложен пулей, и газ стремительно выталкивает эту пулю из ствола. Но тот же газ напирает и назад, в сторону приклада. Пока пуля еще не подалась, напор газа вперед и назад был одинаков. Едва лишь пуля вылетела, давление газа вперед прекращается вовсе, и остается только давление назад. Что же должно произойти с ружьем? Оно дергается назад: ружье, как говорят, «отдает».
Спросите красноармейца, что он чувствует, когда пуля вылетает из ружья. Он скажет вам, что приклад ударяет его в плечо. Это «отдача» ружья. Она довольно сильна. Неопытного стрелка она иной раз больно ушибает, даже валит с ног. Стрелок должен знать, как надо стоять при стрельбе и как держать ружье, чтобы отдача не причинила вреда.
При стрельбе из пушек отдача, конечно, гораздо сильнее. В пушках прежнего устройства она откатывала назад тяжелое орудие. В нынешних при выстреле скользит назад только ствол пушки, лафет же удерживается на месте.
В чем сходство и в чем различие между ружьем и ракетой? Пороховой газ, образующийся в них при горении пороха, напирает в обе стороны; в этом сходство. Разница же та, что в ружье самое главное — вылет пули, в ракете же главное — отдача: силою отдачи ракета летит вверх. Другое различие в том, что заряд ружья вспыхивает мгновенно, весь сразу; заряд же ракеты сгорает медленно, постепенно.
Запомним же самое важное из того, что мы сейчас узнали:
1) ракета летит оттого, что на нее напирает газ изнутри;
2) ракета при полете не опирается о воздух;
3) ракета может лететь в пустоте;
4) заряд ракеты сгорает не мгновенно, как заряд огнестрельного оружия, а постепенно; поэтому и скорость свою ракета получает не сразу, а плавно, без сотрясения.
Теперь понятно, почему изобретатели небесных кораблей поставили себе образцом именно ракету. Ведь только ракета может набирать свою скорость в безвоздушном пространстве, простирающемся между землей и луной. И только корабль, устроенный подобно ракете, может быть пущен в небесный полет так плавно, без рывка, что пассажиры внутри него уцелеют.
Остается превратить ракету в летательную машину, которая могла бы поднимать людей. Как это сделать, будет рассказано в этой книжке дальше.
Но прежде побеседуем о том, для каких целей употреблялись ракеты до настоящего времени.
Для чего служат ракеты
Вы не должны думать, что ракеты применяются только для украшения народных празднеств. Их употребляют и для различных других надобностей.
В прежнее время, когда пушки не были еще так дальнобойны и метки, как теперь, ракетами пользовались для переброски бомб: занесенные на ракетах в неприятельское расположение бомбы причиняли разрушения и пожары. Первыми стали пользоваться такими боевыми ракетами индусы; у них больше ста лет назад имелись в армии особые ракетные отряды из тысяч обученных людей.
Англичане скоро переняли у индусов уменье изготовлять крупные боевые ракеты. Английская армия снабжалась ракетами весом до двадцати килограммов; такими ракетами перекидывались бомбы на расстояние нескольких километров.
Вслед за англичанами начали пользоваться ракетными бомбами австрийцы и немцы. Боевые ракеты во многих случаях были удобнее пушек, потому что, пользуясь ими, не надо было возить с собой тяжелых орудий. Но затем пушечное дело улучшилось настолько, что для переброски бомб не имело уже смысла применять ракеты; пушки стреляли гораздо дальше и более метко, а главное — не допускали неприятеля на такое расстояние, с которого можно было бы стрелять ракетами. Поэтому ракетные бомбы в европейских армиях перестали употреблять. Но весьма возможно, что с дальнейшим развитием ракетной техники к таким снарядам снова возвратятся.
В наши дни ракеты находят себе применение в военном деле, между прочим для освещения неприятеля в ночное время. Ракету пускают высоко вверх, и она своим огнем далеко освещает неприятельское расположение. В Красной армии «светящие» ракеты имеют в длину три четверти метра и снабжены палкой («хвостом») в полтора метра длиною. Весит такая ракета около шестнадцати килограммов. Зажженная, она пролетает целый километр косо вперед и к концу полета выбрасывает сноп ярких звездочек; звездочки горят четверть минуты, освещая окрестность.
Кроме светящих ракет, в Красной армии употребляются также ракеты «сигнальные». Они служат для передачи сигналов своим воинским частям в ночное время: высоко поднявшаяся ракета видна с далекого расстояния.
В последнее время стали пользоваться ракетами, чтобы с их помощью поднимать очень высоко фотографический аппарат и оттуда снимать расположение неприятеля. Фотографическая ракета взлетает на шестьсот — тысячу метров. С такой высоты можно на ровной местности видеть на сотню километров во все стороны.
Приносят пользу ракеты и морякам. Нередко случается, что нельзя пристать на лодке к тонущему кораблю, который гибнет недалеко от берега: волнение опрокидывает лодку. В таких случаях пускают с берега на корабль большую ракету, которая несет с собой конец прочного троса. Поймав трос, команда корабля устанавливает с помощью его связь с берегом.
Наконец есть еще полезное применение ракет в мирной жизни: они служат для борьбы с градом. Особенно широко употребляются противоградовые ракеты в Швейцарии и у нас на Кавказе. Едва упадут первые несколько градин, швейцарец пускает две-три ракеты: этого во многих случаях оказывается, говорят, достаточно, чтобы вместо града выпал дождь. Пуском трех ракет защищается от града участок примерно в один квадратный километр; кругом же него выпадает не дождь, а град. Действие этих противоградовых ракет, впрочем, еще недостаточно проверено.
В самое последнее время в Австрии делается успешный опыт применения ракет для переброски почты через труднопроходимую горную местность. Дело удалось так хорошо наладить, что почта таким способом пересылает даже заказные и денежные отправления
Летательная машина революционера Кибальчича
Первый человек в мире, кому пришла мысль превратить ракету в летательную машину, был революционер Кибальчич. Полвека назад группа революционеров из тайного общества «Народная воля» подготовила убийство царя Александра II: он был убит бомбой, брошенной революционерами в его карету. Бомбу изготовил двадцатисемилетний революционер и изобретатель Николай Кибальчич. Это был знающий и искусный техник, сумевший сам изготовить и взрывчатое вещество (динамит) и механизм бомбы.
В точности рассчитал он, сколько надо взять для бомбы динамита, чтобы взрыв, во-первых, достиг цели, а во-вторых, «не причинил вреда лицам, случившимся на тротуаре при проезде государя, а также прилежащим домам» (приводим собственные слова Кибальчича из его показаний во время суда).
Кибальчич вместе с другими участниками убийства царя был схвачен царскими властями, заключен в крепость и отдан под суд.
Находясь под стражей, этот замечательный человек мало думал об ожидавшей его казни.
Мысли его были заняты совсем иным: он размышлял над изобретением летательной машины.
Надо заметить, что в то время не было еще ни самолетов, ни воздушных кораблей, а были одни только воздушные шары, которые нельзя было направлять по желанию; они летели туда, куда дул ветер. Кибальчич же хотел придумать такую летательную машину, которую можно было бы направлять по желанию в любую сторону.
Кибальчичу, как и всякому отданному под суд, был назначен защитник. Незадолго до суда защитник посетил его в заключении и с удивлением увидел, что революционер «был погружен в изыскание, которое он делал о каком-то воздухоплавательном снаряде; он жаждал, чтобы ему дали возможность написать свои математические изыскания об этом изобретении. Он их написал и представил по начальству».
Перед казнью Кибальчич просил, чтобы составленное им описание изобретения было показано сведущим людям. «Если моя идея, — писал он, — после тщательного обсуждения учеными специалистами будет признана исполнимой, то я буду счастлив тем, что окажу громадную услугу родине и человечеству. Я спокойно тогда встречу смерть, зная, что моя идея не погибнет вместе со мною, а будет существовать среди человечества, для которого я готов был пожертвовать своей жизнью».
Но Кибальчича казнили, никому не показав его записки. Тотчас после казни пакет с описанием изобретения был спрятан полицией в секретном месте. А так как полиции было мало дела до летательных машин, то мысль Кибальчича долго оставалась для всего мира совершенно неизвестной. Тридцать шесть лет пролежал пакет с изобретением Кибальчича в тайниках царской полиции. И только в 1917 году, когда царская власть была низложена, пакет был открыт, и содержание его сделалось известным.
В чем же состояло изобретение Кибальчича? Как предлагал он устроить летательную машину?
То, что придумал Кибальчич, было совершенно ново. Его летательная машина не походила на воздушные шары того времени. Не похожа она также на самолеты и воздушные корабли наших дней. Занимаясь много и усердно взрывчатыми веществами, Кибальчич придумал способ использовать их, чтобы приводить в движение летательную машину.
Вот как представлял он себе устройство такой машины. На рисунке (стр. 46), в верхнем углу, дается не подлинный чертеж, сделанный Кибальчичем, — тот чертеж был бы вам непонятен, — а дополненный различными подробностями, облегчающими понимание. Вы видите на рисунке платформу, на которой укреплены две стойки. Они поддерживают открытый металлический сосуд, подвешенный между ними. Сосуд обращен дном вверх, а узким отверстием вниз. В сосуде имеется медленно сгорающий порох. Когда порох зажигают, образуется внутри много горячего газа, которому тесно в сосуде. Стремясь раздаться во все стороны, газ напирает на стенки сосуда и частью вытекает через отверстие вниз. Вы уже знаете, что должно произойти: напор газа на боковые стенки одинаков, но давление на верхнее дно сосуда сильнее, чем давление вниз, потому что вытекающая струя ни на что не давит; поэтому машина должна увлекаться вверх, если только она не слишком тяжела.
Описывая свою машину, Кибальчич указывал на то, что она сможет не только подниматься вверх, но и лететь в любую сторону, куда захочет направить ее команда. Для этого надо будет только поворачивать цилиндр закрытым концом в сторону движения. Ракета всегда летит в сторону, противоположную той, куда вытекает газ.
Во времена Кибальчича не умели еще строить никаких управляемых летательных машин. Вот почему, вероятно, Кибальчич совершенно не упоминает о другой замечательной особенности придуманной им машины— о том, что она могла бы летать не только в воздухе, но и в пустоте. Кибальчич знал это, конечно. Он не принадлежал к тем людям, которые ошибочно считают, будто ракета в полете отталкивается струей газа от воздуха под нею. В его записке приводится совершенно правильное объяснение полета ракетной машины. Ему должно было быть поэтому ясно, что придуманная им машина не нуждается для полета в окружающем воздухе и может даже вылететь за атмосферу. Если Кибальчич об этом не упоминает, то, очевидно, потому, что не время было говорить о полетах за атмосферу, когда не умели еще хорошо летать в самой атмосфере.
Свою мысль о летательной машине Кибальчич не считал доведенной до конца. Он хорошо понимал, что она нуждается в проверке и в испытании на деле, или, как говорят, «на опыте». Он писал: «Я не имел достаточно времени, чтобы разработать свой проект в подробностях и доказать его осуществимость математическими вычислениями». Эта работа была выполнена позднее другим замечательным русским изобретателем — Константином Эдуардовичем Циолковским.
Ракетный корабль Циолковского
Описание машины, придуманной революционером Кибальчичем, пролежало, мы знаем, почти сорок лет в тайниках царской полиции. А тем временем другой русский изобретатель, учитель Циолковский, пришел к сходной мысли. Хотя он не мог ничего знать об изобретении Кибальчича, ум его направился по тому же пути. Он тоже придумал летательную машину, устроенную наподобие ракеты. Мысль свою Циолковский разработал математически, т. е. сделал все относящиеся к ней расчеты. Он доказал этими расчетами то, что осталось недоказанным у Кибальчича, а именно, что если заряд ракетной машины достаточно велик, то она непременно должна подняться и полететь. Все дело лишь в том, чтобы машина несла с собой большой запас горючих веществ и чтобы струя газа вытекала из ее трубы с значительной скоростью.
Чем больше выгорело заряда и чем больше скорость вытекания газов, тем большую скорость развивает ракетный корабль.
Чтобы отлететь от земли совсем и добраться до луны, нужна, мы знаем (стр. 30), скорость не меньше одиннадцати километров в секунду. Циолковский доказал точным расчетом, что ракетный корабль может достигнуть такой большой скорости; он вычислил даже, сколько для этого понадобится сжечь горючего вещества и какого именно вещества.
Кибальчич предлагал заряжать ракетную летательную машину так же, как заряжаются все ракеты, — порохом. Однако, все мы знаем, что порох — вещество очень ненадежное. С ним опасно иметь дело даже при изготовлении маленьких ракет. Подумайте, насколько же опасно заряжать порохом большую летательную машину, целый ракетный — корабль. Такому союзнику нельзя доверить жизнь путешественников. Но нем же его заменить?
Чем следует заменить порох, указал Циолковский. Он первый обратил внимание на то, что порох — не единственное и вовсе не самое лучшее вещество для заряжения ракет. Гораздо лучше действует так называемый «гремучий газ». Гремучий газ есть смесь кислорода (газа, которым мы дышим) и еще другого газа — водорода. Если эти газы сильно охладить и сжать, то они превращаются в жидкости. Такие жидкости можно взять с собою на ракетный корабль в отдельных баках, а для сжигания смешивать их небольшими порциями. Водород отдельно от кислорода не взрывается, кислород сам по себе тоже не может взорваться, — поэтому такой заряд безопасен для ракетного корабля. Чтобы ракетный корабль мог покинуть земной шар, он должен иметь громадный запас горючего вещества. Порох в столь значительном количестве, наверное, взорвался бы еще раньше, чем корабль двинулся бы в путь. Малейшее сотрясение такого порохового заряда, даже давление собственного веса, легко может вызвать взрыв, уничтожить не только самый корабль, но и опустошить все далеко кругом него.
Кроме гремучего газа, для заряда ракетного корабля пригодны и такие горючие жидкости, как спирт, нефть, бензин и др., — конечно, в смеси с кислородом[2]. Все они должны работать в ракете лучше, чем порох, надо только придумать хорошее устройство для их сжигания. Порох имеет, правда, одну выгоду: он сгорает чрезвычайно быстро, почти мгновенно. Оттого и говорят про порох, что он не горит, а взрывает. Это очень важная выгода для стрельбы, но при движении ракеты быстрота сгорания заряда не нужна и безусловно вредна для здоровья пассажиров.
Ракетный корабль, придуманный Циолковским, одинаков по замыслу с летательной машиной Кибальчича. Но по внешности оба изобретения мало походят одно на другое. У Кибальчича — платформа с двумя стойками, которые поддерживают большой цилиндр с порохом. Теперь посмотрите на рисунке (стр. 50), как Циолковский представляет себе свой ракетный корабль.
Часть оболочки корабля на рисунке снята, чтобы видно было внутреннее устройство. Вдоль корпуса корабля, внутри его, идет труба, расширяющаяся к наружному, открытому, концу. Через эту трубу должен вытекать горячий газ при горении заряда. В узкий конец трубы особыми насосами будут накачиваться жидкий кислород и какая-нибудь горючая жидкость (жидкий водород, бензин и т. п.); здесь они смешиваются и зажигаются. Вместилища для обеих жидкостей очень велики; они, как вы видите, занимают большую часть небесного корабля. Циолковский рассчитал, что при меньшем заряде ракетный корабль не может получить нужной скорости. Газ, образующийся от горения, вытекает через широкий конец трубы наружу и в то же время напирает в сторону узкого конца, заставляя всю ракету лететь в этом направлении.
В передней части ракетного корабля Циолковского будет устроена каюта. Она должна быть обставлена и оборудована примерно так, как каюты подводных лодок или гондола стратостата. Мы еще будем беседовать об этом после.
Вы, вероятно, хотите узнать, чем же отличается такой ракетный корабль от пушечного снаряда, придуманного Жюлем Верном. Мы знаем уже, что полет людей в пушечном ядре невозможен: пассажиры в нем должны погибнуть. Почему же считается возможным полет в ракетном корабле? Ведь и он должен покинуть землю с огромною скоростью — одиннадцати километров в секунду. Разница здесь не в величине скорости, а в том, как она получается.
Сама по себе большая скорость для человека не вредна, мы даже ее не чувствуем, как бы велика она ни была; вредно лишь быстрое нарастание скорости. Пушечный снаряд получает свою скорость почти сразу; нарастание скорости здесь чрезвычайно быстрое, — чувствуется сотрясение, гибельное для всякого живого существа. Ракетный корабль, наоборот, получает свою скорость понемногу: он начинает движение плавно и увеличивает скорость постепенно, пока не доведет ее до огромной величины. Такое незаметное нарастание скорости переносится людьми без вреда для здоровья.
Вот первая выгода ракетного корабля, какой нет у пушечного снаряда. Другая выгода, не менее важна. Отправиться на луну мало — надо и назад вернуться. Безвозвратный полет лишен смысла, даже если бы и нашлись люди, которые готовы были бы потерять жизнь ради такого путешествия. В пушечном ядре возвратиться нет возможности. В ракетном же корабле это вполне возможно. Нужно только захватить с собою настолько большой запас горючих веществ, чтобы не расходовать его целиком при отправлении в путь. Корабль должен спуститься на луну с некоторым запасом горючего, который и послужит для обратного путешествия.
Вот почему будущий ракетный корабль — самая подходящая летательная машина для путешествия на луну. Летчикам нужно будет, конечно, иметь в своей каюте все необходимое для жизни: воздух, питье, еду, даже тепло и свет в виде электрического отопления и освещения. Перелет на луну и обратно должен отнять около двух недель. Запас питья и еды для нескольких человек на две недели не очень обременит корабль. Воздух для дыхания брать в полет особо не придется: на корабле ведь будет большой запас кислорода для горения, а кислород и есть то, что расходуется при дыхании. Электрическое отопление нужно будет пускать в дело не все время: большую часть пути корабль будет купаться в солнечных лучах, которые согреют его достаточно. Как бы не пришлось, наоборот, терпеть чрезвычайный жар! Мы знаем, что воздухоплаватели, поднимавшиеся в стратосферу, где воздух охлажден до 50 градусов мороза, страдали иногда от жары, а не от холода. Впрочем, и против этой беды будет под рукой хорошее средство: жидкий кислород так холоден, что Понадобится лишь разбрызгать в каюте немного этой жидкости — и воздух ее станет прохладным.
Скажем теперь несколько слов о самом Циолковском. Этому замечательному человеку, прославившемуся рядом изобретений, теперь более семидесяти пяти лет. В 1932 году вся советская общественность чествовала его в день 75-летия. Циолковский родился в очень бедной трудовой семье, которая не в состоянии была дать ему даже начального школьного образования. Свои обширные познания он приобрел без всякой помощи со стороны, путем самостоятельного чтения книг. Сорок лет был он учителем, а все свободное время употреблял на ученые исследования и размышления над своими изобретениями. Эти изобретения Циолковского относятся к самолетам, к воздушным кораблям и к ракетному летанию. Он делал расчеты самолетов раньше, чем была построена за рубежом первая летательная машина. Точно так же опередил он западных ученых в расчете воздушных кораблей. Придуманный им образец воздушного корабля с металлической оболочкой имеет много важных преимуществ по сравнению с существующими дирижаблями: дирижабль Циолковского должен оказаться дешевле, безопаснее и долговечнее нынешних воздушных кораблей. Но самое удивительное из всего придуманного Циолковским — его план перелета на луну в ракетном корабле, о котором я сейчас рассказал.
Долгие годы никто не ценил работ Циолковского, не признавал важности его изобретений и не оказывал ему никакой поддержки. Признание. и помощь пришли только после революции, когда советская власть и общественность оценили его заслуги.
Циолковский безвыездно живет в городе Калуге и, несмотря на преклонные годы, неустанно занят работами над своими изобретениями. Я получил от него много важных указаний, которыми воспользовался, между прочим, и при составлении этой книжки[3].
Изобретатели за рубежом
Кибальчич и Циолковский — не единственные изобретатели, придумавшие летательные машины наподобие ракеты. К этой же самой мысли пришли позднее изобретатели и за рубежом нашего отечества — в Америке. и в Германии. Как Циолковский, ничего не зная о машине Кибальчича, через двадцать лет сам придумал ракетный корабль, так и американский ученый Годдард на двадцать лет позже Циолковского сам пришел к мысли устроить громадную ракету для высокого подъема. Он проделал ряд поучительных опытов, чтобы улучшить устройство обыкновенных ракет; между прочим, он доказал на деле, что в безвоздушном пространстве ракета должна лететь не только не хуже, но даже лучше, чем в воздухе.
А еще через несколько лет в Германии появилась книга немецкого ученого Оберта, который, ничего не зная ни о Кибальчиче, ни о Циолковском, ни о Годдарде, тоже пришел к мысли устроить летательную машину наподобие ракеты. Как и Циолковский, он предлагает заменить порох горючими жидкостями: спиртом, жидким водородом и др., смешиваемыми перед зажиганием с жидким кислородом. Он выполнил множество расчетов, очень важных для тех, кто будет строить со временем ракетные летательные машины. Он придумал также устройство нескольких ракетных машин, больших и малых, которые должны служить разным целям.
Что же означает такое совпадение мыслей четырех изобретателей, не знавших друг друга? Почему люди, жившие так далеко один от другого, пришли к одинаковым мыслям?
Потому, конечно, что найденное ими решение задачи полета во вселенную — единственно верное. И если четыре изобретателя, каждый в отдельности, придумали одно и то же, то это несомненно доказывает, что все они напали на правильный путь.
От мысли к делу
Когда в самые последние годы изобретатели ракетных машин стали переходить от замысла к исполнению, то прежде всего поставили перед собою такой вопрос: как испытать, что ракета действительно может двигать не только себя, но и целую машину? С этой целью сделано было несколько попыток двигать ракетами повозки на земле.
Первые опыты такого рода делались с автомобилями. Снимали с автомобиля мотор и в задней части кузова устанавливали крупные ракеты. После нескольких проб сделан был опыт с автомобилем, который нес на себе двенадцать ракет. Опыт удался: при зажигании (электрической искрой) одной ракеты за другой автомобиль помчался с возрастающей скоростью и менее чем в десять секунд разогнался до ста километров в час. Второй опыт был произведен с автомобилем лучшего устройства: он имел такую форму, которая помогала ему рассекать впереди себя воздух; по бокам имелись крылья — но не для того, чтобы, поднимать машину вверх, а, напротив, чтобы прижимать ее к земле, не давать ей отделяться от почвы. Ракет было поставлено вдвое больше, чем при первом опыте, — двадцать четыре. Когда они были зажжены, автомобиль сорвался с места и стремительно помчался, развив скорость двести двадцать километров в час.
При третьем опыте автомобиль с тридцатью шестью ракетами достиг скорости двухсот сорока километров в час.
Следующий опыт был сделан с ракетной «автодрезиной», т. е. с автомобилем на рельсах, в котором двигателем служили ракеты. Ожидалась такая большая скорость, что опасно было посадить человека; решено было испытать машину без седоков. Один седок, впрочем, был: чтобы узнать, как действует на здоровье быстрое нарастание скорости, поместили в автодрезину клетку с кошкой. Пускали машину о двадцатью четырьмя ракетами дважды. В первый раз она разогналась до скорости ста восьмидесяти километров в час.
Второй раз ждали еще большей скорости, но испытание кончилось несчастьем: машина сорвалась с рельсов и упала под откос; ракеты взорвались все сразу и уничтожили автомобиль. Погиб и четвероногий пассажир автодрезины.
При помощи ракет можно было бы сообщить повозкам очень большую скорость, но колеса не могут делать слишком большое число оборотов. При чересчур быстром вращении они разрываются на части. Вот почему сделаны были опыты с ракетными санями: здесь нет колес, и можно безопасно развить огромную скорость.