Плазменная струя имеет форму ярко выраженного конуса (рис. 9а) с вершиной, обращенной к изделию и окруженной факелом.
Устройство горелок для получения плазменной дуги (рис. 9б) принципиально не отличается от устройства горелок первого типа. Только дуга горит между электродом и изделием.
Процесс возбуждения плазменной дуги между электродом и изделием осуществить очень трудно. Поэтому дуга вначале возбуждается между электродом и соплом (дежурная дуга), а затем при касании ее факела изделия происходит автоматическое зажигание основной дуги между электродом и изделием. Для этого к соплу подключен токопровод от положительного полюса источника тока.
Плазменная дуга обладает большей тепловой мощностью по сравнению с плазменной струей, т. к. в изделие вводится дополнительное тепло от электрического тока дуги. Плотность теплового потока плазмотрона в десятки раз больше теплового потока при сварке плавящимся электродом.
• плазменная сварка со сквозным проплавлением (толщина материала свыше 3 мм);
• плазменная сварка плавлением (толщина материала 1–3 мм);
• микроплазменная сварка (толщина материала 0,01–1 мм).
На рисунке 10 представлена конструкция микроплазменной горелки.
Оборудование для плазменно-дуговой сварки, резки, напыления:
• источник питания плазменной дуги с вертикальной вольт-амперной характеристикой;
• плазменная горелка-плазмотрон;
• системы подачи газа и охлаждения горелки;
• порошковый питатель (для напыления);
• устройства перемещения и фиксации деталей;
• система приточно-вытяжной вентиляции.
Преимущества плазменной технологии:
• высокая концентрация теплоты;
• высокая стабильность горения, что обеспечивает лучшее качество сварных швов;
• возможность сварки металлов до 10 мм без разделки кромок и применения присадочных материалов;
• возможность вести сварку на низких токах 0,1–25 А, в режиме микроплазменной сварки листов металла толщиной 0,01–0,8 мм;
• при увеличении тока дуги и расхода газа проникающая плазменная дуга позволяет вести резку любых современных материалов;
• введением в плазменную дугу присадочных металлов производят напыление, наплавку любых металлов, от легкоплавких и до тугоплавких;
• возможность сваривать металлы с неметаллами;
• минимальная, по сравнению с другими способами, зона термического влияния;
• более низкие термические деформации по сравнению с другими видами сварки;
• возможность обработки (сварка, напыление, резка) тугоплавких, жаропрочных металлов;
• пониженный расход защитных газов по сравнению с аргонно-дуговой сваркой;
• высокотехнологичный процесс, возможность автоматизации.
Рис. 9.
Рис. 10.
Недостатки плазменной технологии:
• высокочастотный шум в комбинации с ультразвуком;
• электромагнитное излучение оптического диапазона (УФ, ИК, видимый спектр);
• ионизация воздуха;
• выделение паров материала в виде аэрозолей;
• недолговечность сопла плазменной горелки вследствие высокотемпературной нагрузки;
• сложность аппаратуры требует подготовки высоко-квалифицированного персонала.
Лазерная сварка
Современные понятия в физике наделяют элементарные частицы света (фотоны) свойствами либо волны, либо корпускул (частиц), так как свет проявляет свойства волны в одном случае – при явлениях
В соответствии с постулатами квантовой физики любое вещество состоит из атомов и молекул. Каждая система атомов (молекул) обладает изначально запасами внутренней энергии. Атомы и молекулы вещества образуют так называемые
Микросистемы подчиняются законам квантовой механики и обладают основным свойством квантовых систем –
При естественных условиях атомы вещества самопроизвольно (спонтанно) переходят с уровня на уровень, излучая или поглощая кванты света – фотоны, например, при излучении света в электрической лампочке.
Предположим, имеется вещество, состоящее из атомов с энергетическими уровнями Е1, и Е2, причем Е1 меньше Е2. При облучении вещества, атомы которого находятся на уровне Е2, фотонами с энергией Е=(Е2 – Е,) атомы вещества могут перейти обратно на уровень Е1. При переходе происходит выброс фотонов, т. е.
Рис. 11.
При определенных условиях, если среда является активной, процессы вынужденного излучения фотонов преобладают над процессами поглощения, процесс переходит в лавинообразное испускание вторичных фотонов. Но фотоны света испускаются во всех направлениях. Чтобы упорядочить процесс генерации лазерного излучения в заданном направлении, используют оптические резонаторы.
Направление генерации лазерного излучения обозначено на рис. 12 стрелкой.
Рис. 12.
Спонтанные фотоны, случайно родившиеся в направлении О—О, будут проходить внутри активного элемента относительно длинный путь, который многократно увеличивается вследствие отражения от зеркал резонатора. Взаимодействуя с возбужденными активными центрами, эти фотоны, набирая энергию, инициируют мощную лавину вынужденно испущенных фотонов, которые образуют лазерный луч. Спонтанные фотоны, которые родились в других направлениях, равно как и соответствующие им лавины вторичных фотонов, пройдут внутри активного элемента сравнительно короткий путь и выйдут за его пределы.
Таким образом, зеркала оптического резонатора выделяют в пространстве определенное направление, вдоль которого реализуются наиболее благоприятные условия для развития фотонных лавин. Это и есть направление лазерного луча, который выходит из резонатора через одно из зеркал. Для облегчения процесса выхода одно из зеркал делают частично прозрачным для лазерного излучения.
Принципиальная схема лазера проста и показана на рисунке 13.
Теперь осталось ответить на вопрос о монохроматичности лазерного излучения.
По-гречески – «монос» означает «один», а «хромос» значит цвет. Таким образом, монохроматичность означает, что луч лазера – одноцветный. В физическом плане высокая монохроматичность проявляется в том, что луч лазера имеет практически одну длину волны. Элементарные волны света («волновые цуги») кроме монохроматичности идеально когерентны, т. е. распространяются в одном и том же направлении, имеют одинаковую длину волны и находятся в фазе друг с другом.
Высокая степень когерентности позволяет сфокусировать лазерный луч в пятно, равное длине волны излучения – т. е. порядка 1–10 микрон.
Если мощность лазера, например на основе СО2–1 кВт, сфокусировать на площадке диаметром в 1 мм, то получим интенсивность лазерного луча 105 Вт/см2.
Эта очень высокая концентрация тепловой энергии позволяет испарять все земные элементы и естественно сваривать при определенных условиях металлы. Современные лазерные установки способны выстреливать эту колоссальную мощность за доли секунды в импульсе.
Остается добавить, что в качестве активных сред можно использовать:
• кристаллы (искусственные или естественные);
• специальные стекла;
• полупроводники;
• жидкие среды (растворы специальных красителей);
• газовые среды.
В соответствии с используемой активной средой лазеры подразделяют на
Рис. 13.
Вернемся к рисунку 13. Для чего используется накачка и что это такое? Когда говорят о накачке, то подразумевают введение энергии извне внутрь квантовой системы для возбуждения энергетических уровней, о чем говорилось выше. Можно еще сказать, что накачка необходима для возбуждения активной среды лазера.
Энергетическая накачка активных элементов лазера производится в импульсном или постоянном режиме. В импульсном режиме используются специальные
В сварочной технике применяют, в основном, твердотельные лазеры на кристаллах неодима с гранатом, неодимовых стеклах, на кристаллах рубина. В них применяется оптическая накачка с помощью
Используются для сварки и газовые лазеры. Мощные газовые лазеры изготавливают на основе газовых смесей с применением углекислого газа – СО2. Для газовых лазеров применяют в качестве энергетической накачки электрический высоковольтный разряд.
Оборудование для лазерной сварки и резки:
• высоковольтный выпрямитель для питания ламп накачки;
• блок конденсаторов;
• блок поджига газового разряда;
• собственно лазерная головка (активный элемент, отражатель, лампы накачки);
• оптическая система для фокусировки, юстировки (настройки) и наблюдения;
• система охлаждения установки;