Оба эти вопроса — «Почему так поздно?» и «Где истинный портрет?» — неминуемо подводят нас к третьему, главнейшему вопросу: «Кто она?» Каково происхождение темной энергии? Миновать эти вопросы нельзя. Ведь невозможно описать фундаментальные свойства времени, пространства, материи и энергии, игнорируя основной компонент Вселенной.
Темную энергию нельзя уловить, ее не воссоздать на современных ускорителях, но именно «она таит ключ к пониманию нашего мироздания, — говорит Майкл Тернер. — Пусть мы не знаем пока, что такое темная энергия, мы убеждены в том, что, изучая ее, поймем, каким образом на ранней стадии Вселенной были взаимосвязаны фундаментальные силы и элементарные частицы. Путь к этому пониманию лежит через телескопы, а не через ускорители». Пока же физики и астрономы, пытаясь объяснить природу темной энергии, буквально блуждают в потемках.
То, не знаю что: отражения отражений
Итак, в рамках общей теории относительности можно истолковать темную энергию как антигравитацию. В квантовой теории она готова предстать в обличье вакуумной энергии. Возможно, гравитационное действие почти равно антигравитационному, и потому плотность вакуумной энергии равна микроскопической величине.
Есть и другие объяснения.
Американский космолог, выпускник Харьковского университета, Александр Виленкин предлагает свою гипотезу. Быть может, нет никакой случайности в том, что плотность материи во Вселенной и космологическая константа, то есть темная энергия, — это величины одного порядка. Ведь если бы было иначе, не могли бы возникнуть галактики и где-то в глубине одной из них — по крайней мере, одной из них — не зародилась бы жизнь.
Эта гипотеза побуждает вспомнить «антропный принцип»: мир устроен так гармонично, и все его части так ладно пригнаны друг к другу, что у этого мира не может не быть Творца. В таком случае Бог проделал поистине ювелирную работу, с необычайной точностью подбирая естественные константы. Стоит незначительно изменить любую из них, и Вселенная может превратиться в непригодную для обитания среду.
Чтобы избежать подобного объяснения, продолжает Виленкин, можно предположить следующее: космологическая константа в разных частях Космоса принимает различные значения. Только в некоторых районах Вселенной — там, где существуют галактики, — эта константа приняла значение, при котором могла зародиться жизнь. Стало быть, темная энергия неравномерно распределена в пространстве? Если это так, то незачем уверовать в «чудесный случай», «Божественный промысел» и «ювелирную точность», породившие наш обжитой мир.
В 1998 году американские физики Пол Стейнхардт, Ричард Колдуэлл и Рауль Дэйв предположили, что за темной энергией скрывается неизвестное пока квантовое поле, не описываемое Стандартной моделью физики. Оно пронизывает все пространство и вызывает непрестанное расширение Вселенной. «Оно мало напоминает электрическое или магнитное поле и действует как антигравитационная сила». Стейнхардт и коллеги назвали его «квинтэссенцией», вспомнив пятую основу мироздания, придуманную Аристотелем в дополнение к четырем известным грекам стихиям — воздуху, огню, земле и воде: по Аристотелю, «из нее состоят эфирные тела».
В гипотезе Стейнхардта, Колдуэлла и Дэйва, темная энергия ведет себя, почти как в гипотезе Виленкина. Только не в пространстве она неравномерно распределена, а во времени. В момент возникновения Вселенной плотность темной энергии, в самом деле, была в 10120 раз выше, чем теперь. Эта идея примиряет разные научные теории, ведущие спор о «незнакомке в чреде космических стихий». Приняв ее, можно не удивляться: «Почему так поздно?»
«Пытаясь объяснить, почему в мироздании содержится такое-то количество темной энергии, мы вынуждены предположить, что и в момент его возникновения квинтэссенция равнялась строго определенной величине, а это попахивает подтасовкой, — рассуждает Стейнхардт. — Другое дело, если она меняется, взаимодействуя с остальной материей. Тогда ее концентрация естественным образом может достичь своего нынешнего значения».
Некоторые гипотезы звучат еще радикальнее. Израильский физик М. Мильгром и его нидерландский коллега Б. Сандерс вообще сомневаются в законе всемирного тяготения. Они предложили «модифицированную ньютоновскую динамику», и надо думать, что желающие «подправить старика Ньютона» не переведутся ни на Западе, ни у нас. Известный британский астрофизик Мартин Рис так оценил их усилия: «К гипотезе Мильгрома можно будет обратиться лишь в том случае, если все поиски темной энергии окажутся бесплодными и все иные возможности будут исключены».
Португальский физик Жоао Магуэхо из лондонского Имперского колледжа ради новой любимицы физиков готов был поступиться еще одной вековечной догмой. Он предположил, что на начальной стадии Вселенной скорость света была в миллиард раз выше, чем теперь. По мере расширения и остывания Вселенной скорость света спадала, а когда температура Вселенной достигла некоего критического значения, произошел «фазовый переход» — что-то вроде превращения воды в лед: скорость света «застыла» на нынешнем уровне. В таком случае наблюдения за сверхновыми звездами можно истолковать иначе. Однако упомянутые уже исследования космического фонового излучения, проведенные в 2001 году, опровергли эту гипотезу.
По мнению Энн Нельсон, Дэвида Каплана и Нила Уайнера из Вашингтонского университета, за темной энергией скрывается новый, неизвестный прежде тип элементарных частиц — акселероны (от английского acceleration, «ускорение»). Они взаимодействуют лишь с нейтрино и ни с какими другими элементарными частицами. Взаимное отталкивание акселеронов и нейтрино, мчащихся почти со световой скоростью и практически не реагирующих с обычным веществом, вызывает ускоренное расширение Вселенной. В результате термоядерных
реакций, протекающих в недрах звезд, количество нейтрино все растет, и Вселенная все увеличивается. Однако чем дальше будут разлетаться нейтрино, тем медленнее будет расширяться Вселенная.
Наконец, по мнению грузинского физика Георгия Двали из Нью-Йоркского университета, за темной энергией скрываются… недоступные нам размерности пространства. Так темная энергия соединяется с «теорией струн».
Согласно ей, многие свойства частиц легко объяснимы, если допустить, что мир состоит из незримо тонких, вибрирующих нитей. От характера колебаний зависит облик частиц — их масса, заряд, спин.
Георгий Двали развивает эту теорию, и, хотя в его изложении она напоминает рассуждения уфолога, разве что там «не барражируют НЛО с пришельцами и не пролетают ангелы и привидения», она основана на строгом математическом расчете. Итак, возможно, мы все-таки способны проникнуть в мир, по «теории струн» недоступный нам, и можем даже контактировать с ним. Мы обязаны этим гравитации. Она — единственная сила, которой дано преодолеть границы размерностей и воздействовать на микроскопические миры и наоборот. Дополнительные измерения ослабляют тяготение, ведь часть гипотетических «частиц гравитации» ускользает в другие измерения, а потому сила взаимного притяжения галактик ослабевает и космос стремительно расширяется. Наблюдается «утечка гравитации».
Возможно, по этой причине сила гравитации гораздо слабее трех других фундаментальных взаимодействий. Опытным путем было установлено, что закон всемирного тяготения действует, по-видимому, и на расстояниях порядка одной стомиллионной доли миллиметра. К такому выводу пришли исследователи из Индианаполиса, поставившие в 2005 году эксперимент с чрезвычайно чувствительным торсионным маятником. В этом опыте не было обнаружено никаких отклонений, вызванных существованием дополнительных размерностей. В противном случае сила притяжения заметно увеличилась бы. Очевидно, гипотетические размерности свернуты еще компактнее.
По расчетам Георгия Двали и его американских коллег Андрея Грузинова и Маттиаса Залдариаги, «утечка гравитации», могла бы вызвать медленную прецессию орбиты Луны. Пока Луна делает один оборот вокруг Земли, точка ее наибольшего сближения с нашей планетой должна смещаться примерно на полмиллиметра. Однако проверить правильность этой гипотезы пока нельзя, ведь погрешность лазерного дальномера составляет сейчас примерно один сантиметр. Впрочем, сама возможность постановки такого эксперимента радует, отмечает Георгий Двали, ведь «долгое время считалось, что теория струн касается только чрезвычайно малых объектов, и никакой эксперимент не может подтвердить или опровергнуть ее».
Но, может быть, уже в первые десятилетия XXI века удастся доказать обратное, а заодно и подтвердить, пишет Георгий Двали, что «таинственная темная энергия порождена теми силами гравитации, что проникают из видимого мира в скрытые от нас измерения. Там, в этих недоступных нам мирах, наши звезды и галактики, в свою очередь, кажутся чем-то вроде темной энергии». Круг замкнулся, соединив реальность с отражением.
Так, взявшись исследовать открытую недавно темную энергию и начав путешествие там, где о ней еще ничего не знали, мы неожиданно очутились там, где о ней уже ничего не хотят знать. Что ж, остановимся и соберемся с силами для новых странствий по темной стороне Вселенной. В путеводителях недостатка не будет. В ближайшие годы появится немало теорий, описывающих природу этого невидимого и неведомого мира, сказочного «того, не знаю что». И, может быть, загадочный мир темной энергии внезапно исчезнет как морок, растает словно дым. Во всяком случае, Адам Райе и Майкл Тернер, авторитетные исследователи этого мира, не отрицают такой возможности. В их статье, опубликованной на страницах «Scientific American», есть и такие строки: «Не исключено, впрочем, что темной энергии вообще нет и нужно пересмотреть теорию гравитации Эйнштейна».
Пока же, по сообщению журнала «В мире науки», министерство энергетики США и НАСА готовят совместный проект — «Объединенная миссия по изучению темной энергии», или сокращенно JDEM. Ученые надеются, что проект стартует в начале 2010-х годов.
1.4. РАЗГАДЫВАЯ КОД ДИРАКА
Позитивные адские видения
Конечно, антивещество интересует не только практиков, готовых взорвать чужие города, клерикальные святыни и — «о, да… весь этот шар земной» (У. Шекспир, пер. Б.Л. Пастернака), — но и теоретиков, стремящихся понять, что происходило в первые мгновения после Большого Взрыва. В эти мгновения весь — такой еще крохотный! — Космос был наполнен не только привычным нам веществом, но и его экзотическим «негативным двойником», явившимся к нам сперва из теоретических экскурсов, фантастически открытым на кончике досужего, фантазирующего пера.
Ему, антивеществу, почти 14 миллиардов лет, сколько и нашей Вселенной. И ему, антивеществу, всего каких-то сто лет. Почти ровно столько оно одиноко возникает в научных моделях, поверочных расчетах, смелых гипотезах, странных экспериментах. Сто лет одиноко — на короткие мгновения — рождается в совершенно чуждом ему мире, — мире, где все пяди пространства вплоть до незримых планковских размерностей заполнены привычным нам веществом, темным веществом (темной материей), но никак не антивеществом — тем, что, подобно адским видениям, исчезает при первом соприкосновении с явью.
Итак, идея антивещества родилась в головах физиков почти сто лет назад, в конце двадцатых годов XX века. Творцом ее стал британский физик Поль Дирак.
То время было триумфом физики. Все мироздание — от Макрокосма до Микрокосма — было заново исчислено и описано двумя новомодными теориями — общей теорией относительности Альберта Эйнштейна и квантовой теорией.
Немедленно возникло желание объединить две крайности физической науки, «свести к единому знаменателю» атомы и планеты. Этим, в частности, занимался Дирак. Однако из формул, выведенных им, явствовало нечто странное. Наряду с электронами, в этих формулах получали право на жизнь и частицы, точь-в-точь похожие на них, но заряженные положительно, — неслыханная новация для классической физики. С другой стороны, в математическом решении, предложенном Дираком, не было видно изъянов, а весь многовековой опыт приучил ученых к мысли о том, что математика — впрямь «царица наук». Любые предсказания, справедливые с математической точки зрения, неминуемо сбывались — находили свое воплощение в Природе. Что сказано на языке цифр, то не может быть неправдой!
Через несколько лет, второго августа 1932 года, в одном из экспериментов «антиэлектрон» был, действительно, обнаружен. За свой положительный — позитивный — заряд он был удостоен имени «позитрон». В 1955 году были примечены и «антипротоны». Теперь известно, что у всех элементарных частиц есть свои антиподы — античастицы. Знаменитый физик Вернер Гейзенберг назвал открытие антивещества «самым неожиданным открытием XX века».
Так приотворилась дверца в неведомый мир, с которым мы прежде не соприкасались. Ведь любой контакт с ним гибелен. При встрече частиц и античастиц они аннигилируют, уничтожаются. Как пошутил немецкий астроном Рудольф Киппенхан, если человек влюбится в существо из антивещества, пусть их любовь останется платонической, иначе беды не миновать. Что родится от такого союза? Лишь сноп лучей.
Борьба пуруши с пракрити
Когда в 1933 году Поль Дирак (тогда еще тридцатиоднолетний!) получал Нобелевскую премию, он произнес речь, в которой обмолвился, что Земля по случайности состоит из вещества, а не из антивещества. «Возможно, — фантазировал он, — с некоторыми небесными телами все обстоит как раз наоборот». Иными словами, в представлении Дирака, где-то в неизведанной космической дали свершали свой бег антипланеты, обращаясь вокруг антизвезд. По этим антипланетам разгуливали наши зеркальные двойники, антилюди. В своих антигосударствах, шутили записные юмористы от физики, они отстаивали свои антиправа, боролись за свое антидостоинство и увлекались новейшими идеями в области антинауки.
Что же подвигло британского ученого на такой смелый вывод? Ее величество Симметрия, пронизывающая все мироздание от Макрокосма до Микрокосма. С незапамятных времен философы всех народов почитают это «диво дивное» — симметрию, являющую всякой сущности ее отражение, всякому естеству — его противоположность. Даже в индуистских Ведах, древнейшем памятнике культуры индоевропейцев, заходит речь о таинственном равновесии субстанций, слагающих мироздание, — пракрити (веществе) и пуруше (своего рода антивеществе).
В начале 1960-х годов эта всепроникающая Симметрия лежала в основе современной физики, описывавшей акт сотворения Вселенной — Большой Взрыв. В это мгновение, когда Ничто превратилось в Нечто, родился в высшей степени симметричный объект. Вещества в нем было столько же, сколько и антивещества.
Однако эта же модель немедленно полагала предел мирозданию. Частицы встречались с античастицами, вещество с антивеществом — и аннигилировали, аннигилировали… Лишь гамма-вспышки проносились по вмиг опустевшему Космосу.
Итак, едва родилась подобная абсолютно симметричная модель мироздания, на нее не могли не обрушиться вопросы, вспыхивавшие как молнии… как молнии, порождаемые аннигиляцией.
Почему же в первые микросекунды после Большого Взрыва все частицы не уничтожились, встретившись со своими античастицами? Почему существует этот — такой реальный, такой зримый — мир, сложенный из элементарных частиц? Где затерялись их двойники, грозившие, о да… всему этому шару земному?
Божественный план с визой от академика Сахарова
Однако в нашей Вселенной изначально был изъян. По какой-то причине Великая Симметрия, рождающая и стирающая миры, как мимолетные облачка, нарушилась. Законы природы для частиц и античастиц стали разниться. Количество вещества несколько превысило запасы антивещества. И после вселенского фейерверка, выжегшего, возможно, почти все антивещество, остался результат нарушения Симметрии — звезды, галактики, мы.
По общепринятому теперь сценарию (его творцом является великий «антиученый» Советского Союза, человек, несовместимый со сложившейся к 1970-м годам в СССР общественной системой, как несовместимы, к примеру, протоны и антипротоны, А.Д. Сахаров), всего через миллионную долю секунды после Большого Взрыва почти все вещество в нашем мироздании (99,99999999 процента), аннигилировало, соприкоснувшись с антивеществом. История сотворения Вселенной началась с истории ее разрушения.
Этот космический «судный миг», этот «праздник уничтожения», пережили, по некоторым оценкам, всего по одной элементарной частице из каждых 30 миллиардов. Все это — незримые семена, из которых пророс наш — такой необъятный — мир. Из этой горстки частиц соткана даль мироздания с ее звездами, планетами и гигантскими галактическими скоплениями. Из крох, уцелевших в Микрокосме, возведен величественный Макрокосм.
Итак, мы обязаны своим существованием нарушению симметрии, этому дефекту законов природы? В Божественный план, по которому создавался космос, изначально вкралась ошибка? Мир должен быть рожден, как рождаются в вакууме виртуальные пары частиц и античастиц, — рождаются, чтобы сразу исчезнуть? Здесь это правило не сработало, и вакуум потеснен нагромождением масс, простертым до горизонта и далее?
Но если наш мир обязан своим существованием асимметрии, то где именно она вкралась в скрижали законов природы? Почему череда частиц оказалась протяженнее когорты античастиц? Почему одних много, других мало?
Чтобы ответить на эти вопросы, исследователи CERN не так давно сравнили массу протонов и антипротонов — частиц, которые не существуют со времен Большого Взрыва. По всем физическим законам, масса тех и других должна быть одинакова. В противном случае пришлось бы говорить о нарушении Стандартной модели физики.
В самом деле, массы протонов и антипротонов совпали, по крайней мере, вплоть до десятого знака после запятой. Итак, симметрия соблюдена? Предположительно. Исследования будут продолжены в ближайшие годы. Пошатнут ли они привычную теорию? Поколеблют ли полувековой фундамент физики?
Другой любопытный эксперимент, длившийся несколько лет (1999 — 2004), был проведен в США, на Стэнфордском ускорителе. Здесь удалось доказать, что при распаде В-мезонов и их античастиц, анти-В-мезонов, действительно, нарушается симметрия.
В общей сложности ученые наблюдали 200 миллионов случаев распада мезонов. В 910 случаях В-мезоны распадались на каон и пион, а вот анти-В-мезоны распадались подобным образом лишь 696 раз. Если бы вещество и антивещество были абсолютно симметричны, то показатели распада частиц и античастиц были бы примерно одинаковы.
Возьмите в Космос «кусочек сахара»!
Для экспериментов нужно антивещество. По оценке НАСА, стоимость одной миллиардной доли его грамма достигает сейчас примерно шести миллиардов долларов. Получить наяву эти призрачные частицы, не способные прижиться в Космосе, можно лишь с помощью гигантских ускорителей, разгоняя до невероятных скоростей и сталкивая друг с другом частицы нормального вещества.
Производство антивещества пока в высшей степени не эффективно. Сперва нужно затратить огромное количество энергии, чтобы затем — когда-нибудь — использовать энергию, таящуюся в антивеществе.
Да и много ли ее «таится» в современных лабораториях? Сейчас в магнитных ловушках крупнейших ускорителей мира можно удержать до миллиона античастиц. Этого достаточно для научных целей, но никак не для нужд военного ведомства или атак вымышленных террористов. И вообще, нельзя используемыми ныне методами накопить более ста миллиардов антипротонов — уж слишком велики силы отталкивания их и электронов.
Чтобы наладить производство антивещества, нужно накапливать не антипротоны, а антиатомы — электрически нейтральные образования. Перспективнее всего, говорят физики, наладить производство антиводорода, поскольку мы располагаем запасами водорода почти в неограниченном количестве.
В лабораторных экспериментах ученым уже удавалось изготавливать атомы антиводорода, в которых вокруг отрицательно заряженного ядра обращается позитрон. Однако они возникают всего на 30 миллиардных долей секунды и думать об их конденсации в виде капель или кристаллов пока рановато.
Впрочем, когда-то, в канун Второй мировой войны, и обогащенный уран был едва ли не такой же экзотикой, как в наши дни антивещество. Тогда представлялось невозможным наладить производство одной тонны обогащенного урана. Сейчас накоплены огромные его количества.
И ведь как хорошо было бы, мечтают многие ученые, иметь под рукой запасы антивещества! Использовать его могли бы медики для борьбы с раковыми опухолями, что гораздо эффективнее современной радиотерапии. Частицы (раковые клетки) и античастицы (антипротоны) уничтожались бы, опухоль растаивала бы, как снег под весенними лучами солнца. В то же время антипротоны, в отличие от рентгеновских лучей, не повреждали бы здоровую ткань.
Другие возможные способы применения антивещества связаны с тем, что оно аккумулирует невероятную энергию в крохотном объеме пространства.
Так, космонавты могли бы получить в свое распоряжение самый эффективный двигатель за всю историю техники. Космический корабль, оборудованный им, разгонялся бы до скорости 100 тысяч километров в секунду, в то время как современные ракеты — лишь до 5 километров в секунду. Для вывода на околоземную орбиту корабля, весящего сто тонн, хватило бы количества энергии, скрытого в брикете антивещества размером с кусочек сахара. Вместо громадных топливных баков — брикеты весом в несколько граммов.
По расчетам американской фирмы «Hbar Technologies», финансируемой НАСА, было бы достаточно семнадцати граммов антивещества, чтобы автоматический зонд долетел за сорок лет до звезды Альфа Центавра, то есть преодолел расстояние в 4,3 световых года.
Как отмечает Кеннет Эдвардс, руководитель отдела Revolutionary Munitions («революционного вооружения»), созданного при ВВС США, потребуется примерно полтора десятилетия и около двух миллиардов долларов, чтобы создать прототип двигателя, работающего на антивеществе. Для хранения такого взрывоопасного топлива, как антиводород, его нужно охладить почти до абсолютного нуля. Тогда тепловое движение антиатомов практически прекратится, и они перестанут вступать в реакцию с частицами обычного вещества.
На основе антиводорода можно создать и чрезвычайно разрушительное оружие. Его мощь превысит мощь атомных бомб, — и в то же время на территории, где его применили, не будет радиоактивного заражения.
Неслучайно военное ведомство США в последнее время наложило запрет на публикацию материалов об исследованиях в области антивещества. Помнится, что когда-то, незадолго до создания атомной бомбы, из открытой печати исчезли упоминания о работах в области исследования урана.
Инь и Ян тунгусского неба
Исследования антивещества продолжаются. Между тем космологи порой говорят о том, что, может быть, где-то в отдаленной области Космоса можно обнаружить огромные скопления антивещества, возникшего сразу после Большого Взрыва. Что если оно не полностью уничтожилось в первые доли секунды космического творения? Что если антивещество в нашей части Космоса столь же редко, как где-то на далекой окраине Вселенной редко вещество? И все мироздание состоит, на самом деле, как из «инь» и «ян», как из «положительного» и «отрицательного», — из двух несходных, несовместимых сущностей — нашего вещественного и далекого антивещественного, вещества и антивещества?
Можно предаться фантазиям и вообразить, что где-то в космической дали, на своих антипланетах, живут и антилюди. Ведь антивещество, очевидно, так же может образовывать крупные структуры, как обычное вещество. Вступая в химические реакции, антиводород и антикислород образуют антиводу, антиуглерод и антиводород — органические антисоединения. Антиатомы излучают свет, когда позитроны переходят с одной орбиты на другую, но свет этот состоит из антифотонов. Мы могли бы наблюдать звездные системы из антивещества с помощью телескопа, но не догадались бы об их «инаковости», ведь свет, приходящий от них, ничем не отличался бы от света обычных звезд.
В 1960 — 1970-е годы нобелевский лауреат, американский физик Луис Альварес, подняв на высоту 4000 метров сверхпроводящие магниты на баллонах, выслеживал антивещество, проникавшее из Космоса, но обнаружил лишь позитроны и пару антипротонов — всего около 40 тысяч частиц. Однако, чтобы и впрямь найти антивещество, прилетевшее с антизвезд, нужно, считают ученые, проанализировать миллиарды частиц. Ведь лишь одна частица на 100 тысяч или даже миллион частиц, долетающих до Земли, прибывает из областей, лежащих за пределами Млечного Пути.
Теперь поисками антивещества занимается альфа-магнитный спектрометр, установленный на Международной космической станции. Этот прибор, анализирующий состав космического излучения, заметит одну-единственную частицу антивещества среди десяти миллиардов «нормальных» частиц. Если удастся найти, к примеру, хотя бы несколько атомов антиуглерода, это докажет, что где-то вдали светятся антизвезды. Ведь в первые минуты после Большого Взрыва образовались только легкие элементы — водород и гелий, а тяжелые элементы рождались впоследствии в недрах звезд — и антизвезд. В таком случае есть и антиастероиды, и антикометы, которые — теоретически — когда-нибудь могут долететь до Земли. Даже крупица антивещества размером с горошину, попав в атмосферу нашей планеты, могла бы вызвать страшный взрыв. Так, еще один нобелевский лауреат, американский физик Уиллард Либби, разработавший метод радиоуглеродного анализа, был убежден в том, что загадочный Тунгусский метеорит, взорвавшийся летом 1908 года, был сгустком антивещества, случайно достигшим окрестности нашей планеты. Может ли такая случайность повториться? Что если огнедышащие драконы древних сказаний, внезапно обнаруживавшие себя в небесах и выжигавшие все живое в округе, были такими вот «сгустками антивещества», случайно долетавшими до Земли, чтобы там разразиться памятной вспышкой? А не могла ли подобная вспышка уничтожить динозавров (последние — «мастера выживания»: сколько гипотез описывали их массовую гибель, а вот поди ж ты, нет недостатка в новых гипотезах, трактующих факт их вымирания с привлечением любых ресурсов реального и ирреального!)?
… Пока исследования не подтвердили, что где-то в космосе скрываются целые области, состоящие из антивещества. Но и не опровергли этого. Быть может, эти области отделены от привычного нам Космоса обширными участками пустого пространства, что и препятствует аннигиляции. Наша Вселенная сейчас настолько велика, что в ней хватит место и для таких регионов.